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Abstract

Today, wireless communication applications have becomejarmart in our life. Smartphones,
for instance, support more and more applications allowim¢pusurf on the web or to talk to our
friends at any place and at any time. New products competerdaiding more applications in
only one device that is smaller, lighter, cheaper and ofdrigierformance than similar products
on the market. Dealing with these requirements of recordigier radio architectures is a very
challenging task. One solution can be found in the contex3aitware Defined Radio (SDR).
Under its umbrella, flexible hardware platforms that supowide range of different wireless
communication standards are designed. The OpenAirlteExpressMIMO platform developed
by Eurecom and Télécom ParisTech is a very flexible SDR platiwhose baseband processing
engine is split over different DSPs to enable a fast and easyonent replacement and compo-
nent upgrade.

The main objective of this thesis is to propose the first fgyp® of a receiver chain for the Ex-
pressMIMO platform in general, and in particular to assessapplicability of the platform for
latency critical standards. An interesting represergatif/such a standard is IEEE 802.11p. The
work presented in this thesis is thus settled in the autamatntext where efficient physical layer
implementations of the IEEE 802.11p standard required fo¥tG-Car and Car-to-Infrastructure
communication are still an open research topic. The firstritmriion is a complete design of the
IEEE 802.11p receiver implemented for the ExpressMIMOfptat and was therefore serving
as a proof of concept in general and in particular for stastglaperating on short data sets. Our
results prove, that an efficient receiver design is feaditnlesarious modulation schemes when
applying a centralized control flow on the platform. Diffetelesign bottlenecks have been iden-
tified and solutions to overcome these limitations are sstgge

The combination of Car-to-Car and Car-to-Infrastructusenmunication with information about
traffic jams or merchandising applications within only oe®ide enables various new applications
for future cars. Therefore we investigate on a possibleimatial execution of IEEE 802.11p and
ETSI DAB. For the design of an appropriate scheduler it is afrmimportance to have first key
figures at hand. We provide these figures based on a detailétheuperformance evaluation and
enhance our obtained results by the derivation of scheglglindelines and the presentation of a
first scheduler prototype.

Our analysis reveals that the Front-End Processing (FEgherms heavily charged and that the
required configuration time outreaches the pure execuiting for short vectors when consider-
ing an FPGA target. To meet this challenge we introduce ariégipn Specific Instruction-set
Processor (ASIP) as the solution of choice when dealing stithng latency requirements. The
presented solution is not only compared to the programmBIE engine but also to different
solutions from academia. For design comparison we maimyd@n architectural differences and
the runtime performance in terms of processing time.

To complete the receiver chain we finally present a first Pagssor prototype. The Preprocessor
connects the external A/D, D/A converters with the remajriaseband engine and is responsible




among others for 1/Q imbalance correction and sample rateersion. In this context we present
a generic, flexible and hardware optimized Sample Rate Cam&SRC) operating on fractional
ratios with a resolution of 1 Hz between the sampling fregie=n The design supports up to four
different receive and up to four different transmit chasraetd is based on bandlimited interpola-
tion.

Our results are finally generalized to ease the deploymduotur standards on the ExpressMIMO
platform.




Résumeé

Aujourd’hui, les applications de communication sans filtfpartie de notre vie quotidienne. Les
smartphones, par exemple, supportent de plus en plus @tapphs qui nous permettent de surfer
sur le web et de parler a nos amis en tout lieu et a tout momentifalement, les nouveaux pro-
duits se concurrencent sur le nombre de leurs applicati@ssautres facteurs determinants sont la
taille, le poids et la performance qui sont comparés au pi®dancurrents qu’on trouve déja sur
le marché. Répondre aux contraintes des architecturesfigambles n’est pas toujours une tache
aisée. Des solutions existent dans le domaine de la radmdbg (Software Defined Radio, SDR)
ou des plateformes flexibles qui prennent en charge un lasgatail de différentes standards de
communication sans fil peuvent étre congus. La plateformen@pinterface ExpressMIMO qui
est développée par Eurecom et Télécom ParisTech est urtoptaé radio logicielle trés flexible:
le traitement des operations dans la bande de base esi sipatifférents DSPs pour permettre
un remplacement ou une mise a jour des composants simplaidt.ra

L'objectif principal de cette thése est de proposer le pegrprototype d'un récepteur pour la
plateforme ExpressMIMO, et d’évaluer le potentiel de lagflarme pour les standards ayant des
latences critiques en particulier. Un cas intéressant tBustandard est la norme IEEE 802.11p
gui spécifie la communication entre plusieurs véhicules-(G4&Car communication) ainsi que la
communication entre les véhicules et I'infrastructurer(@alnfrastructure communication). Le
travail présenté dans cette thése se focalise donc en partle domaine de I'automobile ou les
implémentations efficaces de la couche physique du statiggfe 802.11p est encore un sujet de
recherche ouvert. La premiére contribution proposée esbrig@eption compléte d’'un récepteur
qui est basée sur le standard IEEE 802.11p et qui a été imptémeur la plateforme Express-
MIMO. Ce system a donc servi de démonstrateur a la fois pdigerd’ensemble de la plateforme
et en particulier 'utilisation de standards qui emploidas vecteurs de petite taille. Nos résultats
prouvent qu’une conception efficace du récepteur est afddipour des schémas de modulation
différents lorsqu’un un contrble centralisé existe surllgiorme. Des goulots d'étranglement
ont pu étre identifiés et des solutions ont été proposéessponnmonter ces limitations.

La combinaison dans un seul dispositif de la communicatibarivéhicules avec I'information
sur les embouteillages ou sur la proximité de commerces gietiverses applications nouvelles
pour les futures automobiles. Par conséquent, nous étudiom possible exécution multimodal
du IEEE 802.11p et du ETSI DAB. Pour la conception d’'un orgoroeur de taches approprié,
il est d'une importance principale avoir un permier apergiffié des performances. Nous four-
nissons des chiffres qui sont basés sur une évaluatioriléétdés performances d’exploitation et
nous utilisons ces résultats pour déduire I'ordonnanceéimgtimal et nous présentons un premier
prototype d’ordonnanceur.

Notre analyse, lors des expérimentations sur une cible FR&#&le que le Front-End Process-
ing (FEP) DSP est lourdement chargé et que le temps de camifigurequis dépasse le temps
d’execution dans le cas d'operations sur des vecteurs de patle. Pour relever ce défi, nous
proposons un Application Specific Instruction-set Prooe$aSIP) comme solution lorsque les
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contraintes de latence sont fortes. La solution préserdséaam seulement comparée au DSP
programmable, mais aussi a d’autres solutions du mondensitaire. Pour la comparaison des
conceptions nous nous concentrons principalement suiffésetices dans les architecture et la
performance d’exécution en termes de temps de traitement.

Pour compléter la chaine de réception, nous présentons wnfimemier prototype de Prépro-
cesseur DSP. Le Préprocesseur connecte les convertiggBues D/A avec les autres composants
de la bande de base. Il est également reponsable, entrs,aldréa correction du déséquilibre
entre les voies | et Q et du ré-échantillonnage. Dans ce xtenteous présentons un convertisseur
générique et flexible pour le ré-échantillonnage (Sample Ranverter, SRC) qui travaille sur
des rapports fractionnaires de fréquence d’échantillparavec une résolution de 1 Hz entre les
fréquences. La conception prend en charge jusqu’a quatieeh différentes en transmission et
en récpetion et est basée sur une interpolation a bandédimit

Nos résultats sont finalement généralisés et nous monteasnotre approche facilite le dé-
ploiement de futures standards sur des plateformes tel xpre&MIMO .
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Today, wireless communication applications have becomeajarmpart in our life. Almost every
day we check our emails either on smartphones or on persomgduters via Wireless Local Area
Network (WLAN) connections. Besides we communicate via mabile phones or we consult
navigation systems or online maps to find our way in case we It our bearings. Especially for
the young generation it is impossible to imagine living in@l where they cannot be connected
to their friends at any place and at any time. More and morepemies have recognized this trend
and seek to bring new products to the market that integrate maqaplications in only one device,
that is smaller and lighter, that costs less and that hastehjgerformance than competing ones.

Another interesting market for wireless communicationices can be found in the automotive
industry. It is a well known fact that the demographic chalegals to a rising percentage of old
people, especially in Europe. In countries like Germanyretieere is no age limit for car driv-
ing, there is a high need for new safety applications likeedpmaeasurements, obstacle warnings
or distance measurements to the car driving in front. Twotkems in this context are Car-to-
Car communication (C2C) and Car-to-Infrastructure (C2Mmmunication which also include the
provision of non-safety applications like toll collectiotourist information or mobile internet.
Standards of interest are IEEE 802.11p which is an enhamteshthe well known IEEE 802.11a
standard used for WLAN connections, and ETSI DAB (DigitaldkuBroadcasting). To combine
these two standards, two approaches are imaginable. Hitegrare implemented individually
and come with their own receivers and transmitters that bae integrated in the car, or both
of them are combined in only one device. As it is the case fernttobile phone market, these
devices should be small, cheap, of high performance andaheleasily adaptable to future stan-
dards. Especially the latter is very time consuming andygegten integrating separate standard
technologies in a car. Therefore, a single architectureish@apable to process whatever wireless
communication standard is the preferable solution, eafig@is there is a high interest in combin-
ing IEEE 802.11p with LTE (3GPP Long Term Evolution) in vallar system in the near future.
To deal with these increasing requirements for reconfigareddio architectures is a very chal-
lenging task. One solution can be found in the context of@# Defined Radio (SDR). A major
aim of SDR is to provide flexible platform solutions suppagtia wide range of different wireless
communication standards in a multimodal fashion. This epgh does not only come with the
advantage of a faster development and a faster deploymemvefstandards but also with the
automatic adoption to the surroundings.
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As initially stated, we exemplify the execution of latengaitical standards on the ExpressMIMO
platform by means of the IEEE 802.11p standard. We furthezsitigate in the combination with
a DAB receiver. As IEEE 802.11p has been in draft versiordtily 2010, efficient physical layer
receiver implementations are still an open research tépid.to our knowledge, so far little effort
has been spent on the description of a possible multimod& |@Btform processing of these two
standards of interest.

The chosen target platform is the OpenAirinterface Expriél8ED platform developed by Eure-
com and Télécom ParisTech. In contrast to other SDR platfpthe baseband processing func-
tions are split over several independent Digital SignalkcBssor (DSP) engines or hardware ac-
celerators like Channel De/Encoder, (De)lnterleaver ont-End Processor (FEP) which can be
executed in parallel. This enables not only a higher peréme of the whole design but further
allows an easy component replacement in case future updatesne necessary. The platform
is capable to process up to eight different channels simedtasly (four channels in transmis-
sion, four in reception) by reusing the existing programiaaésources. Main design challenge is
the synchronization of these resources by providing a maixiraccuracy and by meeting all the
real-time requirements. The platform can further be eredlatith the Library for ExpressMIMO
baseband, callelibembh enabling an easy receiver validation and verification i software
environment.

At the very beginning of this thesis, the work on this platfiowas still ongoing. The presented
receiver is thus the very first complete design that has beeelaped and evaluated on this target
platform and that was emulated with the help of libembb. Isweerefore serving as a first proof
of concept of the whole design. Executing standards thattgen very small vector lengths, like
IEEE 802.11p, require a fast baseband processing enginehd®sing this standard as a first use
case permitted us to evaluate the current platform desifinddottlenecks and possible solutions
to overcome them.

To pave the way for a complete receiver chain, the Preprocgsstotype had to be designed.
The latter connects the external Analog to Digital (A/D) dvidital to Analog (D/A) converters
with the entire platform and embeds among others a Sampe@atverter (SRC) for sample rate
adjustment and 1/Q imbalance correction.

To achieve all these contributions, the basic objective® ieeen grouped in five different tasks
which are more detailed in the following:

1. The first step is themulation of the IEEE 802.11p receiver with the help of the Li
brary for ExpressMIMO baseband (libembb) to (1) validate the chosen algorithms in a
pure software environment, (2) to verify if the platform &@tionality is sufficient for the
IEEE 802.11p receiver design and (3) to obtain first perfarredigures based on the pure
processing time of the DSP engines. This task is an iterative In case it already turns
out at this step, that real-time processing is not possi@a &shen neglecting the commu-
nication overhead, the algorithms have to be reworked arifieceagain.

2. After a successful completion of the first task, the dgu@lent continues witlthe imple-
mentation of the IEEE 802.11p receiver and its performance \&aluation on the Ex-
pressMIMO platform . This proof of concept comprises a cycle accurate simuraitio
Modelsim and the receiver validation on the real hardwaaé&qim.

3. Once the work on the IEEE 802.11p receiver is finalized,agas$ on the questidmow DAB
and IEEE 802.11p can be executed simultaneously on the ExmeMIMO platform .
Due to different standard properties, this task is verylehging. For the implementation




of a scheduler prototype we recall the performance figurésidd with libembb to derive
basic guidelines for an efficient standard scheduling.

