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Institut Eurécom, Corporate Communications Dep.

BP 193, Sophia-Antipolis Cedex - France
email:fMorsy.Cheikhrouhou, Jacques.Labetoulleg@eurecom.fr

Abstract

We propose to provide a prototype of an agent-based net-
work management system in which, unreliable agents can
be detected by the other agents. The detection method is
based on having the agents testing each other by compar-
ing their respective beliefs.

The agents are specified using an abstract agent func-
tional model. This model is based on a BDI (Belief Desire
Intention)-like mental cycle and uses KQML as an agent
communication language. The result is a high-level specifi-
cation expressed in terms of abstract agent mental attitudes.

1. Introduction

Centralized Network Management Systems (NMS) are
being abandoned by the NM R&D community. Instead of
having a central manager interacting with a large number of
unintelligent agents, the trend is evolving towards having
distributed autonomous intelligent agents or middle-level
managers performing high-level management tasks [3, 7].
This distributed approach solves the main problems of cen-
tralized NMSs, namely, the bandwidth bottleneck around
the central management console and the processing over-
load of its CPU. Moreover, deploying autonomous manage-
ment agents helps providing localized, therefore, prompt re-
actions to network problems. Many such autonomous agent
architectures have been and are being proposed. One kind
of these architectures, the BDI-like (Belief, Desire, Inten-
tion) architectures are being investigated in the Network
Management Team in Institut Eur´ecom. BDI-like architec-
tures describe an agent’s behavior using a set of mental cat-
egories evolving in a mental cycle that allows the agent to
take decisions and to act on the environment.

Such agents, being endowed with enhanced decision-
taking capabilities and managerial knowledge, are supposed
to be able to perform long term tasks in an independent

and autonomous way. However, these agents are deployed
in the same network they are managing, which is prone to
faults and performance degradation problems. Due to such
anomalies, the agents may themselves be affected and there-
fore, become unreliable. The unreliability of an intelligent
agent might have critical effects on the managed network,
since the agent is supposed to have important management
responsibilities and capabilities. Moreover, detecting the
unreliability of an agent is not straightforward since it need
not interact with the other agents or with the human admin-
istrator to perform its duties.

This was not a critical issue in the classical manage-
ment agents. In the Internet model, SNMP (Simple Net-
work Management Protocol) agents do not perform any ac-
tion unless explicitly solicited, via polling GET queries,
and confirmedSet requests. Therefore, the management
station knows the state of the SNMP agent each time it
is queried. In the OSI model, the management proto-
col CMIP (Common Management Information Protocol) is
connection-oriented. This provides sufficient guarantee re-
garding the limited functionality of the agent.

The purpose of the work presented in this paper is
twofold. Firstly, it provides a mechanism that distribut-
edly allows to detect the possible unreliability of intelligent
agents while performing their management tasks. Secondly,
it describes an abstract agent model built using a BDI archi-
tecture and how this model is used to specify and develop
the mechanism of reliability detection.

The paper is structured as follows. The problem of intel-
ligent agent reliability in the network management context,
as well as the adopted solution, are described in Section 2.
We describe in Section 3 an abstract agent functional model
based on well-known agent paradigms and languages such
as the BDI-oriented architecture and the agent communica-
tion language KQML. Next, we detail in Section 4 how our
abstract agent model was used to provide an abstract spec-
ification of the adopted solution. Finally, we conclude the
paper with an outlook of possible improvements.



2. Problem Position

Increasingly nowadays, networks are managed in a hi-
erarchical, yet evolving to a distributed manner [3, 9, 7] .
The managed network is divided into sub-networks or do-
mains that are managed more or less independently by au-
tonomous agents. The distribution is introduced into man-
agement systems mainly to overcome the bandwidth bottle-
neck around the central management station and to offer a
degree of fault tolerance. As a matter of fact, in a multi-
domain managed network, when an agent that manages a
particular domain becomes unreliable, the manageability of
its domain becomes questionable, but the other domains re-
main correctly managed. However, if an agent is allowed
to perform critical management tasks that may for exam-
ple affect the performances, or even worse, compromise the
network security, it is necessary to promptly detect when
this agent turns unreliable. In addition, if the agent is re-
sponsible for the management of a sensitive server of which
all the network domains make use, an erroneous agent ac-
tion may compromise the overall function or performances
of the whole network. Therefore, it is compulsory, even
within a distributed NMS, to be able to detect the failures of
the management agents.

