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Abstract

Automatic speaker verification (ASV) systems are increasingly being
used for biometric authentication even if their vulnerability to imposture or
spoofing is now widely acknowledged. Recent work has proposed different
spoofing approaches which can be used to test vulnerabilities. This paper
introduces a new approach based on artificial, tone-like signals which pro-
voke higher ASV scores than genuine client tests. Experimental results show
degradations in the equal error rate from 8.5% to 77.3% and from 4.8% to
64.3% for standard Gaussian mixture model and factor analysis based ASV
systems respectively. These findings demonstrate the importance of efforts
to develop dedicated countermeasures, some of them trivial, to protect ASV
systems from spoofing.
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1 Introduction

The state-of-the-art in automatic speaker verification (ASV) has advanced rapidly
in recent years. Surprisingly, however, there has been relatively little work in the
development of countermeasures to protect ASV systems from the acknowledged
threat of spoofing. Otherwise referred to as the direct, sensor-level or imposture
attacks of biometric systems [1], spoofing is generally performed by the falsifi-
cation or impersonation of a biometric trait and its presentation to the biometric
system. Since their natural appeal lies in automated, unattended scenarios, speaker
recognition systems are particularly vulnerable to spoofing attacks.

Examples of ASV spoofing include impersonation [2, 3], replay attacks [4, 5],
voice conversion [6–8] and speech synthesis [9, 10]. All of these approaches can
be used to bias the distribution of impostor scores toward the true client or target
distribution and thus to provoke significant increases in the false acceptance rate of
ASV systems.

Through EURECOM’s participation in the European Tabula Rasa project we
have investigated the vulnerability of ASV systems to a previously unconsidered
spoofing attack in the form of artificial, tone-like signals. Given some speaker-
specific training data, artificial signals can be synthesized and injected into an at-
tackers natural voice signal or, as is the case investigated in this paper, used on
their own to boost the ASV system score. With such signals having the potential to
pass both energy-based and pitch-based voice activity detection systems, this new
attack vector presents a serious threat if no specific countermeasures, some of them
trivial, are introduced in the design of the ASV systems. The lack of any relevant
prior work and our own experimental results lead us to believe that the threat from
artificial signals is underestimated and warrants wider attention.

The paper is organized as follows. Section 2 presents the algorithm used to
generate artificial signals to test vulnerabilities to spoofing attacks. Experimental
work which aims to gauge the threat is described in Section 3. Finally our conclu-
sions and ideas for future work are presented in Section 4.

2 Artificial Signal Attacks

Here we describe the approach to generate artificial spoofing signals. It is based
on previous work in voice conversion by other authors [7], the relevant components
of which are described first.

2.1 Voice conversion

Source-filter models are widely used in speech signal analysis and form the
basis of a recent approach to voice conversion. According to the notation in [7] a

2The EU FP7 Tabula Rasa project (www.tabularasa-euproject.org) aims to develop
new spoofing countermeasures for different biometric modalities including voice.
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speech signal Y of n frames {y1, ..., yn} is alternatively represented in the spectral
domain according to the standard source-filter model:

Y (f) = Hy(f)Sy(f) (1)

where Hy(f) is the vocal tract transfer function of Y and Sy(f) is the Fourier
transform of the excitation source.

The separation of excitation and vocal tract information facilitates the conver-
sion of an imposter’s speech signal toward the speech of another, target speaker.
In [7] a converted voice Y ′ is obtained by replacing an impostor transfer function
Hy(f) in Equation 1 with that of a target speaker Hx(f) according to:

Y ′(f) = Hx(f)Sy(f) =
Hx(f)
Hy(f)

Y (f) (2)

If the phase of the impostor signal is left unaltered, Y is thus mapped toward
X in the spectral-slope sense by applying to Y (f) a filter:

Hyx(f) =
|Hx(f)|
|Hy(f)|

(3)

The transfer functions above are estimated according to:

Hy(f) =
Gy

Ay(f)
, and (4)

Hx(f) =
Gx

Ax(f)
(5)

whereAy(f) andAx(f) are the Fourier transforms of the corresponding prediction
coefficients and Gy and Gx are the gains of the corresponding residual signals.
WhileHy(f) is obtained directly from Y ,Hx(f) is estimated by using two parallel
sets of Gaussian mixture models (GMM) of the target speaker. Full details are
presented in [7].

