
Intelligent Agents a New Management Style

Raul Oliveira, Jacques Labetoulle

Corporate Communications Department

Eurecom Institute

06904 SOPHIA ANTIPOLIS CEDEX, France.

email: foliveira | labetoul g@eurecom.fr

Abstract

In this paper, we present a new management style based on the in�ltration of Intelligent Agents

into the networked environment. In our perspective, intelligent agents are used to assist users or

applications as must as possible. We present solutions to make intelligent agents aware of user

requirements, so that the appropriate management solutions could be taken. Without reducing

intelligent agents inherent autonomy, we also introduce ways to use domains and policies to inu-

ence intelligent agents behavior. We also propose an adequate basis for information and execution

models for our management framework.

1 Introduction

The �rst impression that this paper might create in our minds is that we are just moving tasks

from humans beings to softbots (software robot) 1. We believe that, in the �eld of network and

distributed systems management, the automation process will allow to create new tasks, one could

not think of before, and to enhance existing ones.

Even from a Corporate view point there is no intention to replace network management sta�.

As networks get more complex (e.g. virtual LANs), and the range of o�ered services broadens,

it becomes increasingly di�cult to rely solely on operators expertise for proper con�guration and

operation. This also means that the quality of the management system will no longer depend on

the skill level of the person using it as it is the case today.

In section 1, we address some issues that could bene�t from the introduction of autonomous

intelligent agents. In section 2, we present a new management style built on well scoped domains,

ruled by policies, and where autonomous software entities can �nd the motives to create their

own management goals. In section 3, we present the overall management information model that

we propose. Finally in section 4, we address the execution environment issue of the management

architecture.

User assistance

In the close future we will see an important population of computer users having no insight

awareness. They will use complex networks systems and should be provided with good assistance.

In contrary to what we knew until now, where most users were able to do some network debugging,

and sometimes giving good hints to network managers. For example, a well known message such

as "DNS lookup failure", might not provide any meaningful information to an average Netscape

user. This message should preferably be sent to autonomous network assistant that knows how to

handle it.

1a softbot is an agent that interacts with a software environment by issuing commands and interpreting envi-

ronment's feedback [4]



As networks spread connecting the entire world, building the so called Global Village, some

kind of intelligent behavior is expected from these networks. This intelligence will guarantee

quality of service to users. The intelligence may be enhanced by improving the capability of the

network to assist users by understanding their behavior.

Satisfy user or applications requirements

End users expect network services to be managed in a way that may consistently a�ord their

applications primary requirements. This might seem a di�cult goal to achieve, because users or

applications do not usually have any entity in the network to which to address their requirements.

Hence, creating such a network entity is important. An encouraging sign is the recent protocols

like ATM [3] and RSVP [14], which integrate resource allocation and handling of quality of service

constraints.

Stand alone applications are the most exigent users that a network can support. Industrial

environments are good examples where we �nd a set of applications using a distributed commu-

nication platform and the underlying network almost in stand alone. Our main concern is that

those applications are often built either considering the highest QoS 2 (Quality of Service), or

alternatively, they are provided with monitoring capabilities, so they are able by themselves to

be aware of network and services QoS. The former approach is not pragmatic, and could entail

severe damages to the application behavior when the required QoS is not anymore available. The

second approach, even if quite usual, does not make sense when the management infrastructure is

also monitoring network services and resources.

There is in our opinion a strong requirement to �nd ways to establish a closer relationship

between Network and Systems Management and the end user applications [8], whether these

application are distributed or not.

2 New Management Style

So far, we presented the requirements, that do not appear in current management architectures

and paradigms. We are proposing a management framework in which a high degree of automation

is required, and where a need to adapt the management automatically to the current situation is

the critical issue. Probably, these requirements will also lead to management applications designed

with a high degree of autonomy, able to decide by themselves what to do. Whether in terms of

what to manage, or in terms of the information to exchange with remote management applications.

There is a need for a new management style, built around autonomous and intelligent commu-

nicating software entities, able to interact with other less common network actors such as users,

applications, service providers, and hosts.