4. Theidentification of design bottlenecks and the provision of pssible solutionsis related
to the tests on the hardware platform as mentioned in thenddesk. Based on the obtained
results, possible algorithmic and design improvementsdantified and possible solutions
are provided and implemented.

5. To complete the IEEE 802.11p receiver chain, the final taskides thamplementation
of a Preprocessor DSP engine prototypeHere we mainly focus on the SRC as the most
critical part of the Preprocessor in terms of area and spacguenption.

1.2 Outline and Contributions
The work presented in this thesis is structured as follows:

1. First an overview of the basic terminology when talkingatbSDR applications is given
in Chapter 2. Besides a presentation of latest SDR systamns dicademia and industry,
a detailed description of the OpenAirinterface Expressikalidlatform is provided. This
description includes a detailed overview of the architects well as a presentation of the
basic design methodology.

2. The IEEE 802.11p receiver is presented in Chapter 3. |IEEE18p is an enhancement

of the well studied IEEE 802.11a standard commonly used ilAWIksystems. In contrast
to the latter, the IEEE 802.11p bandwidth has been reduceamhéyhalf, from 20 MHz to
10 MHz, to obtain OFDM (Orthogonal Frequency Division Mpléxing) symbols that are
longer in time domain. This results not only in systems wittgé delay spreads to avoid
Inter Symbol Interference (ISI) but also in stronger laterequirements which is a major
design challenge as it requires a very fast baseband erfjiheugh the standard has been
in draft form till July 2010, there are already few acadentid aome industrial transceiver
solutions available. These solutions are mostly limitethebautomotive context so that an
efficient transceiver design on SDR platforms that are &dhio wireless communications
standards in general is still an open research topic. Imgheimg the IEEE 802.11p receiver
on the ExpressMIMO platform comes therefore with the achgmtthat there are no limi-
tations in possible combinations with other standardslikg. Especially the combination
with the latter is of high interest for future applicatio®esides, the strong latency require-
ments of IEEE 802.11p make this standard the ideal first use fma the platform as it
allows us to identify possible design bottlenecks. Theiobthresults are further extended
by a possible combination of IEEE 802.11p and DAB. The cotimm of C2C and C2I
communication with information about traffic jams or menatlising applications within
only one device enables a lot of different future car appitices. Preferred target technol-
ogy are flexible SDR platforms allowing the execution of the#ferent standards at low
costs. The work on this task is still an open research topibexeecessary scheduler design
is very challenging. For its design it is very important toddrst key figures at hand.
The results of this work have been obtained within the Dekd-rroject PROTON (Pro-
grammable telematics on-board unit) / PLATA (PLAteformeéhdatique multistandard
pour I'’Automobile) [1]. The implementation of the DAB reger was in the responsibility
of our german project partners.
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Major contributions presented in this chapter are:

¢ an efficient physical layer implementation of the IEEE 8Qp.teceiver prototype for
the ExpressMIMO platform (without the Preprocessor) tteet been validated on the
platform itself

e a Matlab prototype of the IEEE 802.11p receiver for algoniih validation

e an IEEE 802.11p receiver emulation prototype based on thratyi for ExpressMIMO
baseband. The presented receiver is the first completendiesglemented with the
help of this library

e the identification of possible design improvements as weltheir implementation.
These are especially of interest for standards operatirgiort data sets.

e the derivation of a low latency scheduler design to executéipfe platform DSP
engines simultaneously

e a detailed comparison of IEEE 802.11p and DAB

e aruntime performance comparison of IEEE 802.11p and DARda® their emula-
tion prototypes

e a derivation of basic guidelines for an efficient IEEE 80p.Ahd DAB scheduling on
the ExpressMIMO platform as well as an implementation ofst icheduler design in
software

Results have been presented and / or published

(a) atthe Acropolis Summer School 2012 on Cognitive Wiel@emmunications (Poster
Presentation)

(b) atthe 7th Karlsruhe Workshop of Software Defined Rad2ps [
(c) atthe 15th EUROMICRO Conference on Digital System De¢igSD’12) [3]

. One design bottleneck that has been identified in the quevthapter is the need for an
optimized FEP design for standards operating on short @asardhen Field Programmable
Gate Arrays (FPGAS) are chosen as target technology. Lo of this design were re-
lated to the huge communication overhead when comparedetpute execution time for
short vector lengths. The FEP contains a vector processihgnd a DFT (Discrete Fourier
Transform) / IDFT (Inverse Discrete Fourier Transform)twamd allows to implement dif-
ferent air-interface algorithms like channel estimatiorsynchronization. To overcome the
observed limitations, the vector processing unit has beglaced by an Application Specific
Instruction-set Processor (ASIP) solution. For developtmee have chosen the Language
for Instruction-Set Architectures (LISA) that has gainemnenercial acceptance over the
past years. To evaluate the proposed architecture, we ceritpga the programmable DSP
solution as well as to two recent ASIPs from academia. Thepewison is based on the
actual processing related to the cycle counts.

In Chapter 4 two different ASIP solutions are presented. fifseone is based on the old
FEP specification that has been reworked to gain a higheonpeaihce of the design. Major
contribution is the second version of the ASIP that has be&nded by general purpose
instructions and whose internal latencies have been destesgnificantly.




The obtained results of this work have been accomplishedliaboration with RWTH
Aachen, Germany, in context of the cluster of ICT researdivork of excellence NEW-
COM++ [4] and in context of the European FP7 project ACROP®(Advanced coexis-
tence technologies for radio optimization and unlicengeEgtsum) [5].

Major contributions presented in this chapter are:

e a first ASIP implementation based on the old FEP specification
e a second ASIP implementation based on the new FEP spedficati

e a thorough comparison of the latest ASIP version with thegmmmmable FEP DSP
engine as well as with different ASIP solutions from acadgemi

Results have been presented and / or published

(a) at workshops of the ACROPOLIS project
(b) within an official research deliverable of NEWCOM++ [6]
(c) atthe DASIP'12 conference [7]

. In the remainder of this thesis we focus on the design ofsa Bireprocessor DSP engine
(Chapter 5) which is the only missing DSP engine in the IEEE 80p receiver chain. The
Preprocessor connects the A/D, D/A converter interfack thid remaining baseband engine
and is responsible among others for I/Q imbalance cormectample synchronous interrupt
generation, framing and sample rate conversion. Mostatits the Sample Rate Converter
(SRC) whose behavior can change dynamically at runtime.SRf€ deals with the relation
between the sampling rate at the A/D, D/A converters sidetladbaseband side. Process-
ing the converters with a fixed master clock comes with theathge of a low phase noise.
In the past, one SRC was dedicated to each standard of inbertef®r the ExpressMIMO
platform, this approach is too space consuming. That is wieyfoactional SRC architec-
ture capable to process up- and downsampling is preferred.

The obtained results of this work have been accomplishddmiite cluster of ICT research
network of excellence NEWCOM++,

Major contributions presented in this chapter are:

e a design of a fractional SRC able to process up to eight diftechannels (four in
reception and four in transmission). All channels are etagtion the same parame-
terizable hardware architecture. To guarantee a contsfitier processing, context
switches between them happen instantaneously withoutelay.d

e an implementation of a first Preprocessor prototype for fopboconcept and to com-
plete the IEEE 802.11p receiver chain.

e an implementation of different C-models for design valiiolat&and verification.
Results have been presented and / or published

(a) at the NEWCOM++ Winterschool on "Flexible Radio and RedaTechnologies"”,
2009
(b) at the 6th Karlsruhe Workshop of Software Defined Radsps [

(c) inthe FREQUENZ journal [9]




5. The report finally concludes with the derivation of guides for a further standard deploy-
ment on the ExpressMIMO platform in Chapter 6




Chapter 2

SDR Baseband Processing

The need for the design of flexible SDR platforms for the antiomcontext is the main motivation
for the work presented in this thesis. This chapter enhasoa® basic terminology and presents
the different possible solutions to be considered whernglitbout SDR systems. These solutions
motivate the implementation of the chosen target platfomsgnted in Section 2.3. Besides archi-
tectural details of the OpenAirinterface ExpressMIMO faain we further introduce the related
software emulation environment and describe the basicldeweent methodology of transceiver
applications.

2.1 Software Defined Radio

During the past years two major trends could be observederdtimain of wireless communi-
cations. Not only that the number of wireless communicatistandards was increasing rapidly,
more and more standards have also been merged in more smyibisdevices like mobiles phones
that include GPS and internet. To keep these devices asasadissible one preferable solution is
the design of a global system that can also easily be updafeture standards. Costs are reduced
not only because of the decreased manufacturing costs smtdak to the decreased (re)design
time in case of standard upgrades.

One solution to this challenging problem has been propogel blitola in [10] where he intro-
duced the term o$oftware Defined RadidBased on his initial definition, SDR has further been
defined by the Wireless Innovation Forum (WIF, former SDRuRoy [11] and the EU Recon-
figuration Radio Colloquium [12]. According to these sowcthe ideal interpretation of SDR
is a system where (1) the wideband digitization occurs reghé¢ antenna and (2) where the ac-
tual transceiver application is running either on a deslR®@por on a very fast General Purpose
Processor (GPP). Till now, common processors are stillagitdnough to provide an efficient im-
plementation of such a system [13]. Therefore today’s aggres focus on baseband design for
flexible hardware platforms, multiprocessor systems onldet on Chips (NoCs). The candidates
for such designs are manifold and comprise among othersdgtioin-Specific Integrated Circuits
(ASICs), ASIPs, DSPs or FPGAs. The final design choice dependhe application to be de-
signed and related to that on different criteria like powficiency, flexibility, reconfigurability
and usability. Flexibility in SDR systems is usually rethte reconfigurability and thus represent-
ing a system that is able to change its behavior dynamicaltase the surrounding environment
is changing. Or more specifically, the wireless network all ageits equipment can dynamically
adapt to environment changes. Reconfigurability can bee@sad by two different factors: (1)
a higher programmability of the design typically achievegdusing FPGASs or microcontrollers
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and (2) by a modular design approach. The more modular atitertire is, the easier it is to
replace components in case future standards or improvernéntrrent standards require design
upgrades.

SDR systems have first been developed for military targetfsarcontext of projects like SPEAK-
easy [14] and JTRS [15]. Since then, SDR has moved towardswiy daily life applications like
the automotive context on which we will mainly direct oureattion in this thesis. However, an
exact definition of SDR can still not be found in the liter&tuin 2005, the Federal Communica-
tions Commission (FCC) defined SDR as "a radio that includiaresmitter in which operating
parameters of frequency range, modulation type or maximutpub power (either radiated or
conducted), or the circumstances under which the traremafierates in accordance with Com-
mission rules, can be altered by making a change in softwa@f@w making any changes to
hardware components that affect the radio frequency eomissi[16]. In contrast, WIF has split
SDR in several so-calletiers. Their separation is performed by means of capabilitiestiansithe
extend of (re)configurability of a certain system.

e Tier O - Hardware Radio (HR)
Tier 0 is the simplest example of an SDR system. For its implaation only hardware
components are used which results in a complete redesigsaaf modifications.

e Tier 1 - Software Controlled Radio (SCR)
In this tier, the control functions are implemented in s@fitey resulting in a limited number
of programmable functions like interconnections.

e Tier 2 - Software Defined Radio (SDR)
Designs related to this tier are usually split into two patte control part implemented
in software and the flexible hardware part. For the desigmefatter, dedicated hardware
blocks such as ASICs, FPGAs, DSPs, etc can be used to in¢chesidexibility of the design.
A well-known tier 2 application are SDR platforms.

e Tier 3 - Ideal Software Radio (ISR)
At this tier, the entire system is programmable. Analog eosion is performed only at the
antenna, speaker and microphones.

e Tier 4 - Ultimate Software Radio (USR)
Tier 4 has been defined for comparison purposes only. Hesytitem is fully programmable
and switches between the air-interfaces can be performemilliseconds.

The work presented in this thesis can be assigned to tier Reashiosen target architecture is a
flexible SDR platform. To motivate this design choice an wiev of different SDR systems is
given in Section 2.2.

2.2 Related Work

Today’s wireless communication systems all follow a comnpoocessing flow illustrated in
Fig. 2.1. After receiving the signal samples from the Mediecéss Control (MAC) layer, the
transmitter chain, TX, embraces source encoding, chamuelding, digital modulation and D/A
conversion before the signal is transmitted through theidRBcequency (RF) back-end. In the
other direction, the receiver chain, RX, is composed of ab édnverter, digital demodulation,
channel decoding and source decoding before the samplg&/areto the MAC layer.




