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Abstract
Convolutive non-negative matrix factorization (CNMF) is an ef-
fective approach for supervised audio source separation. It re-
lies on the availability of sufficient training data to learn a set
of bases for each acoustic source. For automatic speech recog-
nition (ASR) in a multi-source noise environment, the varied
nature of background noise makes it a challenging task to learn
the noise bases and thereby to suppress it from the speech sig-
nal using CNMF. A large amount of training data is required
to reliably capture noise variation, but this generally leads to
an unacceptable computational burden. Here, we address this
problem by learning the noise bases using a computationally
efficient, online CNMF approach. By learning the noise bases
from several hours of ambient noise data and over a few seconds
of local acoustic context, we show that background noise can
be effectively attenuated from noisy speech. ASR accuracies
on the CHiME corpus with the denoised speech show relative
improvements in the range of 42.3% for -6 dB signal-to-noise
ratio (SNR) to 2.5% for 9 dB SNR.
Index Terms: Convolutive non-negative matrix factorization,
online CNMF, speech separation, automatic speech recognition

1. Introduction
Automatic speech recognition (ASR) performance is known to
deteriorate in the presence of additive, background noise. While
humans are able to dissociate a speaker of interest from a mix-
ture of multiple concurrent sound sources with little or no loss in
intelligibility, ASR systems perform poorly, especially when the
noise is related to concurrent speech from interfering speakers,
i.e. to so-called cocktail party scenario. This paper addresses
the problem of recognising the speech of a target speaker un-
der typical ambient noise conditions recorded in a home envi-
ronment with television sound, music, competing background
speech, and short non-stationary noises etc.

The problem is traditionally approached either from an sta-
tistical modeling perspective or from a signal enhancement per-
spective. In this work, we take the latter approach, since sta-
tistical models are based on the assumption that noise can be
described by an underlying distribution which can be tricky
in multisource noise environments. Among existing signal
enhancement approaches, we can distinguish systems which
use a chain of successive filters [1] in order to separate the
mixed speech from the systems based on pattern recognition
which first learn a model of the noise and the speech in or-
der to separate the two. For example, [2, 3] use a factorial
hidden Markov model (HMM) to separate mixed speech; [4]
presents an independent component analysis (ICA) based algo-
rithm for dictionary learning and sparse coding. Non-negative
matrix factorization (NMF) and its sparse version (SNMF) have

also been used successfully to separate audio stream compo-
nents [5, 6]. A more sophisticated approach known as convo-
lutive non-negative matrix factorization (CNMF) involves the
sharing of decompositions among a set of bases with a time shift
and has been shown to perform well in speech enhancement [7]
and source separation [8] applications under supervised condi-
tions.

In this paper we report the application of CNMF to denoise
a speech signal in multi-source noise environments. The main
challenge relates to the efficient learning of noise bases and is
the main focus in this paper. We propose an online CNMF al-
gorithm which is able to learn noise bases from several hours of
data. This is unfeasible with a traditional CNMF approach due
to the enormous computational requirements.

In the following section we first present an overview of
CNMF and then discuss the online CNMF algorithm in Section
3. The method employed to denoise a speech signal is described
in Section 4. In Section 5 we report our experimental setup and
results. A discussion in Section 6 highlights some ideas to ex-
tend this work.

2. Convolutive non negative matrix
factorization

Non-negative matrix factorization [9] attempts to decompose a
non-negative matrix D ∈ <≥0

M×N into two matrices W and H
with the constraint that elements of the decomposed matrices
are non-negative ( W ∈ <≥0

M×R and H ∈ <≥0
R×N ).

D ≈WH (1)

Such an approximation is non-unique. Various update rules
such as multiplicative, gradient descent, and alternating non-
least squares have been proposed [10] to iteratively estimate W
and H . All these methods attempt to minimise a cost function
of general form:

L(W, H) = arg min
W,H
‖D −WH‖2F (2)

or a slight variation of it which captures the distance between
the original matrix and its approximation. Here, ‖.‖F denotes
the Frobenius norm.

The columns of W are the bases vectors that capture the
prominent patterns in the data whereas the rows of H are the
base activation weights.

The underlying assumption in NMF is that the data repre-
sented in each column is independent. However for signals such
as speech which display strong spectro-temporal correlation, it
is desirable to exploit this dependency while learning the bases.
Smaragdis [11] developed a convolutive extension to NMF to
address this issue. The decomposition takes the form:



D̂ ≈
P−1X
p=0

Wp

p→
H (3)

where P is the convolution range. The operators p→. and ←p.

are column shift operators that shift p columns of the matrix to
the right and left respectively. Columns vacated after the shift
are filled with zeros. Under such a formulation, a sequence of
P vectors corresponding to the ith columns of Wp can be seen
as base dimensions which capture prominent spectro-temporal
patterns.

