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ABSTRACT

When the transmission scenario includes a training sequence or pi-
lots, semi-blind channel estimation techniques have shown a ten-
dency to fully exploit the information available from the received
signal if they are correctly implemented. This feature leads semi-
blind channel estimation performance to exceed that of the schemes
based on the blind part or the training sequence only. Moreover,
in some situations they can estimate the channel when the other
techniques fail. Semi-blind channel estimation techniques were de-
veloped and usually evaluated for a given channel realization, i.e.
with a deterministic channel model. On the other hand, in wireless
communications the channel is typically modeled as Rayleigh fad-
ing, i.e. with a Gaussian (prior) distribution expressing variances
of and correlations between channel coefficients. In recent years,
such prior information on the channel has started to get exploited
in pilot-based channel estimation, since often the pure pilot-based
(deterministic) channel estimate is of limited quality due to lim-
ited pilots. In this paper we provide a performance comparison
between ML/MAP algorithms that use Bayesian and deterministic
approaches in semi-blind channel estimation.

1. INTRODUCTION

Traditionally, the transmitter sends some known information to the
receiver to aid the latter in estimating the channel. However, in
wireless communication the channel varies rapidly with time and
as a consequence, more training sequence/pilots are required. This
process wastes a lot of bandwidth as a result of augmenting the
transmission rate to maintain the throughput. In the last two decades
a new branch of channel estimation has emerged focusing on ac-
complishing this task blindly i.e. without the need for a training
sequence. Nevertheless, most wireless standards that have evolved
during that period are still relying on the training sequence/pilots
to estimate the channel. This is due probably to the unsatisfactory
results of the blind channel estimation algorithms. On the other
hand, there are some powerful channel estimation algorithms that
take advantage of both aforementioned techniques have been also
developed during the same era. These are known as semi-blind
techniques where a superior performance is achieved although few
training sequence/pilots are transmitted [1], [2], [3].

In [4] and [5] we introduced some Bayesian (semi-)blind chan-
nel estimation algorithms that exploit perfectly the knowledge of the
channel a priori information to enhance the channel estimation qual-
ity. In this paper, we are exploring an approach that exploits par-
tially the knowledge of the Power Delay Profile (PDP) to enhance
the estimation of a part of the channel while neglecting totally the
remaining part. It is worth noting that this approach is not restricted
to Bayesian algorithms but can rather be implemented to any exist-
ing deterministic algorithm. By doing so, we are extending those
deterministic algorithms to a point in the middle between determin-
istic and Bayesian, hence we can classify them as quasi-Bayesian
algorithms. The question that may raise here, is there still a room to
enhance the estimation quality of the Bayesian algorithms? More-
over, sometimes the estimation of the channel is required by itself,
to be used in the beamforming for instance, while in some other

cases it constitutes only one step toward another ultimate goal, the
detection of symbols. Hence, one may wonder what are the con-
sequences of neglecting a part of the channel on the detection of
the symbols. In the following sections, we will try to elaborate our
approach and answer these questions.

2. SIMO FIR TX SYSTEM MODEL

In (semi-)blind channel identification, a multichannel framework
can be obtained from oversampling a received signal and leads to
a Single Input Multiple Output (SIMO) vector channel representa-
tion. The multiple FIR channels we obtain in this representation
can also be obtained from multiple received signals from an array
of antennas (in the context of mobile digital communications [6])
or from a combination of both. To further develop the case of over-
sampling, consider a linear digital modulation over a linear channel
with additive noise so that the received signal y(t) has the following
form:

y(t) =
∑

k

h(t− kT )a(k) + v(t). (1)

In (1) a(k) are the transmitted symbols, T is the symbol period,
h(t) is the channel impulse response and v(t) designates noise. The
channel is assumed to be FIR with length NT . If the received sig-
nal is oversampled at the rate m

T
(or if m different samples of the

received signal are captured by m sensors every T seconds, or a
combination of both), the discrete input-output relationship can be
written as:

y(k) =

N−1∑

i=0

h(i)a(k−i) + v(k) = HAN (k) + v(k) (2)

where y(k) = [yH
1 (k) · · · yH

m(k)]H ,h(i) =
[
hH
1 (i) · · ·hH

m(i)
]H

,

v(k) = [vH1 (k) · · · vHm(k)]H , H = [h(N−1) · · ·h(0)],

AN (k) =
[
a(k−N+1)H · · · a(k)H

]H
and superscript H de-

notes Hermitian transpose. Let H(z) =
∑N−1

i=0 h(i)z−i =

[HH
1 (z) · · ·HH

m(z)]H be the SIMO channel transfer function, and

h =
[
hH(N−1) · · ·hH(0)