Transmitter

| . .
sourc;jg - changel - digital : RE
| | encoding encoder modulation back-end

' | source channel digital RF
i | decoding | | decoder | demodulation front-end

Receiver

Figure 2.1: Overview of a Wireless Communication System

The required basic building blocks for a possible mappirthes$e different tasks on a flexible SDR
platform being capable to execute different wireless comoaiion standards simultaneously by
reusing the same HW resources is shown in Fig. 2.2. Thes&dbtmmprise different kinds of
processors and a main CPU responsible for the SW controlpl&agmocessors are fast processing
engines that operate in the order of ns. Once started théyrpeautonomously and my influence
the scheduling decisions of the main CPU by timing and syorihations events that may occur
after a predefined number of generated output samples. @nepdx to which we also refer to in
this thesis is a preprocessing unit including a SRC. Thestabklock processors instead operate
in the order of 10s ofis and are regularly scheduled by the main CPU which conselguestults

in higher SW dependencies when compared to the sample payse€ommon usage are among
others vector processing units required for the computatiodifferent air-interface operations
(e.g. channel estimation, synchronization, etc.). Altitodifferent approaches are possible for
these kind of hardware accelerators, we will mainly focuswa different types in this thesis:
(1) basic processing units that can be combined with micrmotlers and (2) ASIPs where the
decoding of the program instructions is merged with the @ssmg unit.

increasing SW dependencies

i timing/synchronization
I events

block

sample CPU
processors processors cores
(ns) (10s us) (100us)

Y

increasing time scale of operations

Figure 2.2: Basic Building Blocks for Hardware Mapping
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With each new upcoming standard, the computational coritplex the existing designs is in-
creasing. Therefore there is a high need for flexible archites that meet the requirements of
all current wireless communication standards and thatemgefficient when dealing with the in-
creasing performance requirements of new ones. This i€edigechallenging for standards with
short data sets. In general, five keywords summarize the ahmaitenges in the design of flexible
SDR systems:

1. Flexibility , which stands for the efficient integration of new featurethie existing design
as well as dynamic switching between standards at runtime.

2. Portability , which measures how easy the design components can bestradsfrom one
system to another.

3. Scalability, which defines how easy a design can deal with the requirendrititure up-
coming standards.

4. Performance which stands for the efficiency of the application impletadions.
5. Programmability , which is important when realizing a multimodal processilegign.

Further criteria are the amount of required computatiomsygs consumption, number of stan-
dards being supported and computational latency.

During the past years, an increasing number of differentmergial SDR solutions has already
been presented. These solutions have been designed uffargrditechnologies like flexible
hardware platforms, microprocessor systems or NoCs. Bidnéhe domain of commercial SDR
design is VANU SDR [17] whose work has started in the the |80 at MIT for a GSM soft-
basestation in context of the SpectrumWare project.

In the following, an overview of different commercial satuts is given. The list does not demand
to be complete, but shall rather illustrate the differertigle strategies.

e USRP2 in combination with GNU Radio: GNU radio [18] is a free software develop-
ment toolkit for SDR applications. It includes over 100 difnt signal processing blocks
and is the primary platform using PC drivers for the Unive&aftware Radio Peripheral
(USRP) developed by Ettus Research [19]. The motherboarthios among others A/D
and D/A converters, an FPGA for sample rate conversion antdpulnput, Multiple Out-
put (MIMO) connectors while the daughterboards containRReequipment. The connec-
tion to the PC is established via a Gigabit Ethernet. The e/B@nal processing is done
by running GNU radio on the desktop PC. The main drawback isfdbsign is the huge
latency for data processing due to GNU radio.

e Deep eXecution Processor (DXP)The DXP ([20], [21]) is a low power Single Instruc-
tion, Multiple Data (SIMD) processor that was initially adeped by Icera before the latter
was taken over by NVIDIA. It has been designed for wirelessimanication algorithms
and control code whereas the implementation of the phykgalr is a GNU radio based
software code running on the DXP. The data path of the DXP hdepth of four and the
configuration is done by pointing to a configuration map ttwattains different configura-
tions and parameters required for processing. Per clodecyne of these configurations
can be provided. Up to now, there is no information aboutitectural details available.
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e Intel (former Infineon) MuSIC 1 chip: The MuSIC 1 chip presented in [22] is based on
an SIMD chip that has been designed for mobile phones. Thuesries with a small overall
design and very low power consumption. The processing it eptr four SIMD cores
operating at a frequency of 300 MHz. Each of them contains fioocessing elements and
can operate independently to implement hardware multitgskBesides, programmable
hardware accelerators are included for filtering and cHadelencoding. As all components
access the same memory, a multilayer bus bridge is usednimitaneous memory access
support. Apart from that the chips come with a digital irted to the RF front-end.

e ST-Ericsson EVP:The EVP [23] is already available in silicon since 2007 and planned
to be used in cellular systems starting from 2008. Like thesSMul chip it belongs to the
SIMD class. The EVP is a high performance vector processase/lachieved frequency is
of about 300 MHz. It operates on 256 bit vectors with a size@bit and supports Very
Long Instruction Words (VLIW) to enable a parallel vectoogessing. The architecture
is divided into four basic blocks which are: Program Contait, Vector Data Computa-
tion Unit, Scalar Data Computation Unit and Address ComjmutaJnit. The Vector Data
Computation Unit operates on integer, fixed-point and cemjplata types. Its functions
include different arithmetic and logical operations. Imdiidn, an interleaver for shuffling
and a channel decoder are part of the design. A major drawbiatiie EVP is the low
performance for complex bit based operations.

e Systemonic HiperSonic 1:The Hipersonic 1 [24] is an Application Specific Signal Proidu
(ASSP) baseband design which is split in a hard-wired logiccbmputationally intensive
processing and a configurable SIMD/VLIW based DSP unit datleDSPwhich is used
for DSP intensive algorithms. The HiperSonic 1 has beergdesi for IEEE 802.11a and
HIPERLAN/2 based 5 GHz WLAN applications.

e Freescale MSC8156 high-performance DSP:he MSC8156 [25] is a programmable DSP
unit build on the StarCore technology. It is a multi-accafer platform for (Inverse) Fast
Fourier Transform (FFT/IFFT) computations, turbo decgdamd Viterbi decoding. It fur-
ther includes serial rapid I/O interfaces, a PClexpressfate and Double Date Rate (DDR)
controllers for high-speed. Other modules such as intezhsaor channel decoders are not
included in the design.

e Sandbridge SB3011 Platform: The Sandbridge SB3011 platform is presented in [26]. It
includes four DSPs each running at a minimum frequency of b2 at 0.9 V. The chip
is fabricated at a 90 nm technology. Each DSP can proces$plaubiperations per cycle
including data parallel vector operations. Up to 32 indejeen instructions can be executed
simultaneously. The interconnection is established viaidirectional ring network. Fur-
ther the platform contains among others an ARM926EJ-S pemeand different interfaces
like USB or Ethernet. This DSP is used for front-end processinly.

A major drawback of SIMD designs is the low performance clehdecoder whose improvement
is still an open research topic. When talking about VLIW mssors instead, the major challenge
is to cope with the resulting large program executables erettcessive register file write ports
resulting in a high power dissipation. For this reason, EBARSP and the Synchronous Transfer
Architecture (STA) provide specialized instructions andltiple register files. STA has has been
proposed by researchers of TU Dresden in [27] as an extens$itire concept of the Task Trig-

gered Architecture (TTA, [28]). Using STA, a network is faethin which each functional unit

is connected to other functional units. The delay betweenrades is one clock cycle. Based
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on the STA design, Register Transfer Level (RTL) code andikition models can be generated
automatically.

Another design methodology with the aim of building netwsdke NoCs. One example for a NoC
based platform is MAGALI [29] which is developed by CEA, Fcan This NoC supports differ-
ent OFDMA/MIMO standards and offers a high reconfiguratipaesl of the system. One major
drawback of using NoCs is the power consumption which st to be optimized. Furthermore
these systems may include possible deadlocks or liveloclteeir network.

2.3 OpenAirinterface ExpressMIMO Platform

The OpenAirinterface ExpressMIMO platform ([30], [31])shbeen developed by Eurecom and
Télécom ParisTech. It potentially supports a wide rangéftérént standards like GSM, UMTS,
WLAN, DAB, LTE as well as their multimodal processing and &rFrequency Division Duplex
(TDD / FDD) modes. The platform is capable to process up thtaigfferent channels simul-
taneously (four in reception, four in transmission) by iegghe same HW resources. As each
channel may support a different wireless communicationdsted, the main design challenge is
the synchronization of these resources by providing a maixiraccuracy and by meeting all the
real-time requirements.

ExpressMIMO is used for experimental purposes only. Tleeethe chosen target technology
are FPGAs which come with a reduced design time, highermmtiexibility, simple ease of use
and lower costs for small quantities when compared to otbletisns. Nevertheless ASICs are
considered in a future version once the whole basebandrdbagbeen validated.

In contrast to the previously presented solutions, theectiisiesign of the ExpressMIMO platform
is split over two different FPGAs from Xilinx: (1) a Virtex 5X330 for the baseband process-
ing and (2) a Virtex 5 LX110T for interfacing and control (Fi23). To simplify testing on the
platform, the two FPGAS can run stand-alone if required. tAapdifference is that the baseband
processing being responsible for the signal processingedfansceiver is split over different DSP
engines that are explained more detailed in Chapter 2.3TA@underlying hardware architecture
further allows to process four receive and four transmitncieds in parallel by using the same
resources.

The interface and control FPGA transfers the signal comiomf/ going to the MAC layer and
contains the main CPU (SPARC LEON3 processor) being rediglerfer the main control flow of
the system. The two FPGAs are connected via an AMBA / AVCI D8é&ge while the different
DSPs on the baseband side are connected via an AVCI cros&bainly seven DSPs plus the
VCI RAM and the main CPU are connected with each other, thiopaance of this crossbar is
sufficient for the design of the ExpressMIMO platform.

The available memory space is distributed in a non-uniforay.weach DSP engine has its own
memory space that is also mapped onto a global memory mays. gidthal map is provided to
the main CPU and to the DSPs and is consulted in case of DMAfeenbetween the DSPs or
between the two FPGAs. For internal processing, the DSHg adpcal addressing scheme. In
addition, an external DDR memory is available for mass gi@n the baseband side and a DDR2
memory (size 16 MByte) contains the LEON3 program code anceaused for mass storage on
the control side.

Currently the whole design is running at a frequency of 1002\b4t the target is to increase this
frequency to the maximum possible one of the main CPU (133 NiHthe future.
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Figure 2.3: Baseband Architecture of the ExpressMIMO Biatf

2.3.1 Control

The interface and control FPGA connects the ExpressMIM@qgrta with the external host PC
by a JTAG and a PClexpress connection (8-way when connegtadiésktop PC, 1-way when
connected to a laptop). The FPGA is further connected to a ®BRmory available for mass
storage of samples. Main component on the FPGA is the 32 BIREARLEON3 processor from
Gaisler Aeroflex [32] that serves as main CPU for the baselpaocessing. In the future it is
considered to replace it by a multiprocessor solution. Aergsting candidate is the Xilinx Zynq
[33] which includes a ARM Cortex A9. In contrast to LEONS3 rumg at a maximum possible
frequency of 133 MHz, Xilinx Zynq can be processed up to 8002viH

Currently, all DSPs are controlled by the LEON3 processoo wan program them by writing
into or reading from the memory-mapped control registestae memory-mapped local mem-
ories inside the DSPs. Data transfers between DSPs and fimirEHEON3 can be established by
either writing directly at corresponding global memory setdes or by DMA transfers. Observed
programming latencies are related to the bridge connettiagwo FPGAsS. To minimize these
latencies, it is planned to investigate in the effects ofsritiuted control flow on the platform.
From the software point of view, the platform includes thdééerent kinds of possible execution
nodes: (1) the main CPU LEON3, (2) the microcontroller (U3ttcan be included in each of
the DSPs and (3) the DSPs itself. It is obvious that whentgithe control flow the design of
the C application code running on LEON3 will become more leimgiing. But on the other side
a distributed control flow will result in a more efficient teaeiver processing, especially when
executing multiple standards in parallel.

2.3.1.1 Choice of the Operating System for LEON3

The SPARC LEONS3 processor is supported by various Oper&tstems (OS) like eCos, RTEMS
(Real-Time Executive for Multiprocessor Systems) andRE®S (free Real-Time Operating Sys-
tem) which are all free and VXWorks which is not free. The mgimilarity between them is that
they all use function calls (or static links) instead of systcalls to reduce their internal latencies.
For single processor systems, all of them achieve a very geddrmance which would make
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them ideal candidates for the current version of the ExpMéd®© platform. However, a future
version of ExpressMIMO will include a multiprocessor systelTo avoid a time-consuming soft-
ware redesign it is therefore recommended to choose a fregitB$ultiprocessor support.