CNMF update equations which aim to optimise Equation
(2) take the following form:

Wp = Wp �
D

p→
H

T

D̂
p→
H

T
(4)

H(p) = H �
wT

p

←p

D

wT
p

←p

D̂

(5)

H =
1

P

P−1X
p=0

H(p) (6)

where, � is an element wise multiplication operator and where
the division is also element-wise. Bases W learnt on speech
spectra have been shown to capture efficiently the phonetic pat-
terns [11, 12].

3. Online CNMF
Scrutinizing the update Equations (4) and (5), we notice that
the update of H can be implemented by segmenting D into a
number of pieces and by computing H on each piece, thereby
improving computational efficiency. However, improving the
efficiency of the update operations of W is more challenging –
here we have to wait for all the data D to be processed in order
to complete one iteration. This means that if we have a set of
bases trained already, decomposing a large amount of speech
with these bases is not a serious problem with parallel comput-
ing, however learning bases itself places a high demand on both
processing power and memory. To address this problem, we re-
cently proposed an on-line base learning approach for CNMF,
which processes the input matrix piece-by-piece and which up-
dates the set of bases using the accumulated sufficient statistics
[13]. With very few iterations for each piece of speech, learned
patterns quickly converge to local minima of the objective func-
tion thereby facilitating its application to large scale tasks.

Simple rearrangement of Equation 4 results in the following
basis learning approach:

Wp ←Wp �
P

u B(p; u)P
q Wq

P
u A(q, p; u)

(7)

where

A(q, p; u) =
q→
H (u)

p→
H

T

(u)

and

B(p; u) = D(u)
p→
H

T

(u)

where u is the piece index. The piece length in the segmenta-
tion is somewhat arbitrary. For speech signals, a segmentation
according to sentence boundaries avoids the splitting of voiced
patterns and thus forms a natural choice. For each piece, the
bases are updated iteratively using equations (5) and (7). An

Algorithm 1 Online CNMF pattern learning
1: U: number of pieces
2: K: iteration
3: A(i, j)← 0, ∀i, j ; A(i, j) ∈ <≥0

R×R, 0 < i, j < P

4: B(i)← 0, ∀i ; B(i) ∈ R≥0
M×R, 0 < i < P

5: for u := 0 to U-1 do
6: randomize(H)
7: for k := 0 to K-1 do
8: if activeW then
9: W = updateW (A, B, D(u), W, H)

10: end if
11: H = updateH(D, W, H)(Eq.5)
12: end for
13: [Ȧ, Ḃ, W ] = updateW (A, B, D(u), W, H)
14: A(i, j)← A(i, j) + Ȧ(i, j)
15: B(i)← B(i) + Ḃ(i)
16: end for

Algorithm 2 CNMF pattern update
Require: A, B, D, W, H

1: Ȧ(i, j) =
i→
H

j→
H

T

; Ȧ(i, j) ∈ <≥0
R×R, 0 < i, j < P

2: Ḃ(i) = D
i→
H

T

; Ḃ(i) ∈ <≥0
M×R, 0 < i < P

3: A = A + Ȧ
4: B = B + Ḃ
5: for p :=0 to P-1 do
6: F ← 0
7: for q :=0 to P-1 do
8: F = F + WqA(q, p)
9: end for

10: Ẇp = Wp � B(p)
F

11: end for
12: Wp =

Ẇp

|Ẇp|22
∀p s.f. Wp ∈ <≥0

M×R

13: return [Ȧ, Ḃ, W ]

important aspect of the piecewise iteration is that the computa-
tion of A(q, p; u) and B(p; u) only correspond to the current
piece being processed and that the contribution of the pieces
processed previously can be ‘memorised’ using two auxiliary
variables

A(q, p) =
X

u

A(q, p; u)

and
B(p) =

X
u

B(p; u)

This leads to the online pattern learning approach for
CNMF, as shown in Algorithm 1, where the flag activeW indi-
cates if the bases should be updated when updating the coeffi-
cients. Algorithm 2 illustrates the pattern update process (equa-
tion 7). Matlab code for these algorithms is available online1.