Domains
&
Policies

Service
Contexts

Application
Contexts

Manager Station
Overall
Management
Overview

Managment 
ContextsApplication

Service

Application
& Services
Knowledge

Mangement
Goals

Domain
Management
Overview

MIB

NE

Agent

MIB

NE

Agent

Figure 1:Network actors and management concepts overview.

Figure 1 represents our management style, we have just described above.

2
ideal computer network not submitted to faults



Intelligent Agents

Several reasons led us to choose Intelligent Agents (IA) as the reference entity around which we

built our new management style.

First, Intelligent Agents are not necessarily software components only. They include human

beings as well. This means that multi-agents systems are of prime concern to CSCW (Computer

Supported Cooperative Work), in which also human agents cooperate and communicate to achieve

common goals. This is what we expect to happen in our management framework. Autonomous

management applications (Intelligent Agents) should cooperate and communicate with users, ap-

plications, network operators, and all a unique goal in mind: enhance the individual Quality of

Service (QoS) of applications running over computer networks and distributed systems.

A second major reason is that agent-worthy tasks are generally referred as tasks that require:

adaptation, autonomy and asynchrony amongst other attributes. These are the characteristics we

had identi�ed so far for our autonomous management applications, in order to satisfy management

requirements.

Moreover, some authors refer some basic principles that also instigated our choice. For instance,

Wooldrige [13] considers an IA a system that is situated in a dynamic environment, of which it

has an incomplete view, and over which it can exert partial control through the performance of

actions. Jennings [6] classi�es an agent as a self contained problem solving entity which exhibits

the following properties: autonomy, social ability, responsiveness and pro-activeness. To Rao [10]

IAs will typically be allocated several (possibly conicting) tasks, and will be required to make

decisions about how to achieve these tasks in time, for these decisions to have useful consequences.

It is important to note that IAs will not operate on their own. Rather, they will be always

beneath a superior administrative authority, which will provide the IAs with its action scope

(management domains) and the policies to which the IAs behavior must obey.

Management Domains and Policies

The use of autonomous management applications, and in our case IAs, requires the use of method-

ologies to structure networked environments. Domains seem to be the appropriate solution to

organize IAs deployment over a distributed environment. Domains provide an excellent means to

de�ne boundaries of management responsibility and authority, according to several criteria such

as location, physical network connectivity, structuring of the distributed system, organization,

function or policy based.

Sloman [12] states that a domain is an object that represents a collection of objects which have

been explicitly grouped together to apply a common management policy. Based on this principle

one possibility to indicate domain responsibilities to IAs would be to instantiate domain objects

and explicitly add references to domain member objects, as proposed for autonomous managers

in [2]. However, for what concerns IAs, we think that the right way of specifying a domain should

be rule based. Each IA is built with basic rules to constitute domains. Based on these rules, and

on others downloaded afterwards, a manager must be able to describe domain instances and the

members of each domain.

The subtlety here, in comparison with other domain frameworks, is that it is up to the IA to

determine and associate the objects that belong to each domain. We have to remember that net-

working environments are very dynamic. For this reason we believe not that a manager or another

entity could be permanently informing the IA about what are the members of each management

domain.

After de�ning the IA management boundaries it is also necessary to �nd mechanisms to in-

uence IAs while performing their management activities. The inputs that an agent needs to

develop a perception of its surrounding dynamic environment come from applications (users), ser-

vice providers, other Intelligent Agents or managers. Based on this perception (and on behalf

of his superior administrative authority) the Intelligent Agent should be able to create its own

activities which we hereafter name IA Management Goals.

The way we choose to express this authority downwards to the IA is based on policies. As



Mo�et [7] states, there are policies that motivates activities and policies that give authority to carry

out activities. Thus, there is a need to represent and manipulate policies within the management

applications such as managers and Intelligent Agents.

To visualize how we plan to inuence an IA by using policies, we give the following examples.