Once the failure of an agent is detected, it becomes even
possible to have a further improvement by re-affecting the
management tasks of the unreliable agent among the other
agents in a way to ensure that the whole network continues
to be reliably managed. This provides a property of graceful
degradation to the distributed management system.

The work presented in this paper provides a first step
towards this interesting improvement. To ensure that the
whole network is still managed even if a number of agents
become unreliable, it is necessary to install a mechanism
that continuously checks the reliability of the agents. When
unreliable agents are detected, the management tasks that
they have been performing are re-distributed amongst the
other still-reliable agents. At some time in the future, the
agent with the abnormal behavior might recover, for exam-
ple following a human intervention, and the tasks that have
been re-distributed on the other agents should be assigned
back to the recovered agents.

To test the reliability of an agent, that we call thetes-
tee, another agent, thetester, can be used. The tester can
check a subset of the testee’s beliefs against its own be-
liefs. For example, if the testee agent is monitoring some
network elements, the tester agent may monitor a subset of
the same network elements, and regularly compares its be-
liefs on them with those of the testee. If the beliefs match,
then the tester decides the testee is reliable, otherwise, the
testee is considered to be unreliable.

However, the result tells only the belief of the tester
on the reliability of the testee. But nothing ensures that

the tester is itself reliable. SLD (System Level Diagno-
sis) brings a solution to this problem [2, 1]. SLD allows to
deduce the reliable set of entities that are mutually testing
each other, each entity having to test a minimum number of
other entities. Each entity reports whether the entities that
it tests are reliable or not. By confronting the results with
each other, SLD allows to deduce a core of reliable entities.
Therefore, by making the agents in the management system
continuously test the reliability of each other, they can con-
clude which are the agents that become unreliable. They can
consequently perform task re-affectation to avoid the unre-
liable agents. The continuous testing and the application of
SLD allows to detect the agents that might recover.

We propose to build agents that are able to perform the
reliability testing while performing their usual management
tasks. When an agent is asked about the reliability of a tes-
tee, it has to periodically compare its beliefs with its owns.
For prototyping reasons, we chose as a management task
for all the agents, the task of monitoring the global statuses
of the network elements in each agent’s domain.

3. The Agent Model

Our view of the agent technology as applied to Network
Management tends to the use of hybrid agents that are ca-
pable of both deliberative and reactive behaviors[8, 6]. The
deliberative behavior allows the agent to have long term ac-
tivities and provides it with decision-taking and reasoning
capabilities. The reactive behavior allows the agent to have
prompt responses and to setup appropriate reflex actions to
changes in the managed network.

In addition, KQML [5] is chosen as an agent commu-
nication support. KQML (Knowledge Query and Manip-
ulation Language) offers the advantage of having standard
semantics of the intention expressed on an exchanged mes-
sages. Also, it provides a rich set of message types, allow-
ing to easily express the attitude wanted from the message.
Finally, messages in KQML are written according to a sim-
ple syntax that can be easily read and understood.

Furthermore, we perceive the agent as composed of two
layers, namely theDeliberative Layer and theOperational
Layer. The deliberative layer offers facilities and supports
the deliberative behavior of the agent, while the operational
layer provides an environment for the execution and control
of the agent actions.

According to these three considerations, we defined an
abstract agent functional model described in the following
sections.

3.1. The Deliberative Layer

We model the agent deliberative behavior using a set of
mental categories that evolve within a mental cycle. The
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Figure 1. Agent’s Mental Cycle

mental categories we use in our model aremotivations,
goals, intentions, beliefs andcapabilities (Figure 1). They
are explained below.

� Beliefs: They reflect the agent’s perception of the ex-
ternal world. Typically, the agent’s beliefs are stored
in a database that holds the management information
about the network, and possibly include information
about the other agents or the agent itself.
We use a simple relational notation of beliefs. Each
belief is a relation tuple having a determined number
of parameters or fields. For example, the belief “host
‘esteron’ is down” can be written as follows:
(Host :name esteron :status down).
Belief querying can be done using logical variables.
For example, assuming the above belief is asserted in
the agent belief database, then the statement:
(Host :name esteron :status ?s)

holds with the value of variables bound to ‘down’. To
avoid ambiguity when using variables, we use?var to
bind the variable to some field value, and$var to use
the value to which variablevar is bound.
Finally, logical expressions can be combined together
using the usual logical operators. For example:
(Printer :name ?p) and (OutOfOrder :host

$p)

holds when variablep is bound to the name of a printer
that is out of order.