This online approach is inspired by the online dictionary
learning (ODL) [14]. While the ODL approach assumes in-
dependent signals, our approach handles convolution. Another
property that distinguishes our approach from ODL is that we
do not pursue an optimal H for each signal piece; instead, we
apply a small number of iterations to obtain a sub-optimal H
and assume that it is sufficient for accumulating statistics. This

1http://audio.eurecom.fr/software



may lead to a sub-optimal solution for a particular dataset but
can remarkably speed up the computation. This form is largely
inherited from the conventional CNMF update. We show in [13]
that online learning cannot be worse than conventional batch-
mode learning and, with a suitable selection of the piece length
and number of iterations, it substantially outperforms batch
learning with much faster convergence speeds. Similar to ODL,
learned patterns tend to be more and more accurate as the quan-
tity of data increases; with increasing iterations, resulting pat-
terns approach the optimal.

4. Purification of speech using CNMF
Smaragdis [11] proposes an elegant approach for audio source
separation in a supervised manner. We use a similar methodol-
ogy as described below:

1. From the training data available for the target speaker
and for the background noise, compute the magnitude
spectrum and learn bases for the speaker W (Sp) and
noise W (Bg) separately.

2. Concatenate the obtained bases to form a larger global
set of bases W (Global) = [W (Sp) W (Bg)].

3. For a speech signal containing the target speaker and ad-
ditive noise, decompose the magnitude spectrum using
the global bases set generated above to estimate the acti-
vations of the bases (using equation 5).

4. From the activations corresponding to the target speaker
bases, recompute the magnitude spectrum

Z =
PP−1

p=0 W
(Sp)
p

p→

H(Sp)

5. Modulate the magnitude spectrum using the phase spec-
trum of the mixed signal, to obtain the spectrum for the
speaker.

6. Re-synthesize the denoised speech waveform from the
above generated spectrogram using the inverse short
time Fourier transform.

The real challenge in speech purification in the CHiME
challenge is that there are multiple sources of background noise
including speech, voices from a television, music and a host of
other ambient noises typically encountered in a home environ-
ment. As a result there is large variation in the amount and type
of background noises corrupting each utterance. Hence appro-
priate training data to learn the noise bases for each utterance is
not readily available. We have investigated a couple of ways to
overcome this problem.

5. Experiments
In this section, we describe our experimental setup used for our
submission to the CHiME challenge [15] where the task is to
recognise the speech utterances in a home environment under
six different signal-to-noise ratio (SNR) conditions.

5.1. ASR experimental setup

All the audio provided for the task is recorded from a binaural
microphone array. The location of the speaker is also specified
to be directly 2 meters directly in front of the microphone array,
while the location of each noise source and their distance from
the microphones are unknown. We use a simple addition of the
two channels with zero delay to obtain a mono-channel audio
signal for further processing.

We used the standard ASR setup provided for the CHiME
challenge without any modification. The setup uses speaker de-
pendent acoustic models trained on Mel frequency cepstral co-
efficients with energy,1st and 2nd order derivatives. Features
are further cepstral mean normalised.

Each test utterance takes the form “<verb> <colour>
<preposition> <letter> <digit> <coda>” and only the
recognition hypotheses for the letter and digit are scored.

The language model is a simple lattice that covers all pos-
sible sequences in the above pattern and the utterances are de-
coded using HTK [16].

5.2. CNMF experimental setup

As explained in Section 4, our enhancement algorithm involves
processing the spectral representation of speech signal in order
to suppress noise. In order to choose the optimal values for win-
dow size and overlap size to be used for parametrization, we
converted the development set utterances to spectral represen-
tations, re-synthesized the waveforms and computed the ASR
accuracies. A window size of 25 msec and an overlap length of
10 msec were found to give the best accuracies and have been
used in all experiments described further.

We learn speaker bases from the training set available
for each speaker using a convolutional span of 4 frames. In
our setup, this is equivalent to capturing prominent spectro-
temporal patterns that span about 70 msec; we expect to cap-
ture important sub-phone patterns with such a setup. A set of
100 bases per speaker has been empirically chosen, although in
our experience, a set of around 60 bases is generally sufficient
to capture minimal phonetic characteristics.

5.3. Using local acoustic context for learning noise bases

The success of CNMF-based approaches depends on learning
reliable bases for the sources that need to be separated. How-
ever, the type of background noise in each utterance is unknown
a-priori. For all experiments reported here we assume that the
noise either side of the utterance interval is representative of that
within the interval. Since each utterance is only in the order of
1.5 seconds in length, this assumption may be realistic in the
case of relatively stationary noise. However, the background
environment is dynamic in practice and thus we expect that not
all noises occurring within the utterance will be captured from
the adjacent acoustic context.

For all experiments reported here, we use up to 2 seconds of
audio either side of the utterance interval, subject to availability.
This data is used to learn the noise bases for each utterance with
the CNMF algorithm. Since the quantity of data in this case is
quite low, a set of 20 bases was used to avoid over-fitting and
the convolutional range was set to 4 frames in order to match
that of speaker bases.