A disadvantage of RTEMS is that it needs to run one instantlBeo®S per processor in the sys-
tem. FreeRTOS has not multiprocessor support at all and@bs enultiprocessor support is still
limited [34]. Therefore we decided to opt for MutekH ([3536]) which was originally designed
to support multiprocessor heterogeneity of nowadaysaiais. In contrast to the mentioned OS,
MutekH provides a shared memory multiprocessors supparthas been designed with strong
multiprocessor support in mind. It further provides optied function calls by using an appro-
priate set of inline functions. This reduces the latencyailfscto the kernel which are frequent
in parallel applications that are split in multiple threaddake advantages of several processors.
For SPARC processors, unlike other kernels, MutekH usefiahfinction call convention. This
improves the interrupt latency and makes the function gak ttar more deterministic. Usually,
SPARC comes with 32 general purpose registers that are alwiaiple by the program. 24 of
them are organized in a register window that is split ovezeldifferent groups of eight registers.
They are stated asut , | ocal andi n. The visible window per time instance is determined by
the so-calledCurrent Window PointerUsingsave andr est or e instructions that can be found
at the beginning and at the end of each function, this poistenoving. The register windows
are overlapping, so theut registers are renamed wheave is called and become then regis-
ters. In addition to that, the Window Invalid Mask (WIM) retgr indicates if a window is invalid
which results in copying the whole stack to the memory. Adl thentioned processing operations
sometimes result in a huge overhead which is very critica@mprocessing standards with strong
latency requirements. Therefore, MutekH has been optiigea flat registers model where the
compiler does not useave andr est or e instructions. The extra register windows which are not
needed by the regular code can then be used to implement fastlinterrupts context switching
for free. All of these improvements reduce the latency Sicgmtly and make the ExpressMIMO
platform also suitable for the processing of standards sliibrt data sets. For multimodal pro-
cessing, MutekH supports POSIX threads so that differansteivers can be executed on LEON3
simultaneously.

2.3.2 Baseband Design and Emulation
2.3.2.1 Generic DSP Shell

The architecture of the different DSP engines is based omaralatdized DSP Shell (Fig. 2.4)
which is composed of

e a Control Sub-System (CSS)
The CSS is common to all DSP engines and is specialized throaigameters. It optionally
contains a local 8 bit UC (6502) and a 64 bit DMA engine as wesllaaset of control
and status registers plus several arbiters and FIFOs fat-mytput requests and responses.
Furthermore, the CSS acts as a gateway with the surroundisigsigstem by using two
64 bit wide AVCI compliant interfaces. The first one is a slgtarget) interface through
which read and write requests to the internal control andistegisters and to the Memory
Sub-System (MSS) are received. The second one is a mastatdin interface required
by the DMA to perform data transfers between the MSS and matenemory areas. In
addition, a set of input and output interrupt lines is usadsfgnaling and synchronization
with the host system.
The architecture of the UC inside the CSS is based on a Cormtaction-Set Computer




15

(CISC) with 6 internal registers. Its address bus has a witltt6 bit and the reserved UC
address space in the MSS has a size of 2 kB.

e a Processing Unit (PU)
The PU is custom defined and depends on the functionalityeoD®P. It is the main com-
ponent of each DSP engine. The instructions required foPthgrocessing are received
through the CSS and are stored in the control registers. @&ygmnming a DSP just means
writing the parameters into the right registers.

e a Memory Sub-System (MSS)
Like the PU, the MSS is custom defined and depends on the dmaditiy of the DSP. The
MSS contains the address space for the program and data semthie UC with a size
of 2 kByte and the input-output data space with a variable orgraize. To increase the
maximum achievable frequency after place and route, thebrurof registers before and
after the actual RAM inside the MSS is variable and may diffetween the different DSP
engines.
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Arbiter - - A """" .. % % %
Interrupts<H———> V : UCA ﬁs
P CTRL Micro-
—={ UC memory << {-| - controller
memory
UC  Jfeeeeeeny
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[ ] :custom component / interface

P

] standard component / interface

Figure 2.4: OpenAirinterface Standardized DSP Shell

From the LEONS point of view, all DSP engines are seen as a mehliock mapped onto the
global memory map. The size of each of these memories is deMByte and is aligned on a
1 MByte boundary. The UC and the DMA access memory spaceggiisis memory but without
having access to the global memory map.

For the time being, the UC has not been integrated in the CESTyee current version of the
receiver is thus orchestrated by a centralized control fllvere the whole transceiver program is
running on the main CPU.

In the future a global control flow including the UC will be digiol to reduce the interrupt rate and
the communication overhead to the main CPU. Currently,atier starts a DSP by writing a value
in the so-called gost (Ip GO and STatus) register. Once the operation is finisheidtarrupt
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is raised. Each DSP unit has three different interrupt lumeed for signaling to the host system
when the scheduled task is finished: (1) UIRQ (UC), (2) DIR@) and (3) IIRQ (PU). As
an alternative, the main CPU can poll thesy flag of thei gost register to get to know about
the end of the PU processing. An important CSS feature isath@thew command can already
be prepared in the command registers. Once this happengtrad flag is set to one to indicate
that no more command can be prepared. The same rules applgllasiven programming the
DMA engine included in the CSS. In this case, the regidpost provides the main CPU with
the status information.

2.3.2.2 Overview of the different DSP engines

In general, the baseband design takes place between theiFdnd back-end and the decoded
signal samples. It represents the implementation of theipallayer while MAC layer operations
are performed on the host PC. As mentioned earlier the bademacessing of the Express-
MIMO platform is structured in independent DSP engines Whitow an easy upgrade to future
standards. Other advantages include the effective useectrsipn, mobility, increased network
capacity, maintenance of cost reduction and a faster dewvelot of new services. The DSPs have
been designed in such a way that they support the most cotigmatily intensive tasks in an effi-
cient way. Prior to that, a detailed analysis of the commtiealbetween the standards has been
carried out to make sure that the platform supports all otiséreless communications standards
by minimizing the resource consumption without the lack ightaccuracy. The final designs are
programmable, reconfigurable at runtime and can be prat@sgarallel which is of a significant
importance for multimodal applications.

In the context of different studies throughout the past yeseven different DSPs have been iden-
tified:

e Preprocessor (PP)The Preprocessor connects the external RF with the baselyatem.
The four A/D and four D/A converters (AD9832) provide 2x14 &i 128 Ms/s in TX and
2x12 bit at 64 Ms/s in RX. Besides, the Preprocessor is usebtdsic signal processing
functions including sample rate conversion, an NCO (Nuoadlsi Controlled Oscillator),
I/Q imbalance correction as well as framing, (re)synchzation and sample synchronous
interrupt generation. More details about the functiogaiitthis DSP are provided in Chap-
ter 5.

e Front-End Processor (FEP):The FEP is responsible for the different air-operations lik
channel estimation, synchronization, etc. A detailedyaiglof the required operations and
a first FEP design have already been carried out in [37] and fuather been detailed and
optimized in the past years. The resulting design contawvector processing unit as well
as a DFT/IDFT unit. Supported input and output data typesraegers of 8 or 16 bit or
complex values with a size of 16 or 32 bit.
The FEP comprises five vector operations. The two input vecice denoted a¥ [i] and
Y'[i], the result vector is denoted &$i|.

Component-Wise Addition(CWA): Z[i| = X[i] + Y[i]
Component-Wise Product(CWP): Z[i] = X[i] ® Y7i]
Component-Wise Square of ModulugCWSM): Z[i] = | X[i]|?
MOVe (MQOV): copies a vector from one MSS location to another
Component-Wise Look-up Table(CWL): Z[i] = Y[X[i]]
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Input vectors can further be modified by applying force toozeregate or absolute value
operations to the real and imaginary part while the outpetoreZ|:] can be rescaled or
saturated. In addition t&[i| the FEP can provide some more results (sum / max, min /
argmax, argmin ofZ[¢]) if required. These values are further denotedSk® val ues.
Another important feature of the FEP is its flexible Addresn&ation Unit (AGU) that
can be used for address skipping or address repetition ahdltbws an easy realization of
circular buffers inside the FEP MSS. The latter is split inrfdifferent banks each with a
size of 16 kB. For vector operations, the two input vectoid e output vector have to be
stored in different memory banks. More details about thi$[2%e provided in Chapter 4
where an ASIP implementation of the FEP is presented.

e (De)Interleaver ((DE)INTL): This DSP is a block (De)Interleaver with a throughput of
one sample per cycle. Its MSS is split over three differentnmges: input and output
memory space have a size of 64 kB, the permutation table nyehaar a size of 128 kB.
Further operations supported are puncturing, value tepetnd value insertion by using
the zero or one forcing option. All operations can eitherrafgeon bit or on byte. The
basic functionality of the (De)lInterleaver is illustratied-ig. 2.5. The address of the output
buffer is directly correlated to the address of the pernmuabuffer containing the related
input buffer address.

input buffer output buffer

257 0x0000 ———— 111 0x0000
4 67
135 @ 12
17 257 0x0003
22 OXFFFF 2 OXFFFF @

permutation buffer

0x0047 0x0000
0x00AA

@ 0x2567

0x0000

O0xFA13 OxXFFFF

Figure 2.5: lllustration of the basic (De)Interleaver Fimality

e Channel Decoder (CHDEC): The Channel Decoder implements trellis based decoding
algorithms - more specifically a Viterbi (< 256 states, tkauk algorithms) and 8-state
Turbo decoders (max-log-map / sliding window algorithm) liinary convolutional codes
to cover almost all current systems. There are no restnistimoncerning the choice of
the generator polynomial. Accepted code rates are 1/2 éhdTlfe size of the traceback
window is 5 xk with & as the constraint length. Supported constraint lengthg arel 9 for
the Viterbi decoder and 4 for the Turbo decoder. For therldiie number of iterations can
be programmed from 1 to 8. To increase the performance ofiatda with short data sets,
a tail-biting option has been added to the Viterbi decodbe WISS of the Channel Decoder
is split over three different sections: (1) input data me82 kB), (2) output data memory
(16 kB) and (3) intermediate data memory (40 kB).
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e Channel Encoder: The Channel Encoder contains a convolutional encoderkldgclic
codes and m-sequences. For the time being this DSP is nadattlin the design of the
ExpressMIMO platform.

e Mapper and Detector: These DSPs perform a set of different modulation schemeshwhi
are BPSK, QPSK, 8PSK, 16-QAM, 32-QAM, 64-QAM and 256-QAM €lihput memory
of the mapper has a size of 8 kB, the output memory a size of 1&&Bh input symbol
is considered as an address of a Look-Up Table (LUT) with @ afz4 kB from where the
related output value is read.

All DSPs and the VCI RAM are connected via a generic Advanceti® Component Interface
(AVCI) crossbar ([38], [39]). The VCI RAM is used for tempoyssample storage on the baseband
side. It is mapped onto the global memory map and has a sizé kB1The resource allocation
of all connected devices is handled by a Round Robin policy.

2.3.2.3 Processing Times

The processing time of all DSPs and DMA transfers is detdstinand can be precalculated if
required. Tab. 2.1 illustrates how to compute these timeg®DSP engines and DMA transfers
being considered in the remainder of this report.

Operation Number of Cycles

FEP - DFT/IDFT T=2+13+%)« (%))

L = 2™ components vector

FEP - Vector Operations 7' = [ | +- 11 + 2 +y

x = 4 for CWL

y = 1 if SMA value computations
x =y = 0 when others

DE(INTL) number of samples- 16
CHDEC (Viterbi) number of samples- 16
DMA: LEON - DSP number oTbytes | 94

4

direct: LEON-DSP | 7

direct: DSP - LEON 10

DMA: DSP - DSP NUMDErOTDYIEs | 94
direct: DSP - DSP 18

Table 2.1: ExpressMIMO Cycle Counts

Memcopy transfers denoted dsr ect correspond to transfers where LEONS3 reads / writes
directly in the baseband memory locations by using the dlot@amory map.

2.3.2.4 Receiver Emulation using the Library for ExpressMMO baseband (libembb)

The emulation environment of the ExpressMIMO platformedllibrary for ExpressMIMO base-
band (ibembl allows an easy validation and verification of the design ipuge software en-
vironment. It is developed by the System on Chip Laboratdry&écom ParisTech and is an
open-source C++ library that has already been applied fierdifit European projects like SACRA
[40] or PLATA [1]. The functions included in libembb are laitcurate and represent all functions
on the baseband side. The API of libembb provides basic cordsnfor the main CPU and the
local UCs as well as synchronization and signaling inclgdénror messages. In the future the
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design will be extended by a cycle accurate SystemC model.

