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ABSTRACT

The non-trivial problem of Non-Line-of-Sight localization

can be attacked with the aid of geometrical channel and mo-

bility models. This approach results in high performance

algorithms but requires a combination of different sources

of information, like e.g. angles, delays and Doppler shifts.

In this contribution we demonstrate the high performance of

such methods even in poor scattering environments. On top

of that, we compare the algorithms for different scenarios and

highlight the superiority of algorithms designed for channels

that change dynamically due to the movement of the mobile

terminal.

Index Terms— Localization, Non-Line-of-Sight, Single-

Bounce, CRB, Identifiability

1. INTRODUCTION

“Traditional” geometrical localization methods, like e.g. tri-

lateration and triangulation, can not achieve sufficient ac-

curacy when the signal propagates in Non-Line-of-Sight

(NLoS) environments. There exist two fundamentally differ-

ent approaches to attack the NLoS localization problem. The

first approach introduces some errors that are induced from

the NLoS propagation and tries to mitigate them. The second

one introduces a more accurate but also more complex repre-

sentation of the environment and thus requires more sources

of information, like angles, delays, Doppler shifts, i.e. more

estimates of location-dependent parameters (LDP). It also

introduces nuisance parameters that need to be eliminated or

jointly estimated. Obviously, choosing between these two

approaches, creates a performance-complexity trade-off. The

second approach leads to improved accuracy at the cost of

increased complexity. On the other hand, in the first ap-

proach at least some of the communications links must be
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LoS in order for the estimates to be accurate. Due to the

non-satisfactory performance of the first approach in strictly

NLoS environments, we focus on the second approach.

Choosing an appropriate -for NLoS localization- channel

model, is still an open problem. Making too many assump-

tions on the environment leads to simplistic models, which

in turn leads to powerful localization algorithms. How-

ever, their applicability is limited. On the other hand, using

generic models leads to a very high-dimensional parame-

ter estimation problem that is cumbersome to solve. Even

when it can be solved, either the performance is low or the

complexity incredibly high. Combining this with the pre-

vious remark, it becomes obvious that there is actually a

performance-complexity-applicability trade-off. Overall, the

Single-Bounce Model (SBM) [1] presented in the next sec-

tion, can achieve a good trade-off, since it enables mobile

terminal (MT) localization with high accuracy in numerous

NLoS environments.

On top of choosing an appropriate channel model, if the

MT is moving, one could integrate it with a mobility model

in order to exploit the information in the time-variation of

the LDP. It suffices to say that exploiting this new dimension,

namely the variation in time, has great advantages in terms of

performance and identifiability, which can be studied using

the Fisher Information Matrix (FIM). In this work we study

both in depth, complementing the work presented in [2] with

new results.

Notation: For any defined vector a, A = diag{a} and

for any defined matrix A, a = vec{A}. Extending this, ai
will denote the ith entry of a and the {i, i} entry of A. It

therefore suffices to define any of the above (a vector, a diag-

onal matrix or just a scalar), to define all 3.

2. CHANNEL MODEL

In order to localize a MT in a NLoS environment, the infor-

mation about the the MT location contained in the multipath

signal components has to be exploited. To that end, we con-

sider only the first few arriving components and make the as-

sumption that they have bounced only once. The use of Single
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Fig. 1. Dynamic Single-Bounce Model

Bounce Model (SBM) [1] ,offers a simple one-to-one map-

ping between the various LDP and the coordinates of the MT

and the scatterers, for static environments. For dynamic en-

vironments, a dynamic-SBM (DSBM), which is the result of

the integration of a mobility model with the SBM can be used

instead. This is shown in fig. 1.

Let φ, ψ, d, fd denote the vectors containing the angles

of arrival (AoA), angles of departure (AoD), lengths of paths

and the Doppler shifts (DS) of the corresponding signal com-

ponents respectively. With respect to figure 1 and using sub-

script ij for their entries at time instant ti, 0 ≤ i < Nt and

corresponding to path (or scatterer) j, 1 ≤ j ≤ Ns, the LDP

are given by:

dij = dmts,ij + dbs,ij (1)

dmts,ij =
√

(ysj − yi)2 + (xsj − xi)2 (2)

dbs,ij = dbs,j =
√
(ysj − ybsj )

2 + (xsj − xbsj )
2 (3)

ψij = ψj =
π
2 (1− sgn{xsj − xbsj}) + tan−1 ysj−ybsj

xsj
−xbsj

(4)

φij =
π
2 (1− sgn{xsj − xi}) + tan−1 ysj−yi

xsj
−xi

(5)

fd,ij =
fc
c

υxi
(xsj − xi) + υyi(ysj − yi)

dmts,ij
(6)