ASR performance is shown in Table 1 against SNR for the
development and test sets on which we observe average rela-
tive improvements of 9.05% and 9.72% respectively. Consis-
tent improvements are obtained for all conditions but are more
prominent for lower SNRs.

Figure 1 shows an example spectrogram of a noisy speech
signal with a child speaking in the background (a) before and
(b) after denoising. The higher formants that correspond to the
child’s speech are seen to be effectively suppressed by CNMF
denoising.

As effective as the approach seems to be, there are a number
of difficulties in effectively using local acoustic context:



Table 1: Accuracies (%) with CNMF using background basis
learnt from the local acoustic context

SNR Development Set Test Set
Baseline CNMF Baseline CNMF

-6 dB 31.08 38.33 30.33 36.42
-3 dB 36.75 43.92 35.42 43.83
0 dB 49.08 58.17 49.50 58.08
3 dB 64.00 67.83 62.92 66.67
6 dB 73.83 76.50 75.17 78.17
9 dB 83.08 83.67 82.50 85.33

(a) Speech spectrogram with a child speaking in the back-
ground

(b) Speech spectrogram after background removal using
CNMF

Figure 1: Spectrograms of waveform with a child speaking in
the background before and after purification with CNMF.

1. Sufficient data may not be readily available in practical
situations. A speaker diarization system may be used to
detect utterance intervals, but may be ineffective in low
SNR conditions.

2. Noise conditions either side of the utterance are not nec-
essarily representative of those within the utterance.

3. The dynamic nature of multi-source noise environments
limits the use of longer local acoustic context and thus it
is more difficult to learn reasonable base patterns.

5.4. Global background noise bases

In order to overcome the limitations of learning noise bases on
local acoustic context as discussed above, ideally they would be
learned in a context independent fashion. This is possible using
the background training set provided in the CHiME challenge.
There is a reasonable amount of noise recordings of about 7
hours in this set which captures most background scenarios en-
countered.

With such a large data set, however, it is infeasible to learn
the bases with a classical algorithm due to excessive memory
and computational requirements to store and process such large
matrices. Hence, in this case, we adopt the online pattern learn-
ing algorithm described in Section 3.

Background training data is provided in segments of 5 min-
utes each. We use the same partition structure as pieces in the
online training algorithm. We learn background bases with 100,
150 and 200 dimensions respectively, all with a convolutional
span of 4 frames. ASR performance for the development and
test sets are shown in Tables 2 and 3 respectively, for each of
the noise bases.

Table 2: Development set: Accuracies (%) with CNMF using
global background bases. Notation used: Bg 100 - Background
noise bases with a dimension of 100

SNR Baseline Bg 100 Bg 150 Bg 200
-6 dB 31.08 40.92 42.17 41.83
-3 dB 36.75 46.67 48.50 48.17
0 dB 49.08 59.75 60.25 61.67
3 dB 64.00 69.50 70.33 69.83
6 dB 73.83 78.50 77.17 75.42
9 dB 83.08 83.42 83.00 82.67

Table 3: Test set: Accuracies (%) with CNMF using global
background noise bases. Notation used: Bg 100 - Background
noise basis with a dimension of 100

SNR Baseline Bg 100 Bg 150 Bg 200
-6 dB 30.33 41.50 41.58 39.83
-3 dB 35.42 45.67 47.83 49.92
0 dB 49.50 58.50 61.33 59.92
3 dB 62.92 68.17 68.08 67.00
6 dB 75.17 78.83 78.42 77.50
9 dB 82.50 85.75 84.17 83.75

Noise bases learned over a global context are shown to give
better ASR performance than those using a short local context.
On average, the best relative improvements are obtained using
150 bases with a gain of 12.9% and 13.6% across all SNR con-
ditions for the development and test sets respectively.

From Figure 2 we see that relative improvements for low
SNR conditions are much greater than those for higher SNR
conditions. We also observe that, as the number of background
bases increases, performance for lower SNR conditions im-
proves while there is a marginal degradation for higher SNR
conditions. This trend is to be expected. For higher SNR condi-
tions, the amount of noise is significantly lower than that of the
speech signal and the use of a larger set of bases for background



noise leads to the projection of some speaker energy onto the
noise bases, thus leading to some loss of useful information.