� Capabilities: They describe the actions that the agent
can perform, mainly to interact with the external
world. In some way, the execution of an agent action
could be seen as an instantiation of a certain capabil-
ity. The actions that the agent can perform can be ei-
ther primitive actions, or composite actions organized
in plans. There are four types of primitive actions.

1. Sensors. They are actions that the agent performs
to perceive the external world. Part of the agent’s
beliefs are provided and maintained through the
activation of its sensors. Therefore, a sensor pro-
vides a mapping from the changes and events that
occur in the network to structured beliefs.

2. Effectors. They are actions that affect the exter-
nal world, for example by changing the configu-
ration parameters in the case of a managed net-
work.

3. Reactors. They allow the agent to perform de-
fined actions when specified situations occur on
the network. The agent can use reactors to have
prompt reactions to events that may occur. Pre-
cisely, a reactor links a plan of actions to a situa-
tion expressed on the agent beliefs.

4. Calculators. These are a particular kind of ac-
tions that allow to compute or deduce new beliefs
from others. For example, suppose that the print-
ing system status is Ok only if the statuses of all
the printers in the network are Ok. A calculator
can be used to maintain the printing system sta-
tus belief by continuously checking the statuses
of all the printers in the system.

� Motivations: Motivations are the main essence of ac-
tions in the agent. A motivation lets the agent have
preferences towards certain states of its environment.
It can be viewed as an expression that the agent contin-
uously tries to satisfy. When a motivation is violated,
the agent tries to figure out the reason behind it, then
generates goals that are believed to help satisfying the
motivation when achieved (Figure 1).
At this stage, abstraction is made on which goal gen-
eration mechanism is better suited for the agent. This
deliberation process should be chosen at a later stage
in the agent development according to the application
needs. For example, goal generation can be done by
comparing the motivation expression to the current be-
liefs. By analyzing the resulting differences, the agent
can determine what goal is to be generated.

� Goals: A goal denotes a state that the agent wants to
achieve through the execution of a certain plan of ac-
tions [4]. A sequence of actions among the agent ca-
pabilities are identified in order to be executed.
Similarly to the goal generation process, abstraction is
made on which planning method should be used. At a
later stage in the agent development process, it will be
decided to whether an embedded planning system or a
simple search in the agent’s plans is better suited for
the application requirements.
We identify two kinds of goals:achievement goals
andmaintenance goals. The action plan generated for



an achievement goal should only achieve the goal at
some moment in time, whereas the plan generated for
a maintenance goal should ensure that the goal expres-
sion is hold continuously.
Finally, negative expressions can be used in goal ex-
pressions. This can be used for example to cause a pre-
ceding achieved goal to be cancelled (or unachieved).
Of course, the planning process that is to be chosen has
to take into account whether closed world assumption
is assumed or not.

� Intentions: An intention is an action or a plan of
actions that the agent decides to execute in order to
achieve a certain goal. Therefore, the intentions corre-
sponding to a goal are a description of how to invoke a
set of agent capabilities. This description is used by the
operational layer to perform and control the execution
of the generated plan (Figure 1).

3.2. The Operational Layer

The agent Operational Layer is an integrated environ-
ment within which the actions intended by the agent are exe-
cuted. It is delivered with intentions decided at the planning
process to ensure their execution control. Therefore, the op-
erational layer uses the capabilities description to correctly
instantiate and launch the action execution. In addition, the
operational layer ensures the proper update of agent beliefs
following the execution or the completion of an action.

In the case of a sensor, the agent intentions can specify
its activation by executing the primitivestartSensor with
the sensor parameters. For example, if the agent wants to
activateBandwidthUsageSensor between two adjacent
points, it has to execute:

(startSensor BandwidthUsageSensor :source

host1 :dest host2).

This will cause the corresponding belief to be created and
maintained in the agent belief database. To stop a sensor,
the agent should execute

(stopSensor BandwidthUsageSensor :source
host1 :dest host2).

This causes the corresponding belief to be removed from
the agent belief database.

Similarly, calculators and reactors can be
started and stopped using the respective primitives
startCalculator, stopCalculator, startReactor

and stopReactor. For example, an emergency reactor
can be used to kill user processes that are excessively using
a machine resources. It can be launched on host ‘dahlia’
using:

(startReactor KillConsumingProcesses :host

dahlia).