Imagine an IA whose expertise currently includes managing a DFS (Distributed File System). To

this IA we assign an organizational Domain (e.g. CAD Workgroup), and we want the IA to accept

the following policy:

� "Verify availability of all �le-systems belonging to your administrative domain, from all hosts

inside the domain".

We can suppose another scenario in which users are able to express their own requirements to

the IAs. Now the IA could be aptless to manage DFSs. Nevertheless, the manager sends it the

following policy:

� "Accept users demands to verify availability of �le-systems belonging to your administrative

domain"

This last approach, �rst supposes that interactions between users and the management infras-

tructure are possible. Second that the IA is able to gain aptitude in managing DFSs. Finally this

type of approach also leads to an optimization of IA resources, since the IA only needs to check

the availability of �le-systems currently in use, as speci�ed in application requirements.

Goal creation in motivated agents

When an autonomous agent is required to interact with an environment that is not entirely pre-

dictable, a static list of goals is not enough exible to represent the agent purposes. The state of

the environment may change at any time such that pursuing a goal may no longer be realistic,

required, or even possible. A single goal may need to be satis�ed more than once, or periodically,

depending on how the environment, the agent and the relationship between them (i.e. domain)

change over time [5].

In the framework proposed in this paper, policies play the role of motivations, that exist

to inuence an IA so that it focuses their attentions on some types of activities. Application

requirements on their turn are the motives that IAs will receive to create and activate goals. In

other words an IA will only create a goal, if it has the motivation to do so.

In fact the �rst type of policy plays both the role of motivation and the role of a motive. After

receiving a policy of the �rst type, the IA can immediately create and activate the associated

management goals. While for the second type the IA just stays motivated to create goals on a

particular management ontology. That is why we will use the second type of policies presented

above, as they seem more appropriate to Intelligent Agents.

A motivated agent is thus typically driven by a number of policies (motivations) that have

the capacity to inuence the generation of motivated goals in response to detected changes in the

domain (application requirements). A motivated agent is thus capable of [5]:

� generating goals on the y in response to a changing environment,

� altering its focus of attention as its goals and the priorities of those goals change,

� limiting its focus of planning attention such that it is never overloaded by goals demanding

resources.

3 Management Information Model

The management framework we presented must be supported by a consistent information model,

where all network actors could be integrated. The challenge is to design such an informationmodel

that satis�es all actors, given that they are not all concerned with the same environment features.



We choose to rise the abstraction to a level where all the actors, directly or indirectly concerned

with the management, could easily share data, based on the di�erent views that they might have

from the management environment. The smallest information unit, understandable by all the

actors, on the management environment, is the user service 3, regardless of the technology used

to build the service or to perform the service management.

The management informationmodel is hence designed in a service oriented way, and structured

in three di�erent axes: requirements, policies, domains, and goals. In fact, when participating in

the management, all actors have the service as a reference unit of information. That means that

applications specify their requirements with service granularity, and service providers specify their

capabilities also in a service oriented way. Intelligent Agents create their own management goals

in terms of services, and managers will deliver policies and domains also in a service oriented way.

This approach enables a global view where all actors understand each other, and leads the

decomposition of the service oriented view to each actor, according to its needs. Moreover, we

distinguish management targets from implementation details such as management protocols, struc-

tures of management information and the de�nition of managed objects.

The need for such an information model seems to be a trivial issue, but looking at the several

MIBs de�ned whether under the Internet based standards (SNMP) or even under OSI (CMIP)

the reader will easily understand our concern. For instance, the most spread MIBs in the market

place, such as the de facto standard MIB-II or Host Resource MIB do not have any user service

oriented feature.

Applications and Service Providers Contexts

In [8] we chose contexts to let applications inform Intelligent Agents of their requirements, while

in [9] we organized this context in a service oriented way. For each service the application add the

QoS dimensions [1] that match the applications requirements. Each of these dimensions could be

made up of several QoS domains which �nally are composed of sets of attributes, that characterize

the QoS required for the service. The number of avors for QoS dimensions could be high, as

well as the number of QoS domains of each dimension. So applications have to publish their QoS

requirements as a sequence of needed QoS dimensions and for each QoS dimension a sequence of

QoS domains.

