
Android Power Management: Current and Future
Trends

Soumya Kanti Datta, Christian Bonnet, Navid Nikaein
Mobile Communication Department

EURECOM
Sophia Antipolis, France

{dattas, bonnet, nikaeinn}@eurecom.fr

Abstract—Saving power of Android enabled devices have become
a significant issue with 400,000 such devices being activated daily.
Android smartphones and tablets offer several power hungry
hardware components and the app developers are exploiting
these components at disposal to provide revolutionary user
experience. But the battery life has not increased at the same
pace to support the power demand. Thus many researches have
been carried out to investigate how to minimize the power
consumption in smartphones. This paper reports four different
research themes towards the reduction of smartphone power
consumption. Efforts have been made to survey Android power
saving apps available in Google play Apps store as the basis to
find out different power saving approaches, operations and
limitations. Then we present four different avenues to prolong
the batter life of Android devices. The first two approaches
include usage pattern analysis to generate power saving profiles.
The advantage being that the power saving profiles are
customized to actual user behavior. Integrating a photovoltaic
film on top of the smartphone and tablet touch screen to generate
electricity is also mentioned. The usage pattern based power
saving profile generation has several privacy concerns which are
discussed and countermeasures are proposed. Some emerging
security attacks are also briefed.

Keywords-Android power management; usage pattern;
SetCPU; JuiceDefender; power monitoring; privacy; security
attack.

I. INTRODUCTION
Power management (PM) of computers has evolved since

the introduction of Advanced Power Management (APM) and
Advanced Configuration & Power Interface (ACPI) [1]. These
are primarily aimed at personal computers. Although Android
is based on Linux kernel, Android has put forward its own
power management system. During Google I/O 2011 [2], it
was reported that 400,000 Android devices are being activated
per day and the proper power management of these devices is
becoming an issue. With more sophisticated hardware
components being available on the smartphones and the tablets,
the developers are exploiting them to provide state-of-the-art
user experience. These come at the cost of high drain of
battery. It is studied that Wi-Fi, GPS and colorful bright
display of Organic LED (OLED) consume very high power
[7]. Another study shows that the third party advertisements
shown in free Android apps consume up to 30% of the total
power consumed by the app [12]. Therefore, prolonged use of
these hardware components and free apps displaying
advertisements will increase the power dissipation and battery
life will be reduced considerably. Android employs an
aggressive policy for power saving using wake locks but that is

not sufficient to conserve the battery lifetime. Thus developers
wrote many power saving apps which are available in Google
Play Apps store (previously known as Android market). To
understand the operating principle, several of these apps are
studied in depth. It is found that they aim at controlling
different smartphone features like Wi-Fi, 2G and 3G
connections, brightness level, CPU frequency, GPS and more
to prolong the battery life. But in-depth study of these apps
reveals that they depend on statically defined power saving
profiles to control the smartphone features. Each profile has
predefined control on several smartphone features which
include turning off GPS, autosync and reducing the brightness
level. Since smartphone usage pattern varies from user to user,
the power dissipation pattern will also vary. Therefore, these
static profiles might not suite several users.

Then four research avenues are presented to prolong the
battery life. It is obvious that usage of smartphones and tablets
vary from user to user. Thus power consumption behavior is
different. To propose power saving profiles that better suite the
need of users, we have to analyze the usage pattern. A client-
server concept is proposed in which an app (client) collects
usage information and sends them to a remote server that
generates the power saving profiles. Another approach employs
a learning engine within an Android app, that based on usage
pattern generates the profiles. The privacy concerns are
addressed. Integration of a photovoltaic cell to generate
electricity and adaptive display is also discussed briefly.

The rest of the paper is as follows. Section II discusses the
addition of a power driver to Linux kernel and basic Android
power management architecture. Section III summarizes the
related works on Android PM while section IV is the outcome
of our survey on power saving apps. Section V provides the
outline of improvements that could be done to prolong the
battery life. Section VI discusses some privacy concerns and
emerging security attacks based on the usage pattern analysis.

II. ANDROID POWER MANAGEMENT
Android stack is based on Linux kernel and Google added

several new features to the kernel to support Android [3]. One
such addition is a power driver to manage the device
peripherals. As of kernel 3.3, some of the Android changes are
merged with it [18]. The power driver and Android PM
Architecture are discussed based on Android Gingerbread.