Of course, there should exist beliefs in the agent telling

which are the resource consuming processes on the target
host.

Finally, effectors can only be executed in a one-shot way.
For example, the kill process effector can be invoked as fol-
lows:
(effector KillProcess :host dahlia :pid

4585).

3.3. Agent Communication

Communication means are viewed as particular agent ef-
fectors and sensors. To send a KQML message, the effec-
tor KqmlSend is used, with the message text as parame-
ter. Similarly, KQML messages sent by other agents are
received using theKqmlRecv sensor.

4. Abstract Agent Design

According to the problem description in Section 2, an
agent has two types of activities. The first type of activity
is related to the usual management tasks that the domain
for which the agent is responsible requires. For the need
of this prototype, we chose the sample management task of
monitoring the network elements in the agent’s domain, for
example to detect the global status of each network element.
Hence, the first role that an agent has to ensure is that of
domain monitoring.

The second type of activity is related to the detection
of unreliable agents within the management agent system.
This activity requires two roles, the role of being atester,
and that of being atestee.

The specification of these roles using the abstract agent
model is described in the following sections.

4.1. The Domain Monitoring Role

Goal Generation To have an agent ensure the role of
domain monitoring, it can be motivated to have the status of
each of the network elements in its domain. If we suppose
that beliefs that express that a network element is included
in the agent’s domain are expressed as follows:
(InMyDomain :ne hub101) // ne: Network Element

and that beliefs telling of the monitored status of a network
element are of the form:
(NetworkElementStatus :ne hub101 :status

OPERATING),
then the domain monitoring motivation can be expressed
like the following:
(InMyDomain :ne ?e) , (NetworkElementStatus

:ne $e) (M1).
This motivation makes the agent try to have the status

of a network element as soon as it is or becomes part of its



domain. The motivation is violated when a network element
e belongs to the agent’s domain, but the agent does not have
its status in its belief database. This causes the agent to
create a goal of the form:

(achieve (NetworkElementStatus :ne $e)) (G1).

(M1) can also be violated when a network element is
removed from the agent’s domain, in the case of domain
re-assignment for example. This situation also leads to
the violation of the domain monitoring motivation since
the statement(NetworkElementStatus :ne $e) holds
while(InMyDomain :ne $e) does not. For this situation,
the generated goal would be:

(achieve (not (NetworkElementStatus :ne

$e))) (G2).

Intentions To achieve goal(G1), the agent needs a
sensor to perceive the status of the network element. The
StatusMonitoringSensor is defined for this reason. To
start it on a network element, the agent must execute:

(startSensor StatusMonitoringSensor :ne $e)

which will create and maintain the missing
NetworkElementStatus belief, thus leading to the
satisfaction of the motivation.

Goal(G2) can also be easily achieved, assuming a closed
world assumption for theNetworkElementStatus be-
liefs, by executing:

(stopSensor StatusMonitoringSensor :ne $e).

4.2. The Tester Role

Goal Generation An agentA ensures the tester role re-
garding an agent B when it has a belief on the reliability of
agent B. Such a belief can be written as(AgentSldStatus

:agent B :status reliable). Therefore, to make
agentA ensure the tester role, it should simply be motivated
to having

(AgentSldStatus :agent B) (M2).

Satisfying this motivation requires the generation of mul-
tiple successive goals. Firstly, the tester should have a belief
containing a set of, let us say, three representative elements
in agent B’s domain. Therefore, the following goal has to
be generated:

(achieve (AgentThreeImportantElements

:agent B :element1 ?elt1 :element2 ?elt2
:element3 ?elt3)) (G3)

Once this goal is achieved, or if it is already achieved,
the next step is to have agent B’s belief onelt1, elt2 and
elt3. For each of these elements, a goal

(achieve (BelievedNetworkElementStatus
:agent B :ne $elt)) (G4)

is generated, where the belief
(BelievedNetworkElementStatus :agent B :ne

$elt :status DOWN) tells that agent B believes that the
status ofelt is down.

Afterwards, agent A has to start monitoring the same
three elements. This is done exactly in the same way as for
the domain monitoring role, i.e. by generating goal(G1).