]H
. Consider additive indepen-

dent white Gaussian circular noise v(k) with rvv(k−i) =
E
[
v(k)v(i)H

]
= σ2

vIm δki. Assume we receive M samples:

YM (k) = TM (h)AM+N−1(k) + V M (k) (3)

where YM (k) = [yH(k−M+1) · · ·yH(k)]H and similarly for
V M (k), and TM (h) is a block Toepltiz matrix with M block rows
and [H 0m×(M−1)] as first block row. We shall simplify the nota-
tion in (3) with k = M−1 to

Y = T (h)A+ V = TK(h)AK + TU (h)AU + V
= AKh+AUh+ V .

(4)
Where TK(h) and TU (h) represent respectively the portions of
T (h) that correspond to Ak (MK known symbols) and AU (MU

unknown symbols).



T (h) =

[
|

TK(h) | TU (h)
|

]
(5)

Here we assume for simplicity that the known symbols are gathered
at the beginning of the block. On the other hand, A is a block
Toeplitz matrix filled with the elements of A while AK and AU

are block Toeplitz matrices filled with the elements of AK and AU

respectively.

3. CHANNEL APPROXIMATION

In this section we introduce the concept of approximating the chan-
nel by neglecting some taps at the tail during the estimation process.
The neglect is justified by the fact that the estimation of those taps
will introduce an estimation error that exceeds the approximation
error. In fact, this is true if the power of the channel approximation
error times the input is below the noise power at some finite SNR.
In this case, the approximation error does not count and we have an
approximated channel whose length varies with SNR. However, in
order to make this channel approximation, we need to have a cer-
tain finite (and small) covariance of the part of the channel that we
are going to neglect (approximation error). Hence, in a way or an-
other this looks like a Bayesian approach. In a deterministic model,
we don’t indeed have any prior information about the channel that
would allow to make such an approximation.

Assume that h can be split into two parts, the approximated
part ha (mNa × 1) and the neglected part hn (mNn × 1) where

N = Na + Nn. Hence, we can write h = [hH
a hH

n ]H . The
number of the neglected taps Nn should be upper bounded by
min(N − 1,MK). When the length of the training sequence is
greater than the number of the channel taps, the interpretation of
this bound is that the approximated channel should be composed
of at least one tap. Hence, the maximum number of taps that can
be neglected is N − 1. However, when the number of the channel
taps is greater than the training sequence, and apart from the iden-
tifiability issues that may raise here, the number of the neglected
channel taps should not exceed MK . This is due to the fact that
every further neglected tap will lead to a one symbol loss. Actu-

ally, the size of T (ĥ) is mM × (M + N − 1), however, when
some taps are neglected, the size of the estimated channel matrix
is reduced to mM × (M + Na − 1). This reduction in the num-
ber of columns leads in general to a reduction in the number of the
detected symbols. On the other hand, we are treating a semi-blind
scenario where we assume that the training sequence (which fortu-
nately there is no need to be detected) is gathered at the beginning
of the block. This permits a margin of MK symbols, at the be-
ginning of the block, to be skipped in the detection process. On
the contrary, in the blind scenario there is no allowable margin and
consequently, every neglected tap will lead to a one symbol loss.
This puts a severe limitation for implementing this approach in the
blind scenario. Fortunately, this is no more true in the cyclic prefix
case. Taking a close look at the structure of the FIR cyclic prefix
channel matrix, shows that there is obviously no symbol loss due
to the neglected taps. This is true because the estimated channel
matrix has a size mM × M which is independent of the number
of taps. In fact this feature makes our approach more attractive in
the context of cyclic prefix systems. To illustrate the procedure by
which the neglected channel length is determined, we start with the
description of the channel model used throughout this paper. In fact
we consider a Rayleigh fading channel with exponentially decay-
ing PDP for the channel between each transmitting and receiving
antenna pair as follows: e−wn where n = 0 : N − 1 and w is a
constant that controls how fast the decaying is. Hence, if we de-
note by Co

h the channel covariance matrix, which is diagonal in this
case because the taps are independent, then Co

h = Im ⊗ C where
C = diag {e−wn, n = 0 : N − 1}. Assume that the PDP and the
variance of the noise are known (in practice they are estimated from
the received signal), we start searching from the tail, for the maxi-
mum number of taps whose power times the power of the symbols

is less than the variance of the noise. Mathematically, this can be
written as:

max
i

σ
2
a

∑

i

C(N − i, N − i) 0 ≤ i ≤ min(N − 2,MK − 1)