Application Context

Context Header

Service
Specifica-
tion

Service Spec.
Header

QoS
Dimension

QoS
Domain <List of 

attributes>

Figure 2:Organization of contexts by service and associated QoS

In most network environments the application will also specify the resources associated with the

user service and as well as the identi�cation of the service provider. Nevertheless, this information

is optional, since it will be possible in future that some or part of that information will be handled

3
Hereafter when we say service we will be referring to the user service. Which must not be confused with service

primitives of base protocols



by traders, such as anticipated in the ODP framework [11] (which we think is an important

reference to build distributed systems).

For what concerns service providers we also preview the use of contexts, in order that the

management infrastructure could be informed of who is o�ering the services, and what is the o�ered

QoS capability. These contexts are structured in the same form as they were for applications. For

instance, a service provider can specify the QoS dimensions that might be useful to know the

capabilities of the service provider or to help monitoring its behavior.

Publishing is the way we choose to make applications or service providers inform the manage-

ment front-ends 4 of their requirements or o�er capability. This type of interaction was preferred

to the traditional discovering process, since discovering entails a waste of bandwidth or processing

resources, to obtain the equivalent information.

There was, however, an important drawback in this framework concerning legacy applications

and service providers. The solution we design for those entities was to build small satellite pro-

cesses which will forward the contexts on behalf of application or service providers. For service

providers we preview another type of solution. In this case it is the network host on which these

entities are installed which takes the responsibility of forwarding these contexts in what we de�ned

as system contexts, since they can carry more than one service provider contexts.

In some cases where a service is composed of sub-services distributed over the network, the ap-

proach taken for satellite processes is reused and we have a kind of master process in charge of

service context publication.

Applications or service providers can specify in their contexts several services, QoS dimensions

and QoS domains. It is possible that the Intelligent Agent facing an application does not have

the knowledge to handle all the context content. To avoid situations where actors are not able

to understand each other, the �rst step is a negotiation act between the application and the

Intelligent Agent. The knowledge of which information can be handled by the Intelligent Agent,

is then used by the application to de�ne and publish its context. From the Intelligent Agent side

the negotiation process an opportunity the IA has to obtain this knowledge before the application

publishes its context.

Network Environment

Intelligent
Agent

First Phase

Context Content Negotiation

SecondPhase

Context Publication

Context
Manager

Service 
Provider
or
Application

Figure 3:Context content negotiation and publication.

Manager delivered policies

Obligation and authorization are the two most important policies types referred in reference frame-

works such as IDSN and SysMan [2]. These policies can be used in a negative or positive sense, for

obliging or deterring, and authorizing or prohibiting respectively. We think that these two types

of policies are not enough when dealing with Intelligent Agents. Intelligent Agents rather than

being obliged or authorized should preferably be motivated, which is more appropriate.

4in [8] this was how the Intelligent Agents were named in the presented management infrastructure



Since we have accepted these three policies avors as su�cient, we explain why and how do we

need these policies to deal with intelligent Agents. Obligation policies are useful when we need to

ask an IA to perform one or moremanagement actions over determined targets. Motivation policies

will be used to create propensity to execute some type of management actions as soon as they are

required. The decision of the need to execute these actions is up to the Intelligent Agent based

on the perception it has from the networked environment. Unless any reason we do not foresee

now, we will not use authorization policies to directly inuence Intelligent Agents behavior. In

our opinion, as soon as an IA receives obligation or motivation policies it is already and implicitly

authorized to perform the associated management operations. However, authorization policies are

still of paramount importance to specify which network actors, whether in a management or user

role, belonging to local or foreign domains, can request management operations from an Intelligent

Agent.

As we made for application or service providers contexts in our framework we try to avoid

considering particular features of the di�erent management environments. So again we will specify

management policies oriented to service abstraction instead of de�ning policies applyable directly

over real managed objects.

As we stated in [9] management policies and domains speci�cations will be carried from man-

agers to Intelligent Agents in information structures called Manager Contexts. Figure 4 shows

how these manager contexts are organized and structured.