Finally, if all the above goals are achieved, then all the
beliefs required to deduce agent B’s reliability status are
available. The goal:

(achieve (AgentSldStatus :agent B)) (G5)

can be generated and successfully achieved.
Later in time, the domain of agent B might change. One

(or more) of the three elements, let us sayelt1, that have
been chosen in the(AgentThreeImportantElements)
may be replaced by another element, e.g.elt4. When
agent A get informed of the change, the motivation be-
comes violated since the status belief onelt4 is missing
and, hence, theSLD status of agent B cannot be maintained.
Consequently, agent A will successively generate the fol-
lowing goals:

� (achieve (not (BelievedNetworkElementStatus

:agent B :element $elt1))) (G6).

� (achieve (not (NetworkElementStatus
:ne $elt1))), which makes the agent stop the

StatusMonitoringSensor on$elt1.
� (achieve (BelievedNetworkElementStatus
:agent B :ne $elt4)).

� (achieve (NetworkElementStatus :ne

$elt4)).

Intentions There can be two possible plans to achieve
goal(G3). The first plan consists in sending a subscription
KQML message to agent B, asking it for all the elements
in its domain. By collecting this information, agent A can
chose three network elements according for example to their
degree of importance in agent B’s domain. Therefore, agent
A generates and maintains itself the required belief of which
three elements to monitor in agent B’s domain.

The second plan consists in delegating the
same goal (G3) to agent B, and then sending a
KQML subscription message asking for belief
(AgentThreeImportantElements :agent B).
Therefore, the actual determination of the three elements is
performed by the testee agent itself.

Both plans lead to the achievement of generated
goal (G3). However, the second plan performs bet-
ter, since in the case of multiple testers for agent B,
theAgentThreeImportantElements belief is computed
only once. Also, communications overhead are less that in



the first plan, since the first plan requires to send a KQML
tell message for each element in the domain of agent B.

Concerning goal(G4), it can be achieved by send-
ing a subscription message to agent B, asking it for
the status of the required network element. Each time
agent B sends back atell message stating a change in
its belief on the status ofelt, agent A converts it to
a (BelievedNetworkElementStatus :agent B) be-
lief.

Finally, goal(G6) is achieved in the opposite way. The
agent will unsubscribe on the(NetworkElementStatus
:ne $elt1) belief in agent B, and the corresponding
BelievedNetworkElementStatus will be retracted.

4.3. The Testee Role

The testee role is a passive role, in the sense that there
is no need to motivate the testee agent to make it ensure
the role. In fact, the testee agent only replies to the queries
sent by the tester agent, and achieves what it is asked to
do. For example, when the tester receives the message con-
taining goal(G3), it integrates the goal in its mental cy-
cle and tries to achieve it. The achievement of this goal
is simply done by activating the corresponding calculator
TopThreeImportantElements which will create the be-
lief (AgentThreeImportantElements :agent B) and
update it whenever the domain of agent B evolves.

In addition, the testee agent must be able to manage mul-
tiple subscriptions originating from different testers. For ex-
ample, suppose that there is another agent, agent C, that is
also testing agent B. If later in time, agent C is no longer
motivated to test agent B, then agent C should unsubscribe
on agent B’s belief(AgentThreeImportantElement
:agent B), and then tells that agent B no longer needs
to have this belief achieved. However, agent B should be
aware that agent A still needs the belief and therefore, it
should not stop maintaining it.

5. Conclusion

The purpose of this paper was two fold. From a Network
Management point of view, we addressed the problem of the
reliability of a distributed NMS based on autonomous Intel-
ligent Agents. Autonomous management agents are capable
of performing critical management tasks, and therefore, it
is essential to ensure their reliability. We proposed a mech-
anism by which, the different agents are mutually testing
each other by comparing subsets of their respective beliefs.
The SLD algorithm applied on their mutual results allowed
to detect the unreliable agents. This by itself allows to fur-
ther improve the reliability of the NMS by having the other
reliable agents undertake the management tasks that were
performed by the unreliable agent. The result is a higher

degree of fault tolerance and graceful degradation of the dis-
tributed NMS.

From an Intelligent Agent architectural view, the work
described in this paper allowed to experiment a BDI archi-
tecture in a concrete case study from the NM domain. The
proposed abstract agent model allowed to specify the appli-
cation in a straightforward way by using the metaphor of
mental categories. The implementation of the agent system
lead to a robust application.

Though this case study was developed for an academic
purpose to experiment the BDI agent architecture poten-
tials, it still can be applied in practice within a NMS based
on intelligent agents.
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