Currently, two different implementations are provided) §LC++ emulation layer and (2) C-
language hardware dependent drivers. In case of the sdsalhchr onous appl i cati on,
no parallelism is supported. The application is designet thie libembb C-API and the code that
is run in emulation and on the hardware target is the sameegsattallelism of the different DSPs
on the platform is not yet exploit. In contrast parallelisasitbeen added for tlessynchr onous
appl i cati on. The emulation code running on the desktop PC is now mulgiaitted and can
be used unmodified for hardware processing where it exglgtparallelism of all resources.
Fig. 2.6 illustrates this general processing flow.

application
(transceiver code)

Y
[ libembb API

emulatlon

(bit-accurate HW drivers
C++ functions)

Y

ExpressMIMO

Desktop PC Platform

Figure 2.6: libembb Processing Flow

2.3.3 Development Methodology

The transceiver design methodology applied for any desayeldped for the ExpressMIMO plat-
form can be divided in several steps.

Step one is thdevelopment of a purely functional modelwhich is the common starting point for
all transceiver designs. The goal of this step is to analysealgorithmic part of the transceiver, to
identify the required resources, the data flow and data digmeies. Thus, it is already possible
to identify bottlenecks when processing several transcgiin a multimodal way on the platform.
The considered models are typically sequential and do riduig exploit the parallelism of the
target platform. For the design of the ExpressMIMO platfothe presented libembb library is
used for the functional model design.

Step two is thecycle accurate HW/SW co-simulation This step allows to fully exploit the par-
allelism on the platform. A common approach is the HW/SW icoutation in discrete event
simulators such as Modelsim. The parallelism on the platforcludes simultaneous processing
of the DSPs, data transfers using the DMAs as well as the matipa of commands in the stan-
dardized DSP shell. Results of this step are cycle accusatermance figures of the developed




20

transceiver to get to know the actual performance of thegdesinfortunately the usage of Mod-
elsim is only appropriate for standards with short data aethe initialization time of a standard
like DAB for example is already in the order d° cycles.

The final step is th&ransceiver validation on the hardware platform where the design is tested
and validated on the real hardware platform. For this stepKitown snapshots are applied before
the signal received through the RF is decoded.

2.4 Conclusions

In this chapter, an introduction to the basic terminolog$ bR has been given. Based on the pre-
sented existing industrial and academic solutions, the fareflexible SDR platform design was
enhanced and explained more detailed using the example @plenAirinterface ExpressMIMO
platform. As the further chapters are all related to thigatplatform we presented a detailed
description of the architecture and introduced the libfaryExpressMIMO baseband (libembb)
used for transceiver emulation in a software environment.
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Chapter 3

IEEE 802.11p Recelver for the
ExpressMIMO Platform

In the automotive context, SDR platforms are of high inteasghey allow to combine Car-to-Car
and Car-to-Infrastructure communication with informati@about traffic jams or merchandising
applications within only one device. In best case, futurgrages of such platforms only result in
a software update and do not require a time consuming haredwedesign. This chapter focuses
on the implementation of an IEEE 802.11p receiver for ther&sgMIMO platform. In contrast
to other standards, the data sets of IEEE 802.11p are veryt slma thus require a very fast
baseband processing. This makes this standard the idetalifiescase for the platform to identify
bottlenecks in the platform design and to obtain first perfance figures.

After a short description of the IEEE 802.11p standard andesentation of existing transceiver
solutions, the main part of this chapter focuses on therdiftereceiver implementations for the
ExpressMIMO platform. These include a Matlab model, an atiori prototype obtained with
libembb and the prototype running on the real hardware. B dtbntext of a case study we further
concentrate on the combination of C2X communication and@ Rormation which is still an
open research topic. For this purpose we have a close lookettfferences between the two
invoked standards, IEEE 802.11p and ETSI DAB. Considetiegaipplied centralized control
flow, resource management and thus the scheduling are adsorhappen in the main CPU. For
the design of an efficient scheduler it is very important taehfirst key figures at hand. These
figures are obtained by a performance comparison of the tewadstrds using libembb. Based on
these results we derive first guidelines for an efficient dalireg on the ExpressMIMO platform
and present a first scheduler prototype. Our gained expeeiés summarized at the end of this
chapter to provide guidelines for a future standard deplegin

3.1 Motivation

Currently, experts focus on the design for C2C and C2I comeation also known as Vehicle-to-
Vehicle and Vehicle-to-Infrastructure communication.eTdasic concept of C2C communication
is the following: once one car sends messages to many otlaeasnireless communication chan-
nel the cars spontaneously form an ad hoc network which i&hras Vehicular Ad Hoc Network
(VANET). VANETS extend the drivers view of the road which miag limited due to darkness
or obstacles and take into account that the driver may nemé $ione to react to an unexpected
event. Possible use cases focus on the reduction of trafiie §and accidents and include collision
prevention, monitoring of hazardous vehicles, accidemhimgs, active navigation, etc.
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C2X (X = Car, Infrastructure) communication is part of fiduntelligent Transport Systems (ITS).
An excellent overview of ITS is given in [41]. In this docunterot only various scenarios are
presented but also the frequency allocation differencésdsn several countries are enhanced.
Possible applications in ITS are not only safety applicegtjdout also traffic jam avoidance, toll
collection, tourist information, mobile internet, etc. deneral they can be divided in nhon-safety
and safety applications where the higher priority is givethe latter. To distinguish between the
different ITS applications, [42] proposed a set of impatrtaiteria for C2X communication which
are usability, robustness, cost, efficiency, scalabilitgt development effort.

In August 2008, the Commission of European Communitiesdgetthat the 5.875 - 5.905 GHz
frequency band is dedicated for safety related applicat@nTS [43]. The division of this fre-
quency band is defined by the European Telecommunicati@msi&tds Institute (ETSI) in [44]. It
is subdivided in several channels with a width of 10 MHz thexi be combined to achieve higher
data rates. A standard of main interest in this context is \MILBEE 802.11p ([45], [46]) which is
an enhancement of the well-known IEEE 802.11a standard [A€pntrast to the latter the band-
width of IEEE 802.11p has been reduced from 20 MHz to 10 MHis Tésults in OFDM symbols
that are longer in the time domain and thus in systems witfeldelay spreads to avoid ISI. ISI
is of major importance for vehicular use cases where thergfarare strongly time-varying. So
a reliable reception of the transmitted signal can still bargnteed. The IEEE 802.11p standard
is also known under the name Wireless Access in Vehiculairemwents (WAVE) which has its
origin in 1999 when the US Federal Communication Commisaitotated 75 MHz of the Ded-
icated Short Range Communication (DSRC) spectrum exdlysior C2X communication. A
good overview of DSRC is provided in [48]. As the standard len in draft form till July 2010
an efficient transceiver design is still an open researdi.tdphis task is quite challenging as com-
pared to other standards, IEEE 802.11p transceivers cothevery strong latency requirements
and thus require a very fast baseband processing engine.

An important ITS project is the German SimTD project [49],em C2X communication is im-
plemented on the physical and on the MAC layer. In the corié®&mTD, real experiments are
performed in the region around Frankfurt am Main in Germargst tracks include the highway
as well as some parts of downtown Frankfurt. The goals of &mafe manifold. Besides the
definition of scenarios and their identification in real expents, experts mainly focus on the im-
plementation of C2X functions to improve the road safetan8ards of interest are IEEE 802.11p
and GPRS and UMTS that have been integrated in case WLAN isvadlble.

3.1.1 Related Work

The IEEE 802.11p standard has been in draft form till JulyQ28bd efficient physical layer imple-
mentations for SDR platforms are still an open researclkctdgp to now, most of the published
papers focus on theoretical and performance aspects. $heties are beyond the scope of this
report but will nevertheless be mentioned for the sake offtetaness.

A general performance evaluation of the IEEE 802.11p stahioteluding the MAC layer has
been derived during analysis and simulation in [50] or [%2fhers papers focus on measurements
that have been taken under real conditions to find out howlielithe packet transmission is by
determining the Packet Error Rate (PER). In [52] a measunéstady has been carried out on a
C2I trail on an Austrian highway using an IEEE 802.11p prgtet Their main observations are
that shadowing effects because of trucks lead to a strongljuthting performance, especially for
long packet lengths and high vehicle speeds. Apart from thay state that "the maximum data




23

volume that can be transmitted when a vehicle drives by asidadinit is achieved at low data
rates of 6 and 9 Mbit/s." In addition, [53] presents severahsurements related to IEEE 802.11
a/b/g for vehicular environments and proves that the vehddtance and the line of sight are of
main importance for the performance as well. Besides ancghigin level measurement study
using the LinkBird-MX v3 unit produced by NEC has been catibait in [54].

To sum up, all the mentioned papers prove that (1) the nunfiqeaiakets to retransmit increases
with a larger packet length and (2) that the communicatioigea are reduced when a higher mod-
ulation order is applied.

Other studies focus on the different types of possible chlanand the identification of possi-
ble scenarios or on the improvement of existing channeinastirs that are also related to IEEE
802.11a for vehicular environments. [55] presents six bstale fading models for real mea-
surements using vehicles and analyzes their PER. Theselsrardecalled (1) VTV (Vehicle to
Vehicle) way Oncoming, (2) VTV Urban Canyon Oncoming, (3)\R(Roadside to Vehicle) Sub-
urban Street, (4) RTV Expressway, (5) VTV Expressway samextion with wall, and (6) RTV
urban canyon. A detailed description of the scenarios cafolred [56]. This article is based
on the work presented in [55] and gives the results for thiemint scenarios with the help of a
channel emulator. Apart from that, the differences betw&#E 802.11a and IEEE 802.11p in
vehicular scenarios are enhanced. Their conclusion idEkE 802.11a performs worse because
of "the high delay spread of the vehicular channels thabihice interference among symbols in
case of 802.11a".

In the context of this report, we mainly focus on the physlagker implementation of the IEEE
802.11p receiver. Different software implementationshefstandard have recently been described
in [57] which focuses on the transceiver design, [58] whheeghysical layer of the whole IEEE
802.11p transceiver chain has been implemented as a Skwision or [59] where an existing
IEEE 802.11a Matlab simulation environment has been upgdateleal with IEEE 802.11p. Be-
sides [60] focuses on the simulation of the IEEE 802.11 miaydayer implementation using the
NS2 simulator. The latter is a network simulator that hagioally been developed for networking
research.

In addition to these academic publications, different caroial products supporting IEEE 802.11p
became available during the past years:

e The LinkBird-MX v3 unit produced by NEC [61] embeds a LINUX machine which is
based on a 64 bit MIPS processor working at 266 MHz. It can béguared either for recep-
tion or transmission and further contains two DCMA-82-NInMPCI cards with Atheros
802.11 radio chips.

e NXP and Cohda Wirelessdeveloped a flexible SDR implementation of WAVE call&3
[62]. Itincludes among others a GPS module, a CAN bus interéand Ethernet and is based
on the NXP MARS platform which has been developed for theraotive context. The
MARS platform consists of a combination of Tensilica Vedi8Ps and hardware accel-
erators and can run several automotive standards simalialye While the physical layer
and the real-time portions of the MAC layer are part of the MA\Ratform, the remaining
MAC layer and the network layer are running on ARM11 processo

e Another solution is the combination of tAWSU (Wireless Safety Unit) platform from
DENSO and the Openwave Engine developed by BMW63]. Besides the physical layer
implementation of IEEE 802.11p this transceiver suppdwsrequired MAC protocols for
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US, Europe and Japan. Furthermore it includes CAN2.0, B#tend a 400 MHz power
PC that can process one or two standards in parallel. Thiptahas been presented in
[64].

e [65] provides an implementation of #BEE 802.11p frame-encoder based on GNU radio
[18] which has beerwombined with USRP2[19] and compares it to a former implemen-
tation based on a modified Atheros chipset. Although thelteguesented in this paper
mainly focus on the comparison the authors have carriedttoey, further illustrate that the
GNU radio receiver is fully compliant with the IEEE 802.1¢/4v standards.

Using the ExpressMIMO platform instead of any of the mergbisolutions has one important
advantage. As this platform is not limited to the automotiemtext but potentially supports a
wide range of different wireless communication standasdaell as their multimodal processing,
the integration of new standards results in best case ordysioftware update and not in a time
consuming hardware redesign. This is important as dedpitdact that experts currently focus
on the combination of IEEE 802.11p with ETSI DAB, a combioatiof the first with LTE is
strongly considered for future designs. A project thatadseexamines how LTE and WLAN can
be combined in an efficient way is CoCarX [66]. So it is only atereof time till the work on first
transceiver designs supporting both standards will start.

3.1.2 Contributions

The contributions described in this chapter are manifoldirMtontribution is the presentation of
an efficient physical layer implementation of the IEEE 8Q9.1eceiver prototype for the Express-
MIMO platform. On the way to the final design first a Matlab mblas been written to facilitate
the receiver debugging before we implemented an emulatiotheiof the receiver with the help
of libembb. As the work on this emulation library was stillgming by the time of our receiver
development, the presented model is the first complete lbahesign that has been implemented.
Therefore it further served as a proof of concept for thiglilp and as basis for a case study in
which we focus on the multimodal execution of two differesteivers on the ExpressMIMO plat-
form. Based on our results, we derive first guidelines forflicient scheduling and present a first
scheduler prototype.