A. Power driver
Although Android inherits the power management of

Linux, the former added its own power driver to the kernel

This work is sponsored by French Research project Smart 4G Tablet Pole
SCS.

2.6.33. This driver [3] is added keeping in mind Android
devices have limited battery life and the power saving features
are different than personal computers. The driver controls the
peripherals which include screen display & backlight, keyboard
backlight and button backlight.

B. Android power management architecture and wake locks
A dedicated PM API is written in Applications Framework

layer. Android apps are required to request CPU resources with
wake locks through the application framework and native
Linux libraries. The architecture is depicted in Figure 1. If
there is no wake lock active, CPU is shut down [1]. Wake locks
are used by applications and services to request CPU resources.
A locked wake lock, depending on its type, prevents the system
from entering suspend or other low-power states. There are two
settings for a wake lock. WAKE_LOCK_SUSPEND prevents
a full system suspend while WAKE_LOCK_IDLE is a low-
power state, which often cause large interrupt latencies or that
disable a set of interrupts, will not be entered from idle until the
wake locks are released.

Figure 1. Android power management architecture.

In Figure 1, when Application A is launched, it needs to use
CPU resources. Thus it sends a request to Power Manager API
in applications framework which in turn transfers (using Java
Native Interface) the request to the power driver present in the
Linux kernel. Power Manager also reports back to the
Application A that the wake lock is created. And depending on
the wake lock, resources are consumed. Table 1 lists different
wake lock settings. For application which does not interact
with the user and run in the background,
PARTIAL_WAKE_LOCK is used.

TABLE I. DIFFERENT WAKE LOCK SETTINGS

Wake Lock CPU Screen Keyboard

PATIAL_WAKE_LOCK On Off Off
SCREEN_DIM_WAKE_LOCK On Dim Off

SCREEN_BRIGHT_WAKE_LOCK On Bright Off
FULL_WAKE_LOCK On Bright Bright

III. RELATED WORKS
Several researches have been carried out in relation to

Android power management and increasing the lifetime of the
battery. The state of the art is presented in four separate parts
each highlighting significant research themes.

A. Research on power consumption of connectivity features
Here, we mention some related works that have focused on

power saving in one of the power hungry features. It is well
established fact that the Wi-Fi, 3G and GPS hardware are some
of the most power consuming components in a smartphone [7].
Reference [6] implemented a system WiFisense that uses
mobility information obtained from sensors and apply adaptive
Wi-Fi sensing algorithm. This method improves Wi-Fi usage
while maintaining the battery life. The work applies user
movements and density of access points for the efficient Wi-Fi
sensing and the experimental results validate the work.

Many researchers have aimed at reducing the power
consumption of GPS [4], [5]. Location Based Apps (LBA) for
social networking, local weather and traffic need continuous
location update of user. These apps also use the location
information to display third party advertisements. But frequent
usage of GPS shortens the smartphone battery considerably. To
address this issue, the authors of [4] present an adaptive
location sensing framework. The framework employs four
principles: substitution, suppression, piggybacking and
adaptation. Substitution uses different positioning systems
instead of GPS when high accuracy of location is not
necessary. When the user is in static mode, suppression uses
accelerometer-less power sensors to position the user. The
location requests of several LBAs pass through Piggybacking
which is responsible for caching and distributing the location
information to all the LBAs. Adaptation manages the position
information when the battery is low. The experimental result in
[4] proves that using the framework battery life could be
extended up to 75%.

B. Context aware power management
The "context-aware" concept has already been used in

relation to power management of assisted living [10]. The
authors of [9] approached power management using the
context information derived from mobile phone usage. They
proposed context-aware battery management architecture
(CABMAN). It records context information (e.g. location)
using a context monitor, battery level using a battery monitor,
processes running using a process monitor and incoming
outgoing communication using a call monitor. CABMAN is
also equipped with algorithms that can predict the next
charging opportunity and battery lifetime.

C. Power Model Generation
To understand the power dissipation in smartphones, it is

necessary to generate a power model. Researchers have been
successful to generate such a model of smartphones. The
paper [7] introduces an automated power model construction
technique called PowerBooter. This technique makes use of
the smartphone sensors to monitor the battery consumption
and records the battery discharge behavior. An Android app
PowerTutor is also developed that uses PowerBooter
technique to display power consumed by each app running in
a smartphone. The authors have correlated the power
consumption with the hardware elements of the smartphones.
Each hardware element has several states and power
consumption depends on the states [8]. For CPU, the power

state depends on CPU utilization and CPU frequency. The
main advantage of PowerTutor is that, it does not require any
external power measuring devices to show power
consumption.