2.2 Artificial Signals

Our approach to test the vulnerabilities of ASV systems to spoofing combines
voice conversion and the notion of so-called replay attacks, where a genuine-client
recording is replayed to a biometric sensor, here a microphone. Particularly if it is
equipped with channel compensation routines, then it is entirely possible that an
ASV system may be overcome through the replaying of a client speech signal X;
this is a conventional replay attack. However, certain short intervals of contiguous
frames in X , e.g. those corresponding to voiced regions, will give rise to higher
scores or likelihoods than others. The probability of a replay attack overcoming
and ASV system can thus be increased by selecting fromX only those components
or frames which provoke the highest scores. The resulting signal will not sound
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anything like intelligible speech but this is of no consequence if we assume, as is
generally the case, that the ASV system in question uses only energy and/or pitch-
based speech activity detection (SAD) and does not incorporate any form of speech
quality assessment.

Here we consider an attack based upon the extraction and replaying of a short
interval or sequence of frames in X = {x1, ..., xm} which gives rise to the highest
scores. Let T = {t1, ..., tn} be such an interval short enough so that all frames in
the interval provoke high scores, but long enough so that relevant dynamic informa-
tion (e.g. delta and acceleration coefficients) can be captured and/or modelled. In
order to produce a replay recording of significant duration, T can be replicated and
concatenated any number of times to produce a audio signal of arbitrary length. In
practice the resulting concatenated signal is an artificial, or tone-like signal which
reflects the pitch structure in voiced speech.

Even though such signals can be used themselves to test the vulnerabilities of
ASV systems, their limits can be more thoroughly tested by enhancing the above
approach further through voice conversion. Each frame in T can be decomposed
and treated in a similar manner as described in Section 2.1.

The short interval or sequence of frames in T can be represented as:

ST = {St1(f), St2(f), ..., Stn(f)}, and (6)

HT = {Ht1(f), Ht2(f), ...,Htn(f)} (7)

Each frame ti ∈ T can be reconstructed from their corresponding elements in
ST and HT . While ST captures the excitation source, which has little influence
on ASV, HT captures the vocal tract response from which cepstral features are
extracted. Since it has no impact on ASV the phase information in Equation 7 is
discarded in practice.

We aim to estimate a new set of transfer functions FT to replace HT in Equa-
tion 7 in order to synthesise a new artificial signal more likely to spoof the ASV
system, and consequently a more stringent test of vulnerabilities. In the same way
as in Equation 5, FT can be split into gains Gt and frequency responses At(f)
giving sequences:

GT = {Gt1 , Gt2 , ..., Gtn} (8)

AT = {At1(f), At2(f), ..., Atn(f)} (9)

where each At(f) is obtained from p prediction coefficients for frame t, i.e. Pt =
{ait}pi=1. The prediction coefficients for the sequence are denoted by PT .

PT = {Pt1 , Pt2 , ..., Ptn} (10)

We then seek a set of parameters to synthesize a new signal which maximises
the ASV score according to the following objective function:
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Figure 1: Schematic representation of the optimization loop

(P ∗T , G
∗
T ) = arg max

PT ,GT

l(f(PT , GT , ST ), λX , λUBM ) (11)

where, f() is a function which reconstructs a signal from the parameters GT , PT

and SX , and l() is the ASV function that scores the generated signal with respect
to the target speaker model λX and the universal background model λUBM . Note
that the ASV system has a dual role both in identifying the short interval T and in
the subsequent optimisation process.

The (p + 1) ∗ n variables comprising the prediction coefficients, gains and
ASV score in Equation 11 are continuous valued and the optimization problem is
non-convex and possibly discontinuous in nature. In our work Equation 11 is max-
imised with a genetic optimisation algorithm. Genetic algorithms are well-suited
to the stochastic nature of the speech signals and have been applied previously in
related work, e.g. voice conversion [11, 12] and speech synthesis [13].

A schematic representation of the optimization problem is illustrated in Fig-
ure 1. The target speaker spoofing utterance X is used to learn the target speaker
model λX as well as in the selection of the short segment T for constructing the
artificial signals. The dashed block represents the optimisation objective function.
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3 Experimental work

This section reports our experimental work to test the vulnerabilities of two
ASV systems to spoofing from artificial signals.

3.1 ASV systems

The two ASV systems are based on the LIA-SpkDet toolkit and the ALIZE
library [14] and are directly derived from the work in [15].

Both systems use a common parametrisation where features are composed of
16 linear frequency cepstral coefficients (LFCCs), their first derivatives and delta
energy. A common energy-based speech activity detection (SAD) system is also
used to remove non-speech frames.

The first ASV system is a standard GMM system with a universal background
model (GMM-UBM). The second ASV system includes channel compensation
based on factor analysis (FA), with the symmetrical approach presented in [16].
The background data for the channel matrix comes from the NIST Speaker Recog-
nition Evaluation (SRE)’04 dataset. That used for UBM learning comes either
from the NIST SRE’04 or NIST SRE’08 datasets depending on whether the ASV
system is used to build artificial signals or to assess vulnerabilities to spoofing.
This is discussed further in Section 3.3.