Apart from that the presented IEEE 802.11p receiver is tisé fiirototype that is running on the
ExpressMIMO platform and has been used in particular totifjepossible bottlenecks when
processing standards with short data sets on the platfoomedtice the latencies in the design, we
further identified and implemented possible improvemeritemaccessing the different resources
on the hardware platform. These may be considered in a fuenrgion of the asynchronous
application mode of libembb. In addition, we also deriveswa latency design of a scheduler
necessary when executing multiple DSPs in parallel.
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3.2 Description of the IEEE 802.11p Packet Structure

Having a look at today’s different wireless communicatitamslards, one can distinguish between
two different types: (1) frame based standards (e.g. LTEBP&nd (2) packet based standards
(e.g. WLAN). IEEE 802.11p is part of the second category. WHeveloping a packet based
transceiver for a multimodal system, one major disadvantaghat the arrival time of the next
packet is not known in advance. This introduces an indetésmi requiring a flexible scheduler
design in case multiple standards are processed simultsiyess we will detail later in this Chap-
ter.

IEEE 802.11p is an OFDM standard, which means that its hi¢gdnrédéde signal is split over several
independent signals with lower data rates. These signalsarsmitted over orthogonal frequen-
cies to avoid ISI. Compared to other strategies, OFDM is @aplementable, has a lower ISl and
offers a higher spectral efficiency due to the dense sulecapiacing. On the other side, the Peak-
to-Average power ratio of the transmitted signal is high.uJthe provision of a very accurate
synchronization procedure to detect the beginning of thekgtaat the receiver side is unavoid-
able. The IEEE 802.11p OFDM symbols are composed of 80 sutersa Please note that in the
remainder of this document, one sub-carrier may also betddras a complex 'sample’ with a
width of 32 bit where real and imaginary part both have a sfzt6abit. Per OFDM symbol, 16
sub-carriers represent the guard interval which sepatatesieighbor OFDM symbols to avoid
them to interfere with each other. These guard intervaldaild using a cyclic prefix technique
meaning that the guard interval is identical with the last pthe OFDM symbol. The remaining
64 sub-carriers contain 4 comb pilots needed for channghatbn / compensation, 12 nulled
carriers and the transmitted information.

Once an OFDM symbol is received, the DFT transforms it to tegdency domain. In the trans-
mitter the sub-carriers have been rearranged to match pigsiof the IDFT as shown in Fig 3.1.
This has to be reverted on the receiver side.
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Figure 3.1: IEEE 802.11p OFDM Symbol Carriers before anerd®eordering

The packet structure shown in Fig 3.2 is similar to the ondz@éfe 802.11a. Each packet consists
of a constant and a variable part. For a channel spacing ofH®, the constant part has a length
of 40 us. It is composed of the Preamble and the SIGNAL Field:

e Short Training Symbol (STS): The STS is part of the Preamble and is formed by 10 repe-
titions of the same 16 samples sequence. Each sequencedmagladf 16us. The STS is
required for the packet synchronization where the actugihipéng of the packet is detected.




26 3. IEEE 802.1% RECEIVER FOR THEEXPRESMIMO PLATFORM

e Long Training Symbol (LTS): The LTS is part of the Preamble as well and consists of a
guard interval of 32 samples and two identical OFDM symbdleese contain the block
pilots that are needed for channel estimation. Two symba@speovided to improve the
quality of the calculated channel estimate. The duratiohefLTS is similar to the one of
the STS (= 16uS).

e SIGNAL field: The SIGNAL field specifies how to decode the transmitted nugss# is
BPSK modulated with a code rate of 1/2 and contains all reduirarameters for the sub-
sequent DATA field detection. More specifically, the outplthe Viterbi Decoder contains
the information about RATE and LENGTH. RATE identifies thedulation scheme and the
code rate of the DATA field, LENGTH corresponds to the the nendf octets in the MPDU
(MAC Protocol Data Unit) requested by the MAC layer. Furtharameters have to be cal-
culated or retrieved from LUTs based on these two valuessd& parameters are the code
rate, the data bits per OFDM symbdV4y,,;), the number of transmitted symbol&/(,,,),
the number of data bits\(;.,), the number of padding bits\,.q), the number of carrier
bits per symbol {.;,,s) and the parametek,,,,; used for normalization in the mapper. An
overview of the modulation dependent parameter valueigged in Table 3.1.

160 samples 160 samples 80 samples 80 samples 80 samples
16us 16us 8us 8us 8us
-t - - -
STS LTS SIGNAL | DATA 1| - | DATA_N
Synchronization Channel Estimation Decoding Message
of DATA Decoding
Field
Parameters

(a) IEEE 802.11p Packet (Channel Spacing of 10 MHz)

‘PLCP P‘reamble‘ SIGNAL Field DATA Field

PLCP header

’ RATE ‘ reserved‘ LENGTH ‘ parit* tai‘ SERVICE| PDSU| ta{il pad bit}

4 bit 1 bit 12 bit 1bit 6 bit 16 bit variable 6 bit  variable
(b) IEEE 802.11p Packet with a Detailed View on the SIGNAL &mel DATA Field

Figure 3.2: IEEE 802.11p Packet Structure

In contrast to the constant part of the packet, EB#TA field consists of a variable number of
OFDM symbols. Its length is not known before the decodingpdure of the SIGNAL field is

finished. The contained LENGTH parameter can vary betweend14895 which results in a
DATA field length of 1 to 1366 OFDM symboils. All decoded SIGNAikeld parameters apply on
the whole DATA field and may not change before the next packetdeived. The time between
the end of one packet and the reception of the following o lisast 1Qus. Table 3.2 shows the
modulation parameters for the applied 10 MHz channel sgacin
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Code Rate | Ny,sc | Nevps | Nanps | Data Rate (Mb/s)
BPSK 1/2 1 48 24 3
BPSK 3/4 1 48 36 45
QPSK 1/2 2 96 48 6
QPSK 3/4 2 96 72 9
16-QAM 1/2 4 192 96 12
16-QAM 3/4 4 192 144 18
64-QAM 2/3 6 288 192 24
64-QAM 3/4 6 288 216 27

Table 3.1: Modulation dependent Parameters decoded in@eA. Field

Parameter Value
Number data sub-carriers 48
Number pilot sub-carriers 4
Subcarrier frequency spacing 10 MHz/64
Packet length 1 - 1366 DATA symbols
Modulation Schemes BPSK, QPSK, 16/64-QAM
Code rates 1/2, 2/3, 3/4
Data rates 3,4.5,6,9,12, 18, 24, 27 Mb/s

Table 3.2: IEEE 802.11p Specification Parameters (10 MHn@#&laSpacing)

3.3 |IEEE 802.11p Receiver Algorithms

This section describes the different receiver algorithppiad to decode the IEEE 802.11p packet.
To improve the overall performance of the design, the FEPatipeis are performed on the whole
OFDM symbol including all 64 sub-carriers. The removal & ttulled carriers and the reordering
of the remaining ones are done by the Deinterleaver.

3.3.1 Packet Synchronization

A disadvantage of OFDM systems is their high sensitivityrtorig and frequency synchronization
errors. Therefore the packet synchronization algorithedue detect the beginning of the packet
has to be chosen properly to lower the PER. As the moment i dipacket arrives is not known
in advance, the incoming samples have to be analyzed conthu making this algorithm the
most latency critical one in the whole design. This is in apfmto frame based standards where
the beginning of the frame has to be detected only once atatj@ting of the receiver process-
ing. Possible technigues for packet synchronization at@ aw cross-correlation. The preamble
of the IEEE 802.11p receiver is suitable to both but [67] Hemss that the cross-correlation per-
forms slightly better. To speed up processing, we decidedmnabine an energy detector with an
overlapping DFT-based correlator. The energy detectorpecizes only one function that can be

expressed as
255

E(X) =Y |rlil (3.1)

i=0
with r,, as the received signal.
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The operations to be performed in the FEP are listed in Talle 3he number of cycles are
calculated using the equations provided in Chapter 2.3.e€alk direct DMA transfers denote
memcopy operations where LEON3 directly accessed theecelaemory regions without invok-
ing the DMAs.

Function DSP/DMA | samples| bytes | cycles
sum computation FEP 256 | 1024 140
fep2leon direct 1 4 11

Table 3.3: Energy Detection Operations

The subsequent packet synchronization is performed oeekribwn reference STS denoted as
STS,cs. As the size of the DFT window has been set to 256 due to the &1dH of 160, the
STS has to be zero extended before its DFT can be computesicdihibe done offline before the
receiver is started. The DFT window is shifted by the size i @ FDM symbol (80 samples).
Maximum possible is a shift of 96 samples which correspondbd window size minus the size
of the STS. So it can be guaranteed that there is always orsgowimwhich contains the whole
received STS.

The received signal after the DFR,., can be expressed as

R, = (e/*"H x X,,) + Z,, (3.2)

X,, are the signal componentg,, the noise components anrd® H the channel based error
component. The packet synchronization algorithm can tleestdited as

gk = IDFT(R, * DFT(STS,cf)*) (3.3)

In case the result of this step is beyond a predefined thréstha resulting timing offset, can be
computed as
is = argmaz(|qy)?) (3.4)

is corresponds to the maximum absolute value of the crosglation of the symbol timing esti-
mate. The operations to be performed for the packet synizdation are listed in Table 3.4.

Function DSP /DMA | samples| bytes | cycles
DFT FEP 256 | 1024 143
CwP FEP 256 | 1024 139
IDFT FEP 256 | 1024 143
energy/max/argma FEP 256 | 1024 143
fep2leon direct 1 4 11

Table 3.4: Packet Synchronization Operations

The energy detection and the packet synchronization aferpexd by the FEP only, as depicted
in Fig. 3.3. The comparison to an energy threshold and theisléicision of whether the receiver
proceeds to channel estimation is currently in the respditgiof the main CPU but may be
delegated to the UC or to a microprocessor or sequencer draeband side in a future version
of the receiver prototype.
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Figure 3.3: Preamble Data and Control Flow

3.3.2 Channel Estimation

In vehicular systems, the channels are strongly time-agrgue to correlated fading caused by
the multipath propagation. This results in a variation @& #&mplitude and / or the relative phase
in the received signal. Therefore the channel estimatiareiig important. Like IEEE 802.11a,
IEEE 802.11p defines two different pilot patters: block awodhb pilots. The block pilots are
carried by the LTS while the four comb pilots are included acte of the OFDM symbols of the
SIGNAL and the DATA field. They can be found at positions -21, 7 and 21. Specific for
IEEE 802.11p is, that the polarity of the comb pilots changetsveen the OFDM symbols. The
sequence defining this polarity can be generated from tlaerdaling sequence (generator polyno-
mial S(z) = 2" + z* + 1) when the all one initial state is applied. In addition, alHave to be
replaced by -1s and all Os by 1s. The first element of the obdadequence defines the polarity of
the comb pilots in the SIGNAL field, the subsequent ones agd & the DATA field.

A good paper about the different types of channel estimasdBs8]. It proves that the best perfor-
mance is achieved by the comb-type channel estimatoryfetidoy the block-comb-type channel
estimator. The first one uses the four comb pilots and obthasalues for the remaining carriers
via interpolation techniques. As interpolation in gene@ines with a considerable computation
effort we decided to rely on the block-comb-type channeirestor. Applying this kind of channel
estimator, a first channel estimate is calculated basedeobltitk pilots and the four comb pilots
are used for a subsequent amplitude and phase correctialo oit is assumed that the channel
does not change during the reception of one packet. Compardge comb-type channel esti-
mator, the block-comb-type channel estimator reduces dhgpatational complexity while still
achieving a good performance.

The channel estimate based on the LTS block pilots denoté &scalculated once for the whole
packet:
H = DFT(LTSreceived) X l)qu(LTSreference)>k (35)

Like for the packet synchronization, the computationsdisin Table 3.5 are carried out by the
FEP.

Function | DSP /DMA | samples| bytes | cycles
FFT FEP 64| 256 39
CWP FEP 64| 256 43

Table 3.5: Channel Estimation Operations
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3.3.3 SIGNAL and DATA Field Detection

SIGNAL and DATA field detection are carried out by FEP, Deilgaver and Channel Decoder
(Fig. 3.4).