D. Towards the analysis of smartphone usage patterns
The authors of [11] have presented an approach to gather

usage information of smartphone users and analyze them to
reveal usage pattern. An application called battery logger is
developed to store the smartphone usage log of real users and
the log is collected. Based on the received information the
authors have analyzed the average usage time and related
power consumption, smartphone usage pattern, network usage
and battery usage. The paper also describes a method to predict
the battery life based on the usage pattern.

Apart from these approaches, [12] investigates internal
energy consumption of apps. An energy profiler is developed
to measure such power consumption. The difficulties arising
from asynchronous power behavior is explained in terms of tail
energy [7], wake locks and exotic components like GPS and
sensor hardware. Interestingly it is found that, popular free
apps (e.g. angry birds free version) dissipate high amount of
power in displaying 3rd party advertisements, location based
user tracking and clean termination of long lived TCP
connection. The algorithm written to achieve the purpose of the
app consumes only 10-30 percent of the total power consumed
by the app.

Another approach [19] introduces the concept of human-
battery interaction. The authors performed an international
survey and interviewed mobile phone users to understand
charging behavior, user interface for power saving settings and
more. The paper then tries to interpret how users cope with
limited battery life.

IV. SURVEY ON POWER SAVING APPS
In order to prolong the battery life of Android powered

devices, developers have written many apps available in the
Google play store. Several such apps are studied during the
survey to understand the power saving approaches, how they
increase power efficiency, their operating principles and
limitations that pave way for improvements. It is observed that
these power saving apps have two distinct approaches for
controlling power consumption. These approaches are
portrayed in Table II. The subsequent sections discuss power
efficiency increase, operation and limitations of SetCPU for
Root Users [13], CPU tuner (Rooted phones) [14],
JuiceDefender [15]. These apps are chosen based on their
popularity, high user rating and positive user feedback.

TABLE II. POWER SAVING APPROACHES OF APPS

Primary approach Secondary Approach Example of apps
CPU frequency scaling Controlling smartphone

features
SetCPU, CPU tuner

Controlling smartphone
features

CPU frequency scaling JuiceDefender

A. Increasing power efficiency
Several hardware components like GPS, Wi-Fi of

smartphones and tablets consume very high power [7]. Thus

power can be saved by switching them off when not being
used. There are some other features like autosync, notification
frequency which use the connectivity and other hardware.
Lowering such notification frequencies (mainly Facebook,
Gmail) will reduce the usage of smartphone components and
increase power efficiency. Following are the features which are
controlled by these power saving apps to increase battery life.
The list is not exhaustive.

• Toggle control on Wi-Fi, Bluetooth, GPS, auto sync,
airplane mode, auto screen lock, USB mass storage,
screen-always-on, torch, 2G, 3G, 4G/Wimax (if
present) and mobile data (APN).

• Change brightness level of display.
• Volume and vibration control.
• Alter screen timeout value.
• Scheduling – night, weekend, peak.
• Setting Wi-Fi timeout.
• Setting dark home screen wallpaper for OLED display.

The mentioned three apps use all or a subset of these
features in their power saving profiles.

B. Operation of power saving apps
It is important to understand the operating principle of the

apps to investigate their limitations. We present the working
diagram of SetCPU and CPU tuner in Figure 2.

Figure 2. Operation of SetCPU and CPU tuner.

Once the app is installed in a rooted phone and root
permission is granted, there are sliders that allow controlling
the CPU frequency manually [17]. Then CPU governor must
be selected. It controls how the CPU frequency should be
scaled between the maximum and minimum set frequencies.
Most of the kernels (consequently smartphones) have
“ondemand” and “performance”. When the CPU load reaches a
threshold, ondemand scales up the frequency rapidly and scales
down the frequency when the load is lesser. Other available
CPU governors are listed in [17]. Some of them have advanced
condition monitoring features. The profiles configure the app
to set the CPU frequency under certain conditions. There is a
“condition monitor” which continuously monitors the
conditions set in profiles. If such a condition is true, the
respective profile is triggered. For example, the profile
“Battery <” is set when battery level falls below a given
threshold. The “Time” profile is activated for a particular
duration of time. Each profile has a priority. If conditions of
several profiles are true, then the priority of the profiles is
checked. The profile with highest priority is activated. Each

profile is also able to provide the system information i.e. the
battery level, memory status etc.