3.2 Experimental protocol

All experiments use data from the 8conv4w-1conv4w task of the NIST SRE’05
dataset. Only one of the 8 training conversations is ever used for training whereas
the other 7 are used to build artificial spoofing signals. One conversation provides
an average of 2.5 minutes of speech (one side of a 5 minute conversation).

We used only the male subset which contains 201 client speakers. Baseline
experiments use the standard NIST test data which results in 894 true client tests
and 8962 impostor test. In all spoofing experiments, the number of true client tests
is the same as for the baseline whereas the number of impostor tests come from
201 artificial signals (one for each speaker model) resulting in 201 impostor tests.

3.3 Artificial signal generation

The generation of artificial signals is as illustrated in Figure 1. The ASV system
is the GMM-UBM presented in Section 3.1. The speech signal X is divided into
frames of 20ms with a frame overlap of 10ms. ASV scores are generated for each
frame in order to identify the short interval T = {t1, . . . , tn} in X with the highest
average score. We conducted experiments with values of n between 1 and 20
frames and observed good results with a value of n = 5. GT andAT in Equations 8
and 9 are then calculated in the same way as described in Section 2.1 and in [7].

The genetic algorithm was implemented using the MATLAB Global Optimiza-
tion Toolbox V3.3.1. Except for the maximum number of generations which is set
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Figure 2: DET plots for the GMM-UBM and FA ASV systems with and without
spoofing through artificial signals.

to 50, we used MATLAB’s default configuration. The initial population is com-
posed of all possible combination of the 6 highest scored frames in X thereby
producing a population of 6!

(6−5)! = 720 samples. The lower and upper bounds are
formed by adding a margin of 50% to the extremal values of each component in the
initial population. Constraints are related to the stability of the vocal track filter,
i.e. the reflection coefficients of each Pti ∈ PT must be all positive.

Finally, we note that the ASV system used to generate artificial signals need not
necessarily be the same as that targetted by spoofing. In our experiments the GMM-
UBM system is used in the optimisation problem described above with a UBM
trained on NIST SRE’08 data. The GMM-UBM and FA ASV systems presented
above use a UBM trained on NIST SRE’04 data.
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3.4 Results

Figure 2 shows detection error trade-off (DET) plots for the two ASV systems
with and without spoofing with artificial signals. They show that an equal error rate
(EER) of 8.5% for the basic GMM-UBM system rises to 77.3% when all impostor
trials are replaced with artificial spoofing signals. The degradation in performance
is less pronounced for the FA system for which the EER increases from 4.8% to
64.3%.

Figures 3a and 3b illustrate score histograms for target, impostor and spoofing
tests for the GMM-UBM and FA ASV systems respectively. In both cases, while
the impostor distributions (no spoofing) lie to the left of the target distributions, the
spoofing distributions lie to the right, i.e. scores from spoofing tests are greater than
for true client tests. The score distributions in Figures 3a and 3b thus show that
artificial spoofing signals are extremely effective in provoking high ASV scores
and account for the significant increases in EER observed in Figure 2.

4 Conclusions and future work

This work assesses the vulnerability of text-independent automatic speaker ver-
ification systems to spoofing with novel artificial, tone-like signals. They are shown
to provoke in the order of a ten-fold increase in the baseline EER of two different
ASV systems.

Even if it not strictly the case with reported experiments, the approach to spoof-
ing investigated in this paper requires no prior knowledge of the targetted system.
Furthermore, while the experiments reported in this paper used relatively large
quantities of speaker-specific training data to learn speaker models used to opti-
mise spoofing attacks, there is a high probability that models trained on consider-
ably fewer data will also work well so long as they are trained on a similar quantity
of data as that used in ASV enrollment.

Having the potential to pass both energy-based and pitch-based voice activity
detection systems, artificial signals thus pose a serious threat to the reliability of
ASV systems. In line with previous, related work, this contribution highlights the
importance of efforts to develop dedicated countermeasures, some of them triv-
ial, to protect ASV systems from spoofing. A straightforward speech quality as-
sessment routine, for example, may be used to distinguish artificial signals from
genuine speech signals. The development of such countermeasures, the influence
of the quantity of speech data used to generate artificial signals and the effect of
such signals when injected into a real impostor speech signal are all subjects of our
future work.
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Figure 3: Score distributions for target, impostor and spoofing tests with the GMM-
UBM and FA systems.
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