3. FISHER INFORMATION MATRIX

Location estimation is equivalent to estimating the vector of

MT coordinates, pmt = [xmt, ymt]
t. If the MT is mov-

ing, LDP estimates obtained at different time instances can

be jointly processed for better performance. In such scenar-

ios, there might be a need to jointly estimate 2Nm coeffi-

cients, where Nm is the order of the mobility model used

to describe the movement of the MT. For example, for lin-

ear movement (Nm = 1), the speed vector pυ = [υx, υy]
t,

should be jointly estimated, unless its estimate already exists

due to the use of e.g. inertial sensors. We refer to the above

2Nm + 2 parameters as parameters of interest and denote the

vector that contains them as pint. The rest of the unknown

parameters in the problem formulation, which are the coordi-

nates of the scatterers, are just nuisance parameters and they

compose the vector pnui = [xts,y
t
s]
t. The set of all of the

above Np = 2Ns+2Nm+2 parameters compose the vector:

p = [ptint,p
t
nui]

t (7)

Let θ denote the vector containing all the true values of the

LDP. The location estimation will be based on the estimated

value θ̂ of this vector. The size of θ is Nθ = KNsNt, with

K ∈ {1, 2, 3, 4} being the number of available different kinds

of LDP. For example, for K = 4, θ = [dt,ψt,φt, f td]
t. As-

suming that θ̂ ∼ N(θ,C
θ̃
), the FIM, which is a measure of

the information about p contained in θ, is given by

J =
∂θt

∂p
C−1

θ̃

∂θ

∂pt
= GC−1

θ̃
Gt (8)

where we introduced the Jacobian matrix G = ∂θt

∂p
. To com-

pute the submatrices composing G lets introduce some key

quantities

R , 1tNt
⊗ INs

(9)

Cφ , diag{cos(φij)} (10)

Sφ , diag{sin(φij)} . (11)

Cψ and Sψ are defined similarly. If the MT communicates

only with 1 BS through a multipath environment, then Ybs =
ybsI and Xbs = xbsI. G is then composed of the following

vectors and matrices containing partial derivatives

Dxs
, ∂dt

∂xs
= R(Cφ +Cψ) (12)

Dys
, ∂dt

∂ys
= R(Sφ + Sψ) (13)

dtx , ∂dt

∂x0

= −1tCφ , d
t
y , ∂dt

∂y0
= −1tSφ (14)

dtυx , ∂dt

∂υx
= −(t⊗ 1Ns

)tCφ (15)

dtυy , ∂dt

∂υy
= −(t⊗ 1Ns

)tSφ (16)

Ψxs
,

∂ψt

∂xs
= −R(INt

⊗ SψD
−1
bs ) (17)

Ψys
,

∂ψt

∂ys
= R(INt

⊗CψD
−1
bs ) (18)

ψtx ,
∂ψt

∂x0

= 0t , ψty ,
∂ψt

∂y0
= 0t (19)

ψtυx ,
∂ψt

∂υx
= 0t , ψtυy ,

∂ψt

∂υy
= 0t (20)

Φxs
,

∂φt

∂xs
= −RSφD

−1
mts (21)

Φys
,

∂φt

∂ys
= −RCφD

−1
mts (22)

φtx ,
∂φt

∂x0

= 1tSφD
−1
mts , φ

t
y ,

∂φt

∂y0
= −1tCφD

−1
mts(23)

φtυx ,
∂φt

∂υx
= (t⊗ 1Ns

)tSφD
−1
mts (24)

φtυy ,
∂φt

∂υy
= −(t⊗ 1Ns

)tCφD
−1
mts (25)



Table 1. Coordinates (m)
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Fig. 2. CRB vs σfd at high SNR.

Fφ ,
∂f td
∂φ

= −υxSφ + υyCφ (26)

Fxs
,

∂f td
∂xs

= Φxs
Fφ , Fys

,
∂f td
∂ys

= Φys
Fφ (27)

f tx ,
∂f td
∂x0

= φtxFφ , f
t
y ,

∂f td
∂y0

= φtyFφ (28)

f tυx ,
∂f td
∂υx

= φtυxFφ + 1tCφ (29)

f tυy ,
∂f td
∂υy

= φtυyFφ + 1tSφ (30)

4. IDENTIFIABILITY CONDITIONS

According to corollary 1 in [2] (See also [3, Theorem 1]), lo-

cal identifiability in static environments is feasible if Ns ≥
2, while for dynamic environments the condition becomes

(K − 1)NsNt + Ns ≥ 2Ns + 2Nm + 2. However, in a

worst case but also more realistic scenario, the LDP variation

can be considered linear for small time intervals [4], so that

θtk = (1⊗ θk,0)
t + [0t, . . . , (pNt−1 − p0)

t]

(
I⊗

dθk,0
dp

)

where the subscript k ∈ {1, 2, 3} denotes the kind of

time-varying LDP, θk,0 = θk(p0) and p0 , p, i.e. the

parameters we will estimate, correspond to time instant

0. If a mobility model of order Nm is considered, then

pti = ttiW(p0), where tti = [1, . . . , tNm

i ]. This allows us to

write θtk = [tt0Vk(p0), . . . , t
t
Nt−1Vk(p0)] and by taking it’s

partial derivative with respect to p, we get [5]

∂θtk
∂p

=
∂vect{Vt

k}

∂p
(T⊗ INs

) (31)

where T = [t0, . . . , tNt−1] is a (Nm+1)×Nt Vandermonde

matrix. From eq. (31) it becomes obvious that the rank of
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Fig. 3. CRB vs σfd at low SNR.