In case of CPU tuner, the concept of prioritizing the power
saving profile does not exist. Rest of the operation is same as
SetCPU.

JuiceDefender on the other hand focuses on controlling the
smartphone features, like disabling connectivity and reducing
brightness to reduce power consumption. There are several
versions (both free and paid) of JuiceDefender available in
Google play store. One version of the app requires root
permission to scale CPU frequency and toggle 4G/Wimax. But
that is not the prime concern in this power saving app. The
operational diagram is given in Figure 3.

Figure 3. Working diagram of JuiceDefender

The app employs context monitor (which extracts contexts
such as location and time), condition monitor and batter level
monitor. The condition monitor constantly looks for if
conditions set in any profile is met and consequently triggers
appropriate profile. Each profile has different control over the
smartphone features. Most of the profiles are statically defined
during the development of the app and there is one profile that
can be customized by the users. In this app, the frequency
scaling of CPU is secondary focus.

C. Limitation of these apps
• The profiles are defined statically during the app

development and are not customized for user specific
behaviors.

• The controlling part of these apps is not very
intelligent. If proper condition is met, the associated
profile is activated to control the connectivity for
example. But after charging when the battery is full,
most of the apps do not restore the previous states.
There is no dynamic decision making and the profiles
do not evolve.

• To use SetCPU and CPU tuner, the smartphones have
to be rooted. These apps need root permission to
perform CPU frequency scaling.

• It is understood from [12] that much energy is
dissipated displaying advertisements and tracking users
which does not consume CPU resources. Thus CPU
frequency scaling should not be the primary focus of
power saving apps.

• The context information (in JuiceDefender) is not used
for any usage pattern generation process.

• These apps do not focus on learning the power
consumption pattern of user. It is obvious that,
different users install different apps and consequently
the power consumption will vary. Thus learning the
power consumption pattern and then building power
saving profiles to control the smartphone features need
to be done.

V. FUTURE DIRECTION IN POWER MANAGEMENT
The limitations mentioned above leave enough room for

improvements. It is obvious that defining static profiles which
do not evolve based on the user behavior, is not ideal way of
approaching power saving. In this paper, we propose four
directions to prolong battery life.

A. Client-server concept to generate power saving
profiles

The client-server architecture is motivated from [11] and is
depicted in Figure 4. An app (that acts as client) could be
developed that records the battery consumption of the apps
running at certain interval of time along with the context
information (location, date, time, environmental information
etc.). The record log is sent to a remote server over a secured
connection. This is done to protect the personal information
being carried by the log file. The remote server collects
several such logs and processes them offline. Such processing
will reveal much useful information as mentioned below:

• Power consumption pattern of users, which could be
worked out by associating battery consumption with
the Android apps.

• The context information and associated battery
consumption will also lead to understanding of the
context(s) in which most of the power is spent. It
could be predicted based on the usage history that if
the battery will last during the most power
consuming interval.

• It is possible to find several users with similar
smartphone/tablet usage behavior and these usage
patterns could be clustered. These clusters will
contain data related to the features which are used the
most, in which context and what period of time. From
these data, power saving profiles could be generated
that control smartphone and tablet features based on
user behavior.

• As the number of databases grows, the mentioned
clusters will evolve. Thus the power saving profiles
will also evolve.

• An important aspect of this client-server concept is
the network usage pattern. Since the number of
Android devices continue to increase, it is necessary
of the service providers to understand the pattern of
network usage. In that way they could be able to
extrapolate the network usage and how to cope with
the increasing demand.

Apart from the mentioned capabilities, another useful
functionality could be to periodically connect to the remote
server to fetch the power saving profiles. These profiles will
be able to control the Android device features based on the
knowledge of device usage. Thus the user is presented with
several profile choices and can select the best profile to
minimize overall power consumption. This approach will give
intelligent control over the Android device feature as it
depends on the user behavior.

This approach can lead to several privacy and security
issues as usage pattern is being transferred to a remote server
for data mining. They are addressed in Section VI.

Figure 4. Client-server concept to generate power saving profiles.

