
Phone Adaptive Training for Speaker Diarization

Simon Bozonnet, Ravichander Vipperla and Nicholas Evans

EURECOM
BP193, F-06904 Sophia Antipolis Cedex, France

{bozonnet,vipperla,evans}@eurecom.fr

Abstract

The linguistic content of a speech signal is a source of
unwanted variation which can degrade speaker diariza-
tion performance. This paper presents our latest work
to reduce its impact. The new approach, referred to as
Phone Adaptive Training (PAT), is analogous to speaker
adaptive training used in automatic speech recognition.
We report an oracle experiment which shows that PAT
has the potential to deliver a 33% relative improvement
in the diarization error rate of our baseline system. Prac-
tical experiments show significant improvements across
two standard, independent evaluation datasets.
Index Terms: Speaker Diarization, Phone Adaptive
Training, Speaker Discrimination

1. Introduction
Speaker diarization refers to the ‘Who Spoke When?’
task and involves the detection of speaker turns within
an audio document (segmentation) and the grouping to-
gether of all same-speaker segments (clustering). While
the state-of-the-art has advanced over recent years, per-
formance can still vary significantly from one audio show
to another.

In [1, 2] we show that the linguistic content of a
speech signal can be a significant source of unwanted
variation. This and other sources of variation can cause a
diarization system to converge towards artifacts not re-
lated to different speakers and therefore a non-optimal
speaker inventory. Errors in the speaker inventory can de-
grade diarization performance when they relate to speak-
ers with significant floor time.

A small number of approaches have been proposed to
take account of linguistic information in speaker diariza-
tion. Chen et al. [3] propose the modelling of speakers
with a phone subspace mixture in order to take account
of linguistic variation in the ∆BIC distance measure.
Žibert et al. [4] present a speech activity detection (SAD)
component which uses the linguistic information in the
output of an automatic speech recognition (ASR) system
to improve performance. These approaches use lexical
information only with a single system component (e.g.
for cluster fusion, or SAD) whereas typical speaker di-

arization systems involve several sequential stages.
We have investigated a new approach to linguistic

normalisation which reduces the influence of linguistic
variation in every diarization processing stage. The new
approach, referred to as Phone Adaptive Training (PAT),
utilises the output of a speech transcription system to sup-
press linguistic variation at the feature level while retain-
ing variation related to different speakers. PAT leads to
a more speaker-discriminative feature space, and hence
better diarization performance.

The remainder of this paper is organised as follows.
Section 2 introduces the new PAT approach. Section 3
presents oracle-based experiments which aim to demon-
strate the potential of PAT. Section 4 reports real speaker
diarization experiments which show improvements in
performance when PAT is applied to our baseline speaker
diarization system. Our conclusions are presented in Sec-
tion 5.

2. Phone Adaptive Training

Phone adaptive training (PAT) is based on the analo-
gous idea of speaker adaptive training (SAT) [5], a model
estimation framework used in automatic speech recog-
nition (ASR). SAT jointly estimates speaker-dependent
transforms and speaker-independent acoustic models.
The transforms capture unwanted speaker variability
while only the desirable phonetic variation is captured
in the acoustic models. PAT is used instead to suppress
phonetic variability in order to provide a more speaker-
discriminant feature space for the task of speaker diariza-
tion.

Consider a training database transcribed at the phone
level either manually or through automatic speech recog-
nition. Let the database contain data from a set of R
speakers, let the exhaustive phone set be represented by
P and let the set of observations for each phone and each
speaker be represented by O(r,p), r ∈ R and p ∈ P .
PAT aims to jointly estimate a set of speaker models
ΛPAT = (λ

(1)
PAT , . . . , λ

(R)
PAT ) and a set of phone specific

transformsW = (W (1), . . . ,W (P )) in order to maximise
the likelihood L with respect to the training data accord-
ing to:



(Λ̄PAT , W̄ ) = argmax
ΛPAT ,W

R∏
r=1

P∏
p=1

L(O(r,p)|W (p)λ
(r)
PAT )

(1)
The speaker models (λ(r)) are standard continu-

ous density Gausssian mixture models. The phone
specific information is modeled by constrained maxi-
mum likelihood linear regression (CMLLR) matrices [6]
W (p) = [A(p) b(p)], where A(p) and b(p) represent the
transformation matrix and the bias for the phone p respec-
tively. One of the advantages of the CMLLR formulation
is that it can be viewed as normalisation in feature space
according to:

ô(r,p) = A(p)−1
o(r,p) +A(p)−1

bc (2)

The optimization problem in Equation 1 is non-
convex and can only be solved using an iterative update
approach. Feature space normalisation using CMLLR
provides a simplified framework to marginalise undesired
phonetic variation in the feature space. The iterative esti-
mation procedure is outlined below:

1. Train a phone independent acoustic model (λ(r))
for each speaker in the training set.

2. Using speaker models obtained in 1, estimate a set
of phone specific CMLLR adaptation transforms
(W ) to maximise the likelihood of the training set
according to:

W = argmax
W

R∏
r=1

P∏
p=1

L(O(r,p)|W (p)λ
(r)
PAT )

3. Normalise all the feature vectors for a phone in
the training set with the corresponding phone trans-
form estimated in 2.