G = [
∂θt

1

∂p
, . . . ,

∂θt
K

∂p
] is limited by the order of the mobility

model [6] and thus the condition for identifiability becomes

(K − 1)Nsmin {Nm + 1, Nt} + Ns ≥ 2Ns + 2Nm + 2.

Furthermore, for linear movement of the MT, the condition

becomes (2K − 3)Ns ≥ 4, which implies that at least K = 3
different kinds of LDP for at least Ns = 2 SB signal compo-

nents or alternatively K = 4 different kind of LDP for only

Ns = 1 SB signal component should be available for local-

izing the MT. This indicates the significance of the LDP time

variation for identifiability purposes.

5. CRAMER-RAO BOUND

The correlation matrix of the parameter estimation errors p̃ is

bounded below by the inverse of the FIM

Rp̃p̃ = E{(p̂− p)(p̂− p)t} ≥ J−1 (32)

Since we are mostly interested in the MT position, we de-

fine the lowest achievable position error as the CRB of the

position. Based on the FIM, this is given by:

CRBpos =
√
tr{[J−1](1:2,1:2)} (33)

For demonstrating our results we consider a MT that is mov-

ing at constant speed {υx, υy} = {2,−1.5}m/sec and re-

ceives Ns = 3 SB components of a signal transmitted by 1

BS. The coordinates of the BS, the MT and the scatterers are

given in table 1 and they correspond to a pico-cell. Nt = 10
time samples for every LDP estimate are considered and the

total observation time is Ntdt < 1sec to ensure that acceler-

ation can be assumed to be negligible.

In this numerical example, we study and compare the

CRB for the following scenarios: static (pυ = 0), dynamic

with all LDP available, dynamic with no DS estimates, dy-

namic with no AoA estimates. For all dynamic scenarios, we

examine the case when speed components need to be jointly
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Fig. 4. CRB vs σd at high SNR.

estimated (pint = [ptmt,p
t
υ]
t) and the case where perfect es-

timates are available using e.g. inertial sensors (pint = pmt).
We compare the performance for these scenarios either at high

SNR {σfd < 1Hz, σd = 1m}, {σfd = 1Hz, σd < 1m} or at

low SNR {σfd > 1Hz, σd = 1m}, {σfd = 1Hz, σd > 1m},

while for both cases σφ = σψ = 5o. The reason for doing so

is the low performance of algorithms that do not utilize AoA

at low SNR (green curves at fig. 2 and 4), which in turn is

a consequence of the fact that in those cases identifiability is

possible only due to the LDP time-variation.

From fig. 2 and 4 we observe how sensitive the AoD/delay/

DS methods (green curves) are to the accuracy of DS and de-

lays, in contrast to AoD/delay/AoA methods (red curves) that

are not so much affected by the accuracy of delays. Actually

the performance of these 2 methods can be compared ana-

lytically for the case when pint = pmt. Due to the linear

relationship between
∂f td
∂p

and ∂φt

∂p
, it can be easily proved

that JnoAOA ≥ JnoDS when σ2
fd
/minij{−υxsin(φij) +

υycos(φij)} ≤ σ2
φ.

From fig. 3 and 5 we observe that the AoD/delay/AoA

method has higher performance in a dynamic scenario with

pυ known than in a static environment, although one would

think that these two are equivalent. We further observe the

superiority of the methods that exploit all 4 kinds of LDP,

compared to the static case where there is no Doppler. The

Doppler estimates seem to enhance performance a lot, espe-

cially when pυ needs to be estimated. When pυ is known,

Doppler shifts estimates are useful only if they are more ac-

curate than the AoA estimates, as before.

6. CONCLUSIONS

The purpose of this paper has been two-fold: On one hand

the high accuracy of (D)SBM-based localization algorithms

in strictly NLoS environment was demonstrated. Sub-meter

accuracy for high SNR translated into accurate delay and
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Fig. 5. CRB vs σd at low SNR.

Doppler shift estimates (no need for very accurate angle esti-

mates) or accuracy close to 1 meter for low SNR can possibly

be achieved with efficient estimators. On the other hand

we have demonstrated certain advantages that the DSBM-

based localization algorithms enjoy over SBM-based ones.

These include identifiability in the absence of AoA, even for

small LDP time variations and superior performance when

all 4 different kinds of LDP are exploited. The results were

demonstrated for linear movement of the MT but can be

easily generalized to any kind of movement.
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