(6)
The above maximization is done subject to the following constraint:
σ2
a

∑
i C(N − i, N − i) ≤ σ2

v . If we cannot find i that fulfills the
above constraint, this means that we can’t neglect any part of the
channel. Otherwise, the last i+ 1 taps in the tail of the channel can
be neglected and consequently the length of the neglected part is
(i+1)×m. Now, we may reformulate the model in (4) as follows:

Y = T (h)A+ V
= T (ha)︸ ︷︷ ︸

Mm×(M+Na−1)

Aa + T (hn)︸ ︷︷ ︸
Mm×(M+Nn−1)

An + V

= T (ha)Aa + Z
= Aaha +Z.

(7)

where T (ha) and T (hn) are Toeplitz matrices containing the ele-
ments of ha and hn respectively. On the other hand, Aa constitutes
the last (M +Na − 1) elements of A while An constitutes the first
(M + Nn − 1) elements of A. Finally, Z = T (hn)An + V is
in general a spatially and temporally colored Gaussian noise with
covariance RZZ . It should be noted that RZZ varies from one es-
timator to another, depending on how we treat An as we will see
later. However, hn is going to be treated always as random with
Gaussian distribution.

To treat the semi-blind case correctly, we have to split the ap-
proximated channel in its turn into two parts. These two parts corre-
spond respectively to the known and the unknown symbols in anal-
ogy to what we have done in (4). Hence we can write:

Y = TK(ha)AK,a + TU (ha)AU + Z
= AK,aha +AU,aha + Z

(8)

where TK(ha) and TU (ha) contain the first (MK − Nn) and the
last (M+N−1−MK) columns of T (ha) respectively. Similarly,
AK,a and AU contain the first (MK −Nn) and the last (M +N −
1 − MK) elements of Aa. Finally, AK,a and AU,a are Toeplitz
matrices filled with the elements of AK,a and AU respectively. It is
worth noting that only AK,a undergoes a change compared to AK

in (4) while AU remains unchanged. This is true thanks to the upper
bound on the length of the neglected channel imposed in (6).

4. ENHANCED ESTIMATORS
In [4] we have introduced a general framework that permitted the
derivation of three Bayesian semi-blind channel estimators and an-
other three deterministic ones. Among those estimators, there were
four that jointly estimate the channel and the symbols while the
remaining two were based on estimating the channel and marginal-
izing the symbols. In the following sections, we will show a slight
variation of those estimators relying on the channel approximation
approach that was introduced in the previous section. On the other
hand, there is an important difference between the model we stated
in (4) and that used in [4] namely, in the latter we neglected a part of
the received signal that contains both known and unknown symbols,
whereas in this paper we are using an optimal model that allows a
proper exploitation of the training sequence and the blind part of the
received data.

4.1 SB-ML-ML (SB-DML)

We start with SB-ML-ML or what is called SB-DML in the lit-
erature [7]. In this case, both the unknown symbols and the ap-
proximated channel are considered as deterministic unknowns to be
estimated. Thus, the cost function is given by:

min
AU ,ha

||Y − T (ha)A||2RZZ
=

min
AU ,ha

||Y − TK(ha)AK − TU (ha)AU ||
2
RZZ

(9)



The nonlinear LS optimization can be done by iterating between
minimization with respect to AU and h. By doing so, we get the
following estimates:

ĥa = (AH
a R

−1
ZZAa)

−1AH
a R

−1
ZZY (10)

ÂU = (T H
U (ha)R

−1
ZZTU (ha))

−1T H
U (ha)R

−1
ZZ(Y−TK(ha)AK,a)

(11)
where RZZ = AnC

o
hn

AH
n + σ2

v I .
On the other hand, we can derive the deterministic CRB that

represents a lower bound for this estimator as shown in [8]. Doing
so we get:

DCRB
app
det,joint =

{
AH

a R
−1
ZZ

[
RZZ − TU (ha)

(
TU (ha)

H

R
−1
ZZTU (ha)

)−1
Tu(ha)

H
]
R

−1
ZZAa

}−1

At high SNR, there is no room to neglect any tap and we have
Na = N hence ha = h and consequently hn disappears com-
pletely. As a result RZZ = σ2

vI . Substituting this result in (12), we
get the same formula derived in [8] for the DCRBdet,joint.