B. Android app with learning engine
This is an advanced approach and does not require the

client-server architecture. The working of the app is depicted
in Figure 5. In this case, the developed app will include a
learning engine. The app will monitor the user behavior in
terms of battery consumption, apps used and contexts. The
information will be collected for a period of time and then fed
to a learning engine. Artificial neural network can be used to
implement the learning engine. It will develop the usage
pattern and based on the pattern intelligently decide how to
control the smartphone/tablet features. The app will not
contain any statically defined power saving profiles but will
build the profiles after learning the user behavior. Since, the
entire processing is done on the Android device, there is no
privacy concern. But the demerit is that the service providers
could not get network usage pattern.

Figure 5. Android app with learning engine.

C. Adding another power source – a photovoltaic cell
In order to add another power source in Android devices, a

photovoltaic cell could be integrated. WYSIPS has introduced

a transparent photovoltaic film that can be integrated on top of
the touchscreen of smartphones and tablets. This film
generates electricity from solar power and can charge the
battery [16]. This concept could potentially increase the
battery life.

D. Adaptive display
Since Android device display consumes high power, the

display screen dimension could be shortened if battery level
falls below some predefined threshold. In case of streaming
video, the resolution could be decreased. Thus the concept of
adaptive display could actually make the dying battery last
longer.

VI. SECURITY & PRIVACY CONCERNS IN USAGE PATTERN
ANALYSIS

This section discusses the security and privacy concerns
relating to the usage pattern analysis. Today’s devices contain
user sensitive information and collecting usage logs to
interpret usage pattern raises the issue of privacy. Also it could
lead to user behavior based security attacks on the Android
devices. This could be an emerging attack directed towards the
Android smartphones and tablets. The privacy concerns and
some related security attacks are described below.

A. Privacy concerns
It is obvious that the generation of power saving profiles

through user pattern analysis has to be privacy aware. In [11]
it is mentioned that the data collected by the Android app are
stored in a log. Another Android app could be written to
access the log and send it to another server. The server can
process such logs and easily generate usage patterns. Since the
logs contain location information, it becomes easy to spam the
device with location based advertisements. The location
privacy of users is also compromised.

Such scenario could be extended where an app collects user
centric information like MAC address of the device, IP
address, email account credentials and phone number and
sends them to a particular server along with usage logs. Then
user behavior can be tracked and it compromises the privacy
of user.

To eliminate the privacy concerns, following steps are to be
taken.

• Instead of writing all the collected information into a
log file, they could be stored in a database which
could only be accessed by the Android app.

• The app randomly decides when to send the database
to the remote server. The app creates a database
dump, opens a secure connection to the remote server
and sends the dump file. Then the dump file is
deleted so that other apps could not access it.

• Fetching the power saving profiles will also be done
via a secure connection.

• The user should be given some control over how
much usage information is to be sent to the remote
server.

• The remote server must employ some privacy
preserving data mining algorithm to generate the
usage patterns. Such patterns should never be
revealed to any third party.

B. Security attacks
There could be several possible cases of security attacks on

the Android devices based on usage pattern. In this work,
repackaging attack is described with the help of Figure 6.
Consider a case where the battery monitoring app mentioned
in Section V-A is published in Google Play store and over
time the app has gained popularity. An attacker can simply
download the app; reverse engineer to obtain the codes. Then
the same attacker can exploit any existing vulnerability or
inject malicious codes and repackage the app. Now the
malicious app could be published in Google play store. When
the app is installed in an Android device, the app can pose
various security threats to user.

The app could silently steal user information including
account credentials, location and credit card details and send
them to a malicious server. This will lead to several attacks
such as location based attack and financial loss. Attackers can
also leave a backdoor open in the malicious app so that when
the apps connect to the remote server and attackers can send
remote commands to gain control over the device. Then the
device could be controlled using a command and control
server and perform spamming. If the remote server knows the
duration when a user is using network connections maximum
during a day, the attacker can user the knowledge to spam
other devices. This will hide the fact that an app is spamming
as it intelligently works during the busiest time of the user.
Thus a device could become mobile botnet.

Figure 6. Privacy threat and security attacks based on usage

pattern of smartphone and tablet users.

VII. CONCLUSION
In a nutshell, the paper highlights the need of efficient

battery management for Android smartphones and tablets. The
Android power management architecture is briefly discussed.
Different research directions of smartphone power
consumption are discussed. The operation of SetCPU and
JuiceDefender are explained along with their power saving
approaches. The limitations are identified and it is found that
the profiles for power saving are statically defined. Thus

controlling the smartphone features like connectivity,
brightness of display is not very intelligent.