(a) Development Set

(b) Test Set

Figure 2: Relative improvement in accuracies over the baseline
for Development and Test sets purified with global background
basis learnt using online CNMF

5.5. Using background bases learnt from global and local
acoustic context

Noise bases learned only on the global context or local con-
text have limitations. While bases learned on the global context
cannot accurately capture finer noise variations, those learned
on the local context suffer from lack of data and subsequently
problems with modeling unseen patterns. In this set of exper-
iments, we use the background bases learned from both local
and global contexts as described in Sections 5.3 and 5.4 respec-
tively.

Each test utterance is denoised using a global noise basis of
100, 150 and 200 bases augmented with 20 noise bases learnt
from the local acoustic context. This gives further improve-
ments in ASR performance for both development and test sets
as illustrated in Tables 4 and 5 respectively. On an average,
for the 170 noise bases case, a relative improvement of 14.7%
and 14.9% are achieved on the development set and the test set
respectively.

5.6. Voting scheme

Figure 3 shows that the choice of base dimension has a bear-
ing on performance at different levels of SNR. While a larger

Table 4: Development set: Accuracies (%) with CNMF using
background bases learnt on global and local acoustic context

SNR Baseline Bg 100 + 20 Bg 150 + 20 Bg 200 + 20
-6 dB 31.08 43.75 43.50 43.67
-3 dB 36.75 48.33 49.67 48.58
0 dB 49.08 61.67 61.75 62.42
3 dB 64.00 71.75 71.67 70.58
6 dB 73.83 79.00 77.75 75.72
9 dB 83.08 83.83 83.08 82.83

Table 5: Test Set: Accuracies (%) with CNMF using back-
ground bases learnt on global and local acoustic context

SNR Baseline Bg 100 + 20 Bg 150 + 20 Bg 200 + 20
-6 dB 30.33 42.92 42.92 40.25
-3 dB 35.42 48.33 49.00 51.00
0 dB 49.50 60.17 62.25 60.75
3 dB 62.92 69.42 68.58 68.08
6 dB 75.17 79.25 78.67 76.75
9 dB 82.50 85.58 84.42 83.58

background bases set gives better performance for lower levels
of SNR, a smaller bases set is more beneficial for higher lev-
els of SNR. To obtain consistent improvements for all SNRs,
we use a voting scheme to combine the recognition hypotheses
obtained with 100, 150 and 200 global background bases aug-
mented with 20 bases learnt from the local context. During ties
in the voting scheme, recognition hypotheses with 150 bases is
selected as default.

Table 6 shows ASR performance with the voting scheme.
We obtain an average relative improvement of 15.7% across all
SNR conditions for the test set, with a relative improvement of
about 42.3% at -6 dB and about 2.5% improvement at 9 dB.

Table 6: Accuracies (%) with the voting scheme

SNR Development Set Test Set
Baseline Voting Rel. ↑ Baseline Voting Rel. ↑

-6 dB 31.08 43.83 41.02 30.33 43.17 42.33
-3 dB 36.75 49.25 34.01 35.42 50.42 42.35
0 dB 49.08 63.00 28.36 49.50 61.75 24.75
3 dB 64.00 71.83 12.23 62.92 69.42 10.33
6 dB 73.83 78.33 6.10 75.17 79.33 5.53
9 dB 83.08 83.58 0.60 82.50 84.58 2.52

6. Discussion
An online CNMF implementation is extremely beneficial in this
scenario, where global noise bases are learnt from over several
hours of data. To illustrate, with the conventional offline ap-
proach, the training of bases on the 7 hours of noise data used
in our experimental setup would require M=201 and N ≈ 1.6
million. This is infeasible in terms of memory requirements and
computational time.

Results show that the use of higher order bases dimension



(a) Development Set

(b) Test Set

Figure 3: Relative improvement in accuracies over baseline for
the Development and Test sets purified with background bases
learnt from the global and local acoustic context.

for higher SNR conditions leads to poorer performance. In our
ongoing work we are investigating automatic noise basis selec-
tion and noise diarization in order to learn bases from more ho-
mogeneous noise segments.

Finally, all experiments reported here are based on spectral
magnitude representations in order to satisfy the non-negative
constraint. We have begun to investigate the application of our
approach to mel-scaled spectral estimates which also satisfy the
non-negative constraint.

7. Conclusions

This paper reports the successful application of convolutive
non-negative matrix factorization (CNMF) to improve the per-
formance of automatic speech recognition (ASR) in a multi-
source noise environment. The focus of the work presented in
this paper relates to the efficient learning of noise bases and its
suppression or separation from noise-degraded speech. When
used in conjunction with noise bases learnt from local acoustic
context, global noise bases learnt using an online CNMF ap-
proach are shown to give substantial improvements in ASR ac-
curacies over all noise conditions specified in the CHiME cor-
pus.
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