Manager Context

Manager 
Context Header

Service Policies 
Spec. Header

Policy
Specification

Domains of
Applicability

Rules to
build a
Domain

Service 
Policies
Specification

Figure 4:Organization and structure of manager contexts

Intelligent Agents goals

Intelligent Agents goals represent the current Intelligent Agent management intentions. Manage-

ment Goals are, therefore, a possibility that managers or network operators dispose to monitor

IAs current management activities. So they should be available to managers or others IAs on

demand.

Intelligent Agents Goals are in other words a kind of high level semantics to describe man-

agement operations, independent of service implementation technology and service management

paradigms.

A management goal is created to verify, guarantee or observe if user requirements are being

satis�ed. The management goal is created expressing not only the requirement contexts but also

the o�ering contexts, and it is this aggregation that allows to create management goals that take

in account the dynamics of the networked environment.



Appl.
Contexts
(requirements)

Ser. Prov.
Contexts
(offerings)

Man.. Contexts
(Policies & 
Domains)

Int. Agents
Goals

Management
Operations

Agents
MIBs

RMON

Tests

Figure 5:Intelligent Agent goals as relationships between contexts and management operations

Intelligent Agent goals are in fact a relationship between contexts and management operations.

They can be characterized according to the time frame for which they are active (ephemeral, con-

tinuous, or random), or according to the type of activity (calculate metrics, checking, monitoring,

obtain baselines, analyze health and testing). These activities should be built up of standard

management operations: read/write MIBs variables, programming RMONs and service testing

(by behaving as a common service client).

4 Management Execution Environment

To build the management environment upon which this framework is supported, several design

decisions were made, with several constraints in mind: preserve existent management protocols

to access base Agents, �nd a common communication paradigm that supports the information

model, and enable management code migration between framework participants.

The �rst constraint was the easiest to satisfy, since our management framework aims at being

independent of the underlying management protocols and paradigms. Being however possible to

include and o�er mappings from IA management goals to each existing management paradigm
5. The second constraint, on the contrary, was more controversial, because we were obliged to

chose a communication paradigm that might take some time before becoming widely accepted.

Nevertheless, the complexity of our framework almost oblige to such a choice. We chose in fact

the CORBA communication paradigm, because mappings for the most common programming lan-

guages are already available and more will be in the future. This will enable application developers

to easily integrate application contexts in their applications, as they need to make the applications

participate in the management environment, as previewed in our framework. Finally and in what

concerns the core management infrastructure we chose Java as the programming environment.

The main reasons to this choice were based on the facilities that this programming environment

provides: code migration, portability across multiple platforms, scalability of management infras-

tructure (by enabling late addition of new Java packages and Java management classes) without

needing to rebuild the complete management infrastructure.

The most important communication acts in our framework occur between:

� Applications and IAs

� Service providers and IAs

� IAs themselves

� Managers and IAs

5
Right now only SNMP have been integrated in the execution environment, because is the management protocol

mostly used in enterprise networks to which this framework basically oriented



In order to allow these communications acts to take place, IDL interfaces were speci�ed so that

these entities can exchange information to: negotiate context content, publish contexts, exchange

management goals, and to deliver management contexts.

Another type of communication is also needed to update IAs capabilities, for what concerns:

� Contexts interpretation

� Goals creation

� Service Models

� Mapping between Goals and Management Goals

These capabilities are in fact object classes, that can be individual object classes or complete

object packages. These classes will be transferred, using the FTP protocol, between trusted servers

and the IA.

5 Conclusion

Using Intelligent Agents is a must in today research, and for instance, network and distributed

systems management is not an exception. Intelligent Agents constitute a research challenge in order

to cope with complex environments. Naturally, network and distributed systems management is

an ideal application domain.

In this paper we outlined a framework, for which pragmatic solutions were designed, to intro-

duce Intelligent Agents in the management �eld. We conceive Intelligent Agents to play a network

"invisible" assistant role, therefore we developed ways, such as the applications contexts, in order

that network or distributed systems actors can publish their requirements or o�ering capabilities.