Then four research avenues are presented to prolong the
battery life of Android devices. The client-server based
approach is motivated from [11] although the offline
processing in the remote server could be extended to a great
extent. Similar usage patterns could be clustered to generate
power saving profiles that takes into account actual usage
pattern. But this approach raises privacy and security
concerns. Another idea is to employ a learning engine to
generate the usage pattern and develop power saving profiles.
This approach will minimize the privacy concerns as all the
processing is done inside the app. A photovoltaic cell could be
added to smartphones and tablets to produce electricity from
solar power. Adaptive display could also increase the battery
lifespan. The privacy issues concerning usage pattern analysis
is explained and some countermeasures are proposed. Finally
some emerging security attacks are discussed.

REFERENCES
[1] www.cs.uwc.ac.za/~mmotlhabi/apm2.pdf
[2] http://www.google.com/events/io/2011/index-live.html
[3] S. K. Datta, “Android stack integration in embedded systems,” in

International Conference on Emerging Trends in Computer &
Information Technology, Coimbatore, India, 2012.

[4] Z. Zhuang, K. Kim and J. Pal Singh. “Improving energy efficiency of
location sensing on smartphones.” In Proc. Of ACM MobiSys’10, San
Francisco, California, 2010, pp. 315-329.

[5] J. Peak, J. Kim and R. Govindan. “Energy-efficient rate adaptive GPS-
based positioning for smartphones.” In Proc. Of ACM MobiSys’10, San
Francisco, California, 2010, pp. 299-314.

[6] K. Kim, A. Min, D. Gupta, P. Mohapatra and J. P. Singh. “Improving
energy efficiency of wi-fi sensing on smartphone.” In Proc. Of IEEE
INFOCOM, 2011, pp. 2930-2938.

[7] L. Zhang, et al. “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones.” In Proc. Of
ACM CODES+ISSS’10, Arizona, USA, 2010, pp. 105-114.

[8] http://ziyang.eecs.umich.edu/projects/powertutor/index.html.
[9] N. Ravi, J. Scott, L. Han and l. Iftode. “Context-aware battery

management for mobile phones.” In 6th Annual IEEE International
Conference on Pervasive Computing and Communications, 2008, pp.
224-223.

[10] A. D. Wood, et al. “Context-aware wireless sensor networks for assisted
living and residential monitoring.” In IEEE Network, vol. 22, issue 4,
2008.

[11] J.M. Kang, S. Seo and J. Hong. “Usage pattern analysis of
smartphones.” In 13th Asia-Pacific Network Operations and
Management Symposium, 2011, pp. 1-8.

[12] A. Pathak, Y. C. Hu and M. Zhang. “Where is the energy spent inside
my app? Fine grained energy accounting on smartphones with eprof.” In
Proc. of ACM EruoSys’12, Bern, Switzerland, 2012.

[13] https://play.google.com/store/apps/details?id=com.mhuang.overclocking
&hl=en

[14] https://play.google.com/store/apps/details?id=ch.amana.android.cputune
r&hl=en

[15] http://www.juicedefender.com/
[16] http://www.arctablet.com/blog/featured/wysips-turning-your-device-

display-into-a-solar-cell/
[17] http://www.setcpu.com/documentation.html
[18] http://www.pocketables.net/2012/03/linux-kernel-33-update-merges-

androids-changes.html
[19] A. Rahmati, A. Qian and L. Zhong. “Understanding human-battery

interaction on mobile phones.” In Proc. of ACM MobileHCI’07,
Singapore, September 9-12, 2007.

http://www.setcpu.com/documentation.html
http://www.pocketables.net/2012/03/linux-kernel-33-update-merges-androids-changes.html
http://www.pocketables.net/2012/03/linux-kernel-33-update-merges-androids-changes.html

	I. Introduction
	II. Android Power Management
	A. Power driver
	B. Android power management architecture and wake locks

	III. Related Works
	A. Research on power consumption of connectivity features
	B. Context aware power management
	C. Power Model Generation
	D. Towards the analysis of smartphone usage patterns

	IV. Survey on Power Saving Apps
	A. Increasing power efficiency
	B. Operation of power saving apps
	C. Limitation of these apps

	V. Future Direction in Power Management
	A. Client-server concept to generate power saving profiles
	B. Android app with learning engine
	C. Adding another power source – a photovoltaic cell
	D. Adaptive display

	VI. Security & Privacy concerns in Usage pattern Analysis
	A. Privacy concerns
	B. Security attacks

	VII. Conclusion
	References