—— |

FEP A:] DEINTL
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AVCI Crossbar / VCI RAM LEON3
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Figure 3.4: SIGNAL and DATA Field Data and Control Flow

The SIGNAL field is included in the constant part of the packistdetection procedure has to be
finished before starting the DATA field detection, as the peaters describing the latter are to be
extracted from the SIGNAL field. As stated in Chapter 3.2 ¢hesrameters comprise the number
of OFDM symbols contained in the DATA field, the modulatiomeme (BPSK, QPSK, 16-QAM,
64-QAM), the code rate (1/2, 3/4, 2/3), the number of sublieas, etc. While for the SIGNAL
field detection, the three DSPs have to be executed one aftdra, they can be executed in par-
allel for the DATA field detection but by operating on diffetcOFDM symbols. By the time the
results presented in this report have been obtained, thernéhBecoder operated on the complete
received message before the result was transferred to th@ lsdfer. In the future, tail-biting will
be included so that this DSP can operate on smaller vectarsam be executed in parallel to
the FEP and to the Deinterleaver. The main difference of tA€AOfield OFDM symbols when
compared to the SIGNAL field is that the latter is always BPStdmated with a code rate of 1/2
while the first can be modulated with four different modwatschemes, each of them exhibiting
two different code rates.

3.3.3.1 Channel Compensation (FEP)

The channel compensation comprises the multiplicatioh thié channel estimate as well as fur-
ther corrections based on the comb pilots. The latter caxessed as

Ran = (A(H)e 7% x R,) (3.6)
with ) )
A(H)e 7™ =2 > Ryl 3.7)
i=—21,—-7,7,21
and ) )
AH) = > |HP (3.8)
i=—21,—-7,7,21

R, ; are the received anR;;,i the known comb piIotsA(H)e—j‘i’n is used to correct the phase

offset. This approximation still contains an unknown egeeyel term stated ad(H). Its correc-
tion is only necessary for 16/64-QAM demodulation wheredaleulation of the remaining bits is
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based oz, ,,. One drawback identified in the design is that the result @ftim is always stored
as a complex 64 bit value which is distributed over two congee 32 bit memory entries in the
FEP MSS. Currently this result is modified in the main CPU tomplex 32 bit value that can be

used for further processing in the FEP.
The operations to be performed for the channel compensat®hsted in Table 3.6.

Function DSP /DMA | samples| bytes | cycles
CwP FEP 64 256 43
fep2fep (4 times) direct 4*1 4*4 76
dot product FEP 4 16 44
fep2leon (2 times direct 2*1 2*4 22
leon2fep direct 1 8 64
CWP FEP 64 256 43

Table 3.6: Channel Compensation Operations

For the SIGNAL field, the real part aR; ,, directly serves as input for the Deinterleaver. No
additional data detection is required. To sum up, the FEPatipas needed for the SIGNAL field
detection are summarized in Table 3.7.

Function DSP /DMA | samples| bytes | cycles
FFT FEP 64 256 39
Channel Compensation FEP

fep2deintl FEP DMA 64 64 32

Table 3.7: SIGNAL Field Detection Operations (FEP)

3.3.3.2 Data Detection (Decoding, FEP)

The data detection for IEEE 802.11p can be done by the FEP @&sl ribt require the Mapper
DSP engine.

e ForBPSK, only the real part ofz; ,, serves as input to the Deinterleaver.
e ForQPSK, real and imaginary part a4, are both significant.

e For16/64-QAM, the missing bits are calculated as a functiorRgf, as stated in [69].
For 16-QAM, only two remaining bits have to be calculated

2 . . .
Ragon = ——(H x H*) x A(H) — abs(Ry.n, 3.9
d2, To( ) A(H) — abs(Ra,n) (3.9)
while for 64-QAM, four bits are missing
4 . . .
Raom = —=(H x H*) x A(H) — abs(Ryg,) (3.10)

Razn = ——(H x H*) % A(H) — abs(Raa.p,) (3.11)

V42
2
42
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The root term in the equations is already known after the IGfield detection (parameter
referred to ad<,,,0q)-

The result of the multiplication of the root term with(H) and H © H* does not change
during the whole DATA field detection and can be computed after the SIGNAL field
detection is finished. The paramef€y,, is used for normalization in the transmitter where
it is multiplied with the output values to achieve the samerage power for all schemes.
K,noq depends on the modulation scheme. For BPSK it is set to 1, R8Qto1/+/2 for
16-QAM to 1/4/10 and for 64-QAM tol /+/42.

Rgn, Ra2p and Rgs,, can directly be written into the Deinterleaver MSS. The meglibit re-
ordering as illustrated in Fig. 3.5 is performed by the Degileaver.

Only theabs term has to be calculated at runtime while the other factorateeady be prepared
oncekK,,.q is known. The required functions for 16/64-QAM are listedrable 3.8.

Function DSP /DMA | samples| bytes | cycles
16-QAM

fep2leon direct 4*1 4*4 44
fep2fep direct 64 | 256 129
CwWP FEP 64 256 43
leon2fep direct 1 4 8
CwWP FEP 64 256 43
additional 64-QAM

leon2fep direct 1 4 8
CwWPpP FEP 64 256 43

Table 3.8: Data Field Initialization Operations

The data detection operations for the different modulaschhemes are listed in Table 3.9. For
BPSK and QPSK, the result of the channel compensation istake

The resulting DATA field detection operations are listed @&blE 3.10. The copy operations of the
result are split over several transfers as the results aredsin different banks of the FEP MSS.

Function DSP /DMA | samples| bytes | cycles
16-QAM

type change FEP 64 | 256 43
absolute value FEP 64| 256 43
CWA FEP 64| 256 43
64-QAM

type change FEP 64| 256 43
absolute valug FEP 64 | 256 43
CWA FEP 64| 256 43
type change FEP 64 | 256 43
absolute value FEP 64| 256 43
CWA FEP 64| 256 43

Table 3.9: Data Detection Operations
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Figure 3.5: Bit Constellations for the IEEE 802.11p Datadaton
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Function DSP /DMA | samples| bytes | cycles
FFT FEP 64 256 39
Channel Compensation FEP

Data Detection FEP

BPSK

fep2deintl FEP DMA 64 64 32
QPSK

fep2deintl FEP DMA 64 128 40
16-QAM

fep2deintl (2 times) FEP DMA 2*64 | 2*128 80
64-QAM

fep2deintl (3 times) FEP DMA 3*64 | 3*128 120

Table 3.10: DATA Field Detection Operations

3.3.3.3 Deinterleaver

The Deinterleaver operates on a block of 8 bit samples aretteethe two permutations applied
by the transmitter to reduce the impact of burst errors btridiging the affected bits over the
received sub-carriers. It is stated in the standard spatidit [45] that the first permutation in
the transmitter ensures that adjacent bits are modulatednam-adjacent sub-carriers while the
second permutation in the transmitter ensures that theejbits are mapped onto less and more
significant bits of the constellation.

The first permutation of the Deinterleaver is defined by

i=sx* floor(j/s)+ (j + floor(16 = j/Nepps)) * mod(s), j=0,1,...,Nepps —1  (3.12)

with s = max(Nppsc/2, 1).
The second permutation is defined by

k=16 %i— (Nepps — 1) floor(16 i /Nepps), ©=0,1,..., Nepps — 1 (3.13)

The deinterleaving is performed before the Channel Decsetlere the number of bits is decreased
by one half. The size of the permutation table per OFDM syriglus2 « Ng,,s. FOr our receiver,
the final permutation tables do not only consider the two pgations defined above. Instead, they
also remove the nulled carriers, bring the carriers in thltrorder, reorder the bits as required by
the data detection and insert zeros is case the code ratedgstrto 1/2. In the transmitter, higher
rates (2/3 and 3/4) are achieved by puncturing where sontedadricoded bits are omitted in the
transmitter. To revert this effect, the Deinterleaver cauged as well.

For an efficient generation of the permutation tables weidea C code that generates them for
receiver emulation and for the real hardware processing difference between the two modes
is that in the first case a simple 16 bit array is sufficient tdude the tables in the design while
for the latter, a 32 bit representation is required so thattéibles can be DMA transferred to the
baseband side before the receiver is started.

3.3.3.4 Channel Decoder

The Channel Decoder detects the codeword that has beemittiusbased on the result provided
by the Deinterleaver. This means that the codeword is mapaekito the corresponding informa-
tion bit sequence. In the transmitter a convolutional eecdslused. The generator polynomials
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of the encoder argy = 1333 andg; = 1715 and the constraint length K is set to 7. Per symbol,
the Channel Decoder takest Ny, input symbols a 8 bit to comput®,; output bits. At the
time when we obtained the results presented in this thdssChannel Decoder had been exe-
cuted only once after all Deinterleaver operations has fieesmed. The new version instead will
contain tail-biting.

3.3.3.5 Descrambling and CRC Check

Before the output of the Channel Decoder is forwarded to tHe&CNhayer implemented on the
host PC, the sequence has to be scrambled and CRC checkdw tharismitter, the bits were
scrambled to randomize the data pattern. The work of a timéogvery circuit is thus simplified
and dependencies between the signal’s power spectrum aritatismitted data are eliminated.
The generator polynomial for the IEEE 802.11p (de)scramisleS(z) = 27 + z* + 1. When
descrambling the starting point of the sequence are the Sk &f the SERVICE field (Fig 3.2).
The sequence is then periodically repeated.

3.4 System Presentation and Receiver Versions

3.4.1 Required Resources on the ExpressMIMO platform

As shown previously, only VCI RAM, FEP, Deinterleaver anda@Ghel Decoder are needed to
decode the packets of the IEEE 802.11p receiver (Fig. 31&.Preprocessor will be included in a
future version of the design. After each interrupt, the Ryepssor will copy 640 complex samples
a 32 bit into the circular input buffer memory being part of tREP MSS. This corresponds to a
memcopy operation of eight OFDM symbols. Including the Rvepssor will not change the pre-
sented results in this chapter as the copy operation willamglled by a local UC on the baseband
side and not by the main CPU.

GPIO
Baseband FPGA
T i Interface & Control FPGA
i : Pre—processor Front-end Channel
Radio =T processor decoder
Front-end ! LEON3
VClinterface VClinterface VClinterface processor
‘ t ; ¢ .
I o 2
GPIO | @ oa 2g AHB
T Interconnect (AVCI Crossbar) ag o2
I Q oo
| °Z T
| o < !
I 1 PCIE ¢
! t ¢ ¢ Peripherals 44‘—xgres
Ve vC vC VClinterface i Interface
Interleaver / Manper Detector Channel !
deinterleaver| PP encoder $ - @7 o
DDR, ' Ethernet,
Flash I UART,
ITAG ...
GPIO

Figure 3.6: Baseband Architecture of the ExpressMIMO Biatf
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3.4.2 Matlab Prototype of the IEEE 802.11p Receiver

A first version of the IEEE 802.11p receiver has been implaetein Matlab for fast algorithm
validation. To generate the test signals, a Matlab traniemibde provided by the Telecommuni-
cations Research Center Vienna [70] has been used. In@ddiifferent real snapshots provided
by BMW have also been tested to validate the chosen algaitifrour design.

3.4.3 Emulation of the IEEE 802.11p Receiver

The emulation prototype of the IEEE 802.11p receiver haa blesigned with a sequential execu-
tion in mind. Thus it does not fully exploit the possible carrency of the DSPs on the platform.

Currently, the receiver emulation is considered untimdtatTs why concurrency is not yet mean-
ingful. Instead, receiver emulation is important to idBntihe required DSP functions and the way
how they are programmed (= how the control register parambsve to be set) in a pure software
environment which speeds up the design flow significantly.

To enable a simple integration of other standards in casautiimodal processing and to simplify

updates due to changes in the baseband and thus in libembbclw@ed an additional layer be-

tween the receiver code and libembb caklegpr essmi no_enu (Fig. 3.7). So the receiver calls

only the functions defined iexpr essm no_enu which then calls the libembb routines.

IEEE 802.11p : m
receiver code <—>{expressm|mo_emu

Figure 3.7: Emulation Codestructure

In the following a code example for a DFT operation is givermeTunction call in the receiver
code looks as follows:

emm fep fft (256, DFT_ADDR in, DFT_ADDR out, 0);

The first value indicates the size and the last value if a DFAndDFT has to be performed.
The function definition can be found éxpr essni no_enu:

void emmfep fft (uint32_t size, uint32_t src, uint32_t dst,
uint32_t inverse)
{
FEP_CONTEXT *ctx = &ct xf;
FEP_FFT;
fep_start(ctx);

}

The FEP_CONTEXT is an enumerate that contains pointer to all the control tatdsregisters of
the FEPFEP_FFT is a macro where all the necessary parameters using libeooltibes are set:

#define FEP_FFT { \
uint 32_t src_addr _index, dst_addr_index; \
uint32_t src_nenguarter, dst_nmenguarter; \
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src_addr _i ndex
dst _addr _i ndex
src_nenquarter
dst _nmenqguarter

get _addr _index fft(offset_src); \
get _addr _index fft(offset _dst); \
get fep_nmss_bank(offset _src); \
get _fep_nss_bank(offset_dst); \

fep_set | (ctx, size); \
fep_set i (ctx, inverse); \
fep_set _bx(ctx, src_addr_index);
fep_set bz(ctx, dst_addr _index);
fep_set _qgx(ctx, src_nenguarter);
fep_set_qgz(ctx, dst_nenmqguarter);
fep_set _wx(ctx, 3); \
fep_set_wz(ctx, 3); \

fep_set _op(ctx, FEP_OP_FT); \

— e - —

Due to the applied local addressing scheme of the whole FEB, M@& FEP MSS bank and the
related offset inside the bank have to be identified befotengehe parameters.