DCRBdet,joint = σ
2
v

(
AH

P
⊥
TU (h)A

)−1

(12)

Where P⊥

TU (h)
= I − P

TU (h)
and P

TU (h)
=

TU (h)(T
H
U (h)TU (h))

−1T H
U (h) is the projection matrix on

TU (h). However, at low SNR there are usually many taps at the tail
of the channel that are immersed in the noise. As a consequence,
they can be neglected without having any negative effect on the
detection of the symbols at the receiver. On the contrary, as we will
see in the simulation section, neglecting these taps enhances the
detection quality at the receiver. Hence, h is approximated by ha

and there is a term that depends on hn, and that appears in RZZ .
At a sufficient low SNR, σ2

vI dominates RZZ so we can neglect
the term that depends on hn. Substitute this result in (12) we get:

DCRB
app
det,joint

∼= σ
2
v

(
AH

a P
⊥

TU (ha)
Aa

)−1

(13)

To prove that the approximation approach, we propose in this
paper, enhances the channel estimation quality at the receiver, we
compare the CRB in (13) with a part of the CRB matrix stated in
[8] namely, the part that corresponds to the approximated channel.

Let’s call this part D̃CRBdet,joint. It is composed of the first mNa

rows and columns of DCRBdet,joint.
Knowing that CRB is the inverse of the Fisher Information

Matrix (FIM), let F̃ IMhaha(h) denotes the FIM of the first Na

taps of the channel where we estimate not only those taps but
also the remaining Nn taps and FIMhaha denotes the FIM of
the approximated channel where we are interested only in esti-

mating the first Na taps. Now, we can write D̃CRBdet,joint =

F̃ IM
−1

haha
(h) and DCRB

app
det,joint = FIM−1

haha
. On the

other hand, it is well known that the FIM of h can be de-
composed into four parts corresponding to different combina-

tions of ha and hn. In order to extract the F̃ IMhaha
(h)

from these FIMs, we apply the Schur’s complement so we get:

F̃ IMhaha(h) = FIMhaha − FIMhahnFIM−1
hnhn

FIMhnha

Since FIMhahnFIM−1
hnhn

FIMhnha ≥ 0 i.e. a positive semi-

definite matrix, we infer that F̃ IMhaha(h) ≤ FIMhaha and con-

sequently D̃CRBdet,joint ≥ DCRB
app
det,joint. This result shows

that our approximation approach leads to an enhancement in the
channel estimation quality. This result has been confirmed also by
numerical simulations as will show later.

4.2 SB-GMAP-ML

This estimator is considered as an extension of the corresponding
blind one proposed in [9], [10]. In this estimator we treat the un-
known symbols as random with Gaussian distribution, while the
approximated channel is considered deterministic to be jointly esti-
mated with the unknown symbols. Hence, the cost function is given
by:

min
AU ,ha

||Y − TK(ha)AK − TU (ha)AU ||
2
RZZ

+
||AU ||

2

σ2
a

Following the same methodology used in SB-ML-ML estimator we
get:

ĥa = (AH
a R

−1
ZZAa)

−1AH
a R

−1
ZZY (14)

ÂU = (T H
U (ha)R

−1
ZZTU (ha)+

1

σ2
a

I)−1T H
U (ha)R

−1
ZZ(Y−TK(ha)AK,a)

(15)
where RZZ = σ2

aT (hn)T (hn)
H+σ2

v I . It is worth noting that we
treat An as random with Gaussian distribution although it contains
some known symbols. This approximation is justified by the fact
that usually the number of the known symbols is small compared to
the unknown symbols.

4.3 SB-GMAP-Elm-ML (SB-GML)

In this estimator we are only interested in estimating the approx-
imated channel and the variance of the noise, while the unknown
symbols are supposed to be eliminated during the estimation pro-

cess. Hence, θ = [hH
a , σ2

v]
H . Furthermore, we consider the chan-

nel and the noise variance to be deterministic while the unknown
symbols have a Gaussian distribution. Hence, the cost function is
given by:

min
ha,σ2

v

ln |CY Y |+ (Y − TK(ha)Aa)
H
C

−1
Y Y (Y − TK(ha)Aa)

(16)
where CY Y = E (Y − TK(ha)Aa)(Y − TK(ha)Aa)

H =
σ2
aTU (ha)TU (ha)

H + RZZ and RZZ =
(
σ2
a tr (Co

hn
) + σ2

v

)
I .

This cost function can be minimized by resorting to the method of
scoring ([11] see also [4]).