4. Retrain the acoustic model for each speaker from
the phone normalised feature vectors from 3.

5. Repeat steps 1 to 4 until the likelihood scores con-
verge.

The resulting phone transforms W̄ capture the com-
mon linguistic component for each phone across all
speakers whereas Λ̄PAT are the phone normalised
speaker models. While it is desirable to estimate a sepa-
rate transform for each phone, the amount of training data
is often insufficient. In such scenarios, the above frame-
work allows clustering of phones to more generic classes
and class specific transforms can then be estimated in
the place of phone specific transforms. Binary regres-
sion trees based on linguistic analysis can be used in such
clustering to balance the need for sufficient data per class

for training accurate CMLLR transforms and the need for
enough acoustic classes so that phonetic variations are
well modeled.

3. Oracle Experiments
PAT requires a speech and speaker transcription. In this
section we report oracle experiments which use ground-
truth transcriptions1 to assess the potential of PAT under
ideal conditions. The experimental setup is described in
Section 3.1. Results in terms of a speaker discrimination
metric and diarization performance are presented in Sec-
tions 3.2 and 3.3 respectively.

3.1. Experimental setup

Oracle experiments to investigate speaker and phone dis-
crimination were performed on a development dataset
containing 9 shows from the NIST RT‘05 and RT‘06
evaluation datasets. Evaluation work with a full di-
arization system was performed on the full RT‘07 and
RT‘09 datasets. In all cases the signal is first character-
ized by 20 un-normalised linear frequency cepstral coef-
ficients (LFCCs) plus energy coefficients computed ev-
ery 10ms using a 20ms window. PAT is then applied
directly to each show as described in Section 2 where
the speaker models of step (1) are 16-component GMMs
which are MAP adapted from a universal background
model (UBM) according to the ground-truth segmenta-
tion for each speaker. The global process (steps 1 to 5) is
repeated 20 times. Due to the limited quantity of data in
each show for each speaker and each phone, a regression
tree is applied to control the number of acoustic classes.

3.2. Speaker and phone discrimination

In order to decouple the performance of a speaker diariza-
tion system and that of PAT, speaker and phone discrim-
ination assessments were conducted independently from
full speaker diarization experiments. Discrimination is
measured using the ratio of inter and intra class variance,
where classes are either speakers or phones. This is the
Fisher score defined as follows:

scoreFisher =

∑R
i=1

∑R
j=1(µi − µj)(µi − µj)

T∑R
i=1

∑
∀ok∈O(r=i)(ok − µi)2

(3)

where O(r=i) represents the ensemble of observations
attributed to speaker i, o is a single sample feature, µ is
its mean value for speaker i, or j.

Initial experiments showed that in the order of 25
acoustic classes are required for optimal results. Speaker

1In practice the speech ground-truth transcription is obtained by a
forced alignment of the phone transcription for each utterance in the
ground-truth references.
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Figure 1: An illustration of speaker and phone discrimination
as a function of the number of iterations of phone adaptive
training (PAT). Phone discrimination illustrated in red/squares,
speaker discrimination illustrated in blue/diamonds.

and phone discrimination results for an average of 25
acoustic classes2 are illustrated in Figure 1 as a function
of the number of iterations. The red/square profile in Fig-
ure 1 illustrates phone discrimination. There is an imme-
diate, rapid drop in discrimination stemming from the use
of acoustic classes which group some phones together.
Phone discrimination then drops further as a direct con-
sequence of PAT and converges after approximately 10
iterations. The blue/diamond curve in Figure 1 illustrates
speaker discrimination which increases significantly over
the first 10 iterations. Together these results show that
PAT successfully marginalises phone variation while em-
phasising speaker discrimination.

3.3. Effect on Diarization Performance

We now investigate the effect of phone normalization
on diarization performance. This work was conducted
with our baseline top-down speaker diarization system
described in [7]. Two experiments were conducted, first
with conventional LFCC features and second with fea-
tures normalised with PAT.

The diarization system involves the use of a UBM in
the MAP adaptation of speaker models. In our previous
work [7], the UBM used in the baseline experiments was
trained on telephony data from the NIST speaker recog-
nition evaluations (SREs). For PAT experiments, how-
ever, the UBM needs to be trained on phone-normalised
features. This requires the transcription of all UBM data
and thus, for consistency, all these experiments (including
baseline system and oracle experiments) we used a new
UBM trained on the NIST RT‘04 dataset of 14 shows for
which transcriptions are available. This dataset is fully
independent of our diarization development set and both

2The exact number is controlled by the regression tree and varies
according to speaker and phone specific statistics in each show.