Although Intelligent Agents are generally viewed as completely autonomous entities, we proposed

domains and policies not to reduce their autonomy but to guide or inuence their behavior. In

what concerns domains, we proposed a rule based domain speci�cation, and for policies we in-

troduced a motivation policy as the policy mostly adapted to Intelligent Agents. An information

model oriented to the user service abstraction was introduced so that all network actors could be

integrated in the management framework independently of underlying technologies.

A management execution environment, based on the CORBA communication paradigm, is

proposed, though we did not adopt any mappings either between IDL and SNMP or IDL and

GDMO/CMIP. Instead, we chose to create mappings between IAs management Goals and man-

agement operations based on existing management protocols, used to access Agents on network

elements.

References

[1] TINA Consortium. Quality of Service Framework, Draft TINA Report, November 1994.

[2] Domain and policy service speci�cation. In K. Becker, U. Raabe, M. Sloman, and K. Twidle,

editors, ISDM Deliverable D6, SysMan Deliverable MA2V2, October 19 1993.

[3] Martin. de Prycker. ASYNCHRONOUS TRANSFER MODE; SOLUTION FOR BROAD-

BAND ISDN, 1991. CIP (Dec. 91) TK5103.5.P79 1991.

[4] O. Etzioni, N. Lesh, and R. Segal. Building softbors for unix. In Etzioni O, editor, Software

Agents - Papers from the 1994 Spring Symposium, pages 9{16. AAAI Press, 1994.

[5] Timothy J., Norman, and Derek Long. Alarms: An implementation of motivated agency.

In Michael Wooldridge, Jorg P. Muller, , and Milind Tambe, editors, Intelligent Agents II -

Agent Theories, Architectures, and Languages, pages 219{234, Montreal, August 19-20 1995.

Springer.



[6] N. R. Jennings and M. Wooldridge. Applying Agent Technology. Journal of Applied Arti�cial

Intelligence, special issue on Intelligent Agents and Multi-Agent Systems, 1995.

[7] Jonathan D. Mo�et. Network and Distributed Systems Management, chapter 17, Speci�cation

of Management Policies and Discretionary Access Control, pages 455{481. Addison-Wesley

Publishing Compagny, University of York, jdm@minster.york.ac.uk, 1994.

[8] Raul Oliveira and Jacques Labetoulle. Intelligent agents : a way to reduce the gap between

applications and networks. In J. D. Decotignie, editor, Proceedings of the First IEEE Inter-

national Workshop on Factory Communications Systems - WFCS'95, pages 81{90, Leysin,

Switzerland, October 4-6 1995.

[9] Raul Oliveira, Dominique Sidou, and Jacques Labetoulle. Customized network management

based on applications requirement. In To appear in Proceedings of the First IEEE Interna-

tional Workshop on Enterprise Networking - ENW '96, Dallas, Texas, USA, June 27 1996.

[10] A. S. Rao and M. George�. Bdi agents: from theory to practice. In Proceedings of the First

International Conference on Multi-Agent Systems (ICMAS-95), pages 321{319, S. Francisco,

CA, June 1995.

[11] Basic Reference Model of Open Distributed Processing, ISO DIS 10746-1, ITU-TS Recom-

mandation X.901, April 1994.

[12] Morris Sloman and Kevin Twidle. Network and Distributed Systems Management, chap-

ter 16, Domains: A Framework for Structuring Management Policy, pages 433{453.

Addison-Wesley Publishing Compagny, Imperial College of Science Technology and Medicine,

m.sloman@doc.ic.ac.uk, 1994.

[13] M. Wooldridge. A logic of bdi agents with procedural knowledge. In J. L. Fiadeiro and

P.-Y. Schobbens, editors, Proceedings of the Second Workshop of the MODELAGE Project,

Sesimbra, Portugal, January 15-17 1996.

[14] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala. RSVP:

A New Resource ReSerVation Protocol. IEEE Network, September 1993.