As for deriving the CRB that corresponds to this estimator, we
can follow the same methodology used in [8]. Doing so we get these
formulas:

J
sto
θθ (i, j) =

tr

{
C−1

Y Y
∂CY Y

∂θ∗
i

C−1
Y Y

(
∂CY Y

∂θ∗
j

)H
}
+

[
AH

K,aC
−1
Y Y AK,a

]
i,j

J
sto
θθ∗(i, j) = tr

{
C

−1
Y Y

∂CY Y

∂θ∗i
C

−1
Y Y

(
∂CY Y

∂θ∗j

)}

(17)

where
∂CY Y

∂h∗

a,i

= σ2
aTU (ha)TU (

∂ha

∂h∗

a,i

)H and
∂CY Y

∂σ2
v

= 1
2

. Once we

compute both Jθθ and Jθθ∗ from (17), we substitute them in ([8],

eq(13)) to compute JθRθR where θR = [Re(θ)T Im(θ)T ]T , Re
and Im denotes Real and Imaginary respectively. Consequently,
by using Schur’s complement we can extract easily Jhaha

from

JθRθR then DCRBsto,marg = J−1

hh
follows directly. Following

the same discussion elaborated in the SB-ML-ML section, we can

show that DCRB
app
sto,marg is lower than D̃CRBsto,marg that can

be drawn from DCRBsto,marg ([8],eq 23) by taking the first mNa

rows and columns.

4.4 SB-ML-GMAP

This estimator is Bayesian since we treat the approximated channel
as random with Gaussian distribution. However, the unknown sym-
bols are considered as deterministic to be jointly estimated with the



channel. Therefore, the cost function is given by:

min
AU ,ha

||Y −TK(ha)AK−TU (ha)AU ||
2
RZZ

+h
H
a C

o−1

ha
ha (18)

ĥa = (AH
a R

−1
ZZAa + C

o−1

ha
AH

a R
−1
ZZY (19)

ÂU = (T H
U (ha)R

−1
ZZTU (ha))

−1T H
U (ha)R

−1
ZZ(Y−TK(ha)AK,a)

(20)
where RZZ = AnC

o
hn

AH
n + σ2

v I and Co
hn

is the part of Co
h that

corresponds to hn.

4.5 SB-GMAP-GMAP

In this estimator both the approximated channel and the unknown
symbols are assumed random with Gaussian distribution. More-
over, they are supposed to be estimated jointly. The cost function is
given by:

min
AU ,ha

||Y − TK(ha)AK − TU (ha)AU ||
2
RZZ

+

h
H
a C

o−1

ha
ha +

1

σ2
a

||AU ||
2

Also here, following the same methodology used in SB-ML-ML
estimator we get:

ĥa = (AH
a R

−1
ZZAa + C

o−1

ha
)AH

a R
−1
ZZY (21)

ÂU = (T H
U (ha)R

−1
ZZTU (ha) +

1

σ2
a

I)−1

T H
U (ha)R

−1
ZZ(Y − TK(ha)AK,a) (22)

where RZZ =
(
σ2
a tr (Co

hn
) + σ2

v

)
I .

4.6 SB-GMAP-Elm-GMAP

As in the case of SB-GMAP-Elm-ML, in this estimator the symbols
are supposed to be eliminated. Hence, it can be considered as an ex-
tension of SB-GMAP-Elm-ML by exploiting the prior information
that exists about the channel. The corresponding cost function is
given by:

min
ha,σ2

v

ln |CY Y |+ (Y − TK(ha)Aa)
H
C

−1
Y Y (Y − TK(ha)Aa)

+h
H
a C

o−1

ha
ha

(23)

This cost function can be minimized using also the scoring method.

5. SIMULATIONS

In this section, we show, by means of MonteCarlo simulations, how
our approach for approximating the channel leads to a superior per-
formance compared to classical techniques. In each MonteCarlo
simulation we generate a Rayleigh fading channel as discussed pre-
viously while for the symbols, we generate random 8PSK symbols
to reflect the real world case. The performance of the different
channel estimators is evaluated by means of the Normalized MSE

(NMSE) vs. SNR. The SNR is defined as: SNR = ||T (h)A||2

mM σ2
v

. The

NMSE is defined as
avg ||ha−

ˆha||
2

avg ||ha||2
. All the simulations are ini-

tialized by the semi-blind Subchannel Response Matching (SRM)
estimate [12]. In Figure 1 we compare the performance of the SB-
SRM and the SB-ML-ML estimators with their enhanced counter-
parts proposed in this paper. We can notice how the SB-SRM based
on our approach, (SB-SRM-Approx), exceeds its counterpart (SB-
SRM) by more than 7 dB at low SNR and by couple of dBs at mod-
erate SNR. However, no more enhancement is possible at very high
SNR because, as explained before, no taps can be neglected at this