Baseline Oracle Practical
Dev. Set 23.9 16.1 19.0
RT07 17.1 12.9 15.9
RT09 22.6 20.2 21.5

Table 1: Speaker diarization results (DER) for baseline, ora-
cle and practical setups for the development set and the NIST
RT‘07 and RT‘09 evaluation datasets. All results are for SDM
conditions, without the scoring of overlapping speech.

evaluation sets. Feature space is then the only difference
between the baseline and PAT setups.

Table 1 presents diarization performance in terms of
DER for the development dataset and the two separate
evaluation datasets. The second column presents the
respective baseline performance obtained with conven-
tional LFCC features. The third column of Table 1 shows
performance in terms of DER where all features used in
PAT come from transforms learned using the oracle setup.
On the development set, a drop in the baseline DER of
23.9% to 16.1% corresponds to a relative improvement
of 33%. While a similar improvement is observed on
the RT‘07 dataset (25% relative improvement), a rela-
tive improvement of only 10% is achieved with the RT‘09
dataset. The lower performance on the RT‘09 dataset can
be explained by the high degree of overlapping speech
which brings some artifacts in the captured phonetic com-
ponents, and the increased number of speakers which
leaves less training data for each speaker. These results
nonetheless show that improvements in speaker discrim-
ination translate to improved speaker diarization perfor-
mance. In the next section we present the evaluation in
DER with a more practical setup, i.e. where ground-truth
speaker segmentations are replaced with real diarization
outputs.

4. Practical Experiments

Oracle experiments presented above confirm the potential
of PAT to improve speaker discrimination and speaker
diarization performance. Those experiments, however,
consider the ground-truth speaker transcription to be
known, while this is the final objective of the diariza-
tion task. In this section we evaluate PAT performance
when the ground-truth speaker transcription is replaced
with that from a practical speaker diarization system. We
stress that these experiments still use reference phonetic
transcriptions.

4.1. Experimental setup

For all experiments reported here PAT was performed
with speaker segmentations produced automatically us-
ing a segmental EM algorithm [8]. It is initialized with
30 clusters which are aligned to the data through a set of



training/realignment iterations.
While PAT is relatively insensitive to under-

clustering, it is adversely affected by over-clustering
since speaker variability is then treated in the same way as
phone variability and is suppressed. Indeed, in the case
where several clusters represent the same speaker, PAT
training is not directly affected except, eventually, by a
smaller quantity of data being available for each cluster3.

It is therefore necessary to protect speaker discrim-
ination by preventing over-clustering and in the case of
the diarization system in [8]. This is achieved simply by
deactivating the clustering component. We note that this
modification does not limit the application of PAT to spe-
cific speaker diarization systems; it can be applied readily
to any system so long as the initial speaker segmentation
used for PAT is adapted to avoid over-clustering.

The final speaker diarization stage uses PAT features
in exactly the way described in Section 3 with the system
in [7]. The only difference between the oracle and more
practical systems is thus the use of either ground-truth or
automatically derived speaker transcription used in PAT.

4.2. Speaker diarization performance

Results are illustrated in the last column of Table 1. For
the development set, the baseline DER of 23.9% falls to
19.0% after the application of PAT. This corresponds to
a relative improvement of 21% and is not too far from
that of the optimal oracle system (33%). Improvements in
DER for the RT‘07 and RT‘09 datasets are less significant
(7% and 5% over baseline performances respectively) but
do show consistent behavior. Comparisons with the per-
formance of the optimal oracle system in each case show
that there is still some potential to further improve perfor-
mance in all cases.

We note that the only difference between each of the
three experiments reported in Table 1 involves the use
of different features; the final speaker diarization system
used to generate all experimental results (not that used
for PAT) is exactly identical. Further system optimisation
is likely to better exploit the more speaker-discriminant
features produced through PAT.

5. Conclusions
This paper introduces a new phone adaptive training
(PAT) approach which aims to suppress phonetic varia-
tion in speaker diarization feature space. Experiments
show that PAT leads to a new, phone-normalized fea-
ture space which is more speaker-discriminative. Oracle
speaker diarization experiments show potential for signif-
icant improvements in diarization performance.

3In the case of an empirically derived speaker segmentation, rather
than one obtained directly from ground-truth references, we refer to
‘clusters’ rather than ‘speakers’ since clusters do not necessarily corre-
spond to genuine speakers on account of likely under/over-clustering.

Practical experiments are also reported where the
speaker ground-truth of the oracle setup is replaced with
an automatically derived segmentation. Without any
other modifications to our baseline speaker diarization
system, results show significant improvements across two
standard, independent evaluation datasets.

We acknowledge that results reported in this paper in-
volve the use of ground-truth transcriptions and we are
currently investigating the influence on the performance
when using real ASR as speech transcripts instead of the
ground-truth.
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