SNR. As for our SB-ML-ML-Approx, we can notice from the same
figure that only an enhancement of 2.5 dB is possible at low SNR
compared to its counterpart SB-ML-ML, while this advantage di-
minishes as SNR increases. On the other hand, we plot on the same

figure both the D̃CRBdet,joint and DCRB
app
det,joint. We notice

that the latter exceeds the former by around 5 dB at low SNR which
means that there is a considerable room to enhance the estimators
that treat the channel and the symbols as deterministic. However,
we notice that SB-SRM-Approx, and not SB-ML-ML-Approx suc-
ceeds well in taking advantage of our approach and fills the gap
between both CRBs. The result is somehow surprising because
SB-SRM-Approx is considered as a non-weighted version of SB-
ML-ML-Approx. Finally, it is obvious that our approach leads the

SB-ML-ML-Approx to almost attain the D̃CRBdet,joint. It is well
known that the latter is only attainable by SB-ML-ML asymptoti-
cally in SNR while it is not attainable asymptotically in the number
of data. In Figure 2 we compare SB-GMAP-Elm-ML with our pro-
posed counterpart. It is clear that the gain offered by our approach
( 6 dB) at low to moderate SNR is tremendous. Also on the same
figure, we plot both DCRBsto,joint and DCRB

app
sto,joint. Once

again, we can notice that our approach leads to a lower bound ( 2
dB). It is interesting to note here also that our approach leads SB-

GMAP-Elm-Ml-Approx to attain D̃CRBdet,joint which is not at-
tainable by SB-GMAP-Elm-ML. In Figure 3 we can observe once
again the great enhancement (5 dB) obtained by our approximation
approach at low SNR, specially in the SB-ML-GMAP case whereas
in the SB-GMAP-ML case the gain is around 2 dB. In Figure 4 we
show numerically that SB-GMAP-GMAP (which jointly estimate
the channel and the symbols) and SB-GMAP-Elm-GMAP (which
estimates the channel and marginalizes the symbols) are perfect in
the sense that our approach for approximating the channel is not
capable of enhancing their performance.

In all the simulations we have conducted up till now the PDP is
assumed to be known perfectly. However, in Figure 5 we estimate
the PDP from the received data and we apply our approach using
the SB-SRM algorithm. We compare the enhancement obtained by
our approach relying on the estimated PDP against the perfect PDP.
We observe that although the improvement degrades when we use
the estimated PDP but the reduction in the NMSE compared to the
traditional SB-SRM is still interesting. At last, to prove that our ap-
proach leads also to an enhancement in the probability of error (Pe),
we plot in Figure 6 the Pe for SB-SRM and an enhanced version of
it based on our channel approximation approach. We can readily
observe the considerable gain (2 dB) offered by our approach at
medium and low SNR.
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Figure 1: NMSE vs. SNR for SB-SRM, SB-ML-ML,
DCRBdet,joint and DCRB

app

det,joint.

6. CONCLUSION
We have introduced in the context of semi-blind channel estimation
a new approach that relies on the partial exploitation of the PDP of
the channel (assumed known or estimated from the received data)
to reduce the channel estimation error. Based on this approach, we
have shown that, by neglecting some taps at the tail of the channel
that are immersed in noise, the quality of the channel estimation
has been improved considerably. The proposed approach has been
implemented to a series of deterministic and Bayesian estimators
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Figure 3: NMSE vs. SNR for SB-ML-GMAP and SB-GMAP-ML.
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Figure 6: Probability of error vs. SNR for SB-SRM and its en-
hanced counterpart.

introduced previously. We have shown by numerical simulations
that there is a great enhancement in the NMSE over a wide range
of SNR. Moreover, we have shown analytically that the CRBs of
two of the proposed estimators are lower than their corresponding
ones that exist in the literature. Finally, we have shown also numer-
ically that not only the NMSE of the channel has been improved
but also the probability of error of the detected symbols. On the
other hand, our simulations show that there is no room left to en-
hance the estimators that take full advantage of the prior information
about the channel and the symbols. This fact has been reflected in
both SB-GMAP-GMAP and SB-GMAP-Elm-GMAP performance
where our approach has not succeeded to reduce their NMSE.
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