The emulation prototype of the IEEE 802.11p receiver sugpt different modulation schemes
and code rates. It has been annotated by cycle counts anulegdtby the generation of trace files
for an efficient receiver evaluation. Apart from that it autttically generates files that can be used
to plot (intermediate) results in Matlab or Octave. All taehhancements allow an easy validation
of the receiver and the identification and implementationaxfessary algorithmic improvements
in a pure software environment.

3.4.4 Hardware Prototype of the IEEE 802.11p Receiver

In the future design flow, the code written for emulation caaatly be compiled for the hardware
platform even for standards with short data sets. Currardith parameter setting function (e.g.
fep_set_I (ctx, size))firstreads the related register value from the FEP corggibters,
modifies the bits that corresponds to the parameter in the @RU and writes the register value
back. As this is done for each of the parameters, this proeeuvery time consuming and
ends up at an average programming time of around 425 ns pempter. If one imagines that a
standard FEP operation requires at least 14 parameteshitisus, that this procedure is too time
consuming in case of strong latency requirements. To gdtigfse strong real-time constraints,
the emulation code has therefore been revised and optiraeeatal times before being ported on
the ExpressMIMO platform. The improvements included thei@h of an appropriate OS for the
main CPU (more specifically LEONS3), a flexible scheduler teaeie the different DSP engines
simultaneously, grouping of DATA OFDM symbols and the gatien of command words offline
before the receiver is started.

3.4.4.1 C Code Optimization

Performance improvements can already be obtained by @itignihe C code running on the main
CPU to decrease the overhead due to functions calls aftepitadian. Modifications include
a higher number of inline functions and macros as well as @dadmumber of parameters set
dynamically at runtime.
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3.4.4.2 Interrupt Handler

The interrupt handler provided by MutekH is very fast andcedfit. The time measured on the
platform from the moment an interrupt is raised on the basgtside till the main CPU reacts
and continues with the next assembly command takes onlyt@&@®ws. This time is negligible
for common standards but not for standards like IEEE 802dslphe overhead caused by the
interrupt handler results in a significant performance diregall: the duration of one OFDM
symbol is 8us). An alternative to interrupts is to poll the status regsiof the DSP engines. In
this case the time the main CPU takes to continue with theamsdémbly command is only about
436 ns.

3.4.4.3 Command Preparation at Runtime

The standardized DSP shell supports the preparation ofdkecommand while the PU is still
busy. As soon as a command is prepared, the pending flag ithekregisters is set to one. It
depends on the data dependencies of the code where thiefeatube used. In case of the energy
detection, for instance, command preparation is not plessib the result of the FEP operation
is required for the decision of how to proceed in the prograw.flinstead it can be observed
for the packet synchronization that this feature lowerscthiamunication overhead significantly.
While the DFT is running, the CWP command can already be progred. And while the CWP
is running, the IDFT command can be prepared, etc. The cornwation flow is thus executed in
parallel to the DSP processing and the receiver performafiteese operations is only limited by
the processing time of the DSP and not by the communicatierhead any more.

3.4.4.4 Scheduling

When compared to other wireless communication standands|BEEE 802.11p standard is ex-
tremely latency critical due to the short time availabletkie acknowledgement packet has to be
sent. That is why we abandoned the overhead that the usageSiXRhreads would have en-
tailed. Instead, we relied on a very simple thread model wloere thread is assigned to each
concurrent platform entity, such as the Processing Unitstla® DMA engines.

Per thread, two different data items are checked and updated

e aposition pointerto the next code function that shall be executed. This poistapdated
when the control flow moves on to the next potentially blogkactivity on the platform
which is either a DSP or a DMA operation.

e acondition pointerto a memory location indicating if the task is runnable or (gg. busy
flag of the DSP).

The question whether a thread can be executed depends odiatile &f the DSP engine. If the
DSP is ready, the thread is runnable immediately while itasked when the DSP is in busy state.
For the moment the scheduler is based on a Round Robin pailtdydould be an interesting task
to experiment with different scheduling policies in theuit.

Fig. 3.8 illustrates the scheduling of the different DSPireg. Once, the results of a DSP are
available, they are copied into the MSS of the subsequent D&fhg this time, both DSPs are
busy. In contrast to the SIGNAL field, the structure of the BAield allows to decode different
data symbols in parallel. The processing flow depends onuh#ar of DATA OFDM symbols
available in the FEP MSS:
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1. Assuming the case that the Preprocessor provides one @MBM symbol as soon as it
is received, the scheduler has to wait till the next symbabalable before it can schedule
the next IEEE 802.11p task to the FEP (Fig. 3.11(a)).

2. When more DATA OFDM symbols are available in the FEP MS8,REP can be started
again once it finished the decoding procedure of one symbgl &11(b)). The time the
different DSP engines are busy will increase as the schedaketo take care of the FEP
and the Deinterleaver tasks in parallel.

STS LTS SIGNAL DATA_1 DATA 2

INTL

CHDEC

(a) DSP Engine Scheduling when only one DATA OFDM Symbol @ilable

STS LTS SIGNAL  DATA_Group

INTL

CHDEC

(b) DSP Engine Scheduling when several DATA OFDM Symbolsaaeslable

Figure 3.8: IEEE 802.11p DSP Processing and Scheduling

3.4.4.5 Symbol Grouping

Another possible optimization in the design flow is the giogmf DATA OFDM symbols for the
FEP so that the FEP can operate on larger vectors. It is ob¥i@i the required communication
overhead is strongly correlated with the number of DATA OFB¥inbols that are grouped. The
more symbols are grouped, the less the communication agrhiehe choice of the maximum
group size depends on the number of OFDM symbols suppliethdyPteprocessor pacquisi-
tion cycle An acquisition cycle corresponds to the time fill samples are stored in the output
FIFO of the Preprocessor MSS. Currently the maximum grome kas been set to eight. The
operations to be performed in the FEP for each OFDM symbolpeis@ DFT, channel compen-
sation and data detection. Compared to the case when symbel/mbol is processed, 28 FEP
commands can be saved for the considered maximum group size.

The actual group size applied at runtime is determined aatiogily. It is set to the minimum
between the number of OFDM symbols available in the FEP M3tz maximum group size.
This ensures, that the FEP is always processing and notdaldokcase not enough OFDM sym-
bols are provided. Table 3.11 recalls the FEP operationsepted in Table 3.6, Table 3.9 and
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Table 3.10 and shows which operations are currently grauped

To continue the processing over the grouped output vecfahed-EP, the Deinterleaver permuta-
tion table generation has been modified to enable a Deiatentgrocessing of the whole grouped
result vector. Per possible group size one permutatioe falprovided due to the different sizes of
the input vectors. At runtime, the decision which permuotatiable to take is chosen dynamically.
In a future version of the receiver, the same will apply fa& @hannel Decoder.

Function DSP/DMA | grouping
FFT FEP no
CwP FEP yes
fep2fep (4 times) direct no
dot product FEP no
fep2leon (2 times) direct no
leon2fep direct no
CwWP FEP yes
16-QAM

type change FEP yes
absolute value FEP yes
CWA FEP yes
64-QAM

type change FEP yes
absolute value FEP yes
CWA FEP yes
type change FEP yes
absolute value FEP yes
CWA FEP yes
DMA transfers to DEINTL

fep2deintl FEP DMA yes

Table 3.11: DATA OFDM Symbol Grouping

3.4.4.6 Command Preparation before starting the Receiver

An efficient way to optimize the centralized control flow ispi@pare the commands and to store
them in a memory on the control side before starting the veceMhen applying a centralized
control flow, the DSP engines are all programmed by LEONS3. paesmeter, the programming
time takes around 425 ns. In case only one parameter has tattenwthe communication over-
head is negligible, but usual FEP commands, for instancapadse at least 14 different parame-
ters. This results in a total programming time of at leags@er operation. When preparing the
commands in advance, the required programming time atnenis significantly reduced to 70 ns
per 32 bit command register. In case of the FEP which has ghesk registers, the programming
time is therefore decreased from aroung$to 420 ns. Fortunately most of the IEEE 802.11p
commands are static and can easily be prepared. In casenagtaras set dynamically at runtime,
the performance gain depends on the number of parameteessit and how they are distributed
over the 32 bit command registers. For the IEEE 802.11pvecet maximum one parameter is
set dynamically per operation. The related timing overhisatkgligible as only one additional
assembly command is required for this operation. For thencand preparation, the same macros
than for the receiver emulation are used.
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3.5 Results

The presented results have been obtained with the emulatidatype of the IEEE 802.11p re-
ceiver and by a cycle-accurate HW/SW co-simulation. Priothiat, the whole receiver chain
has been validated on the hardware platform itself for areefse frequency of 100 MHz. The
results have been retrieved using the JTAG and the PClexpmemection. To achieve a higher
performance this frequency will be increased in the nearréut The maximum achievable fre-
guency considering the FPGA target is determined by the @Rid which can be processed up
to 133 MHz.

To get exact figures about the receiver performance, diftdest signals have been generated for
validation. First, test signals generated with the Matkeflenrence model have been used. These
signals are based on the example provided in the annex ofdhdasd specification and can be
generated for any packet length, code rate and modulatieense. Second, our receiver has been
validated by testing different snapshots provided by oA project partner BMW. These have
been generated with the Densobox, NEC Linkbird and a SimTBorogcle. All of them were
QPSK modulated.

3.5.1 Remarks
e For the scheduler a Round Robin policy is applied.

e Results of the Channel Decoder are provided under the asgumtpat the tail-biting is
already included in the current design. For the tests on #néware platform the Chan-
nel Decoder is invoked only once, once the Deinterleaverltesf all DATA symbols are
available.

e The receiver is considered to be real-time capable if thegssing time of the constant
part is below 4Qus and if FEP, Deinterleaver and Channel Decoder take leasdtha per
OFDM symbol when performing the DATA field detection.

3.5.2 Resource Consumption Results obtained with libembb

The emulation prototype of the IEEE 802.11p receiver givéissainsight in the resource con-
sumption of the different DSPs with the aim to answer theofelhg questions:

1. Which DSP is used most of the time?
2. How much processing time is required for DMA transfers?

3. Considering only the processing time, can the receivexbeuted in real-time on the plat-
form? If not, where are the bottlenecks?

4. Would it be possible to execute the receiver together atitler transceivers? If not, where
are the bottlenecks?

Thanks to the emulation environment libembb, these resaltsalready be obtained at an early
design stage and allow an easy improvement of the standani@rimentation in a pure software
environment.

First results of the IEEE 802.11p receiver have already Ipeesented in [2] but since then the
design has further been optimized. Basically, the prongstiine of the receiver without consid-
ering the communication overhead can be split into two pdtisbusy time of the DSPs and (2)
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dead time. The latter is the time when no new receiver taskbeascheduled as the end of the
Preprocessor acquisition cycle is not yet reached. Forimmadial processing, the dead time is of
major importance as during these time slots tasks of anathedard can be scheduled without
decreasing the performance of the blocked one.

For our receiver we assumed that the Preprocessor collé@ts@nplex samples before they are
transmitted to the FEP. This corresponds to an acquisityote @uration of 64us. In case the
beginning of the packet corresponds to the first sample irbélesample window, the constant
part and three DATA OFDM symbols can be processed till theesy$as to wait for the next sam-
ples. There are two options to identify the time slot avddab process another standard. Either
to validate all possible scenarios for the 640 sample windote rely on an earliest deadline first
policy. The first is not an appropriate approach as the etialuaf all possible scenarios is a very
time consuming procedure. Furthermore the results have teworked completely in case the
reference frequency is modified. An example analysis usiisgnethod has been illustrated in the
Deliverable D2.4 of the PLATA project. In case of the eatlidsadline first policy, the deadline
should be based not on every operation but on a group of epesatSuitable groups for IEEE
802.11p are the constant part and the OFDM symbol groupsedDATA field. This means that
the processing of the constant part has to be finished withiasAwhile the size of the time slot
available for the DATA field detection depends on the groap #iat is set dynamically at runtime.

Table 3.12 illustrates the execution and the memcopy runfonthe constant part for the applied
frequency of 100 MHz. All times represent the busy times efiEPs meaning that DMA trans-
fers between the DSPs are considered twice as both DSPssyrelming that time. Applying a
higher frequency than the chosen one (e.g. 1/2 faster) wesldt in a reduced processing time of
1/2 as no communication overhead is considered in this xontée results in the table illustrate
that the total processing time is far below the available.40 So around 2%s are left for the
communication with the main CPU.

Task DSP | memcopy total
energy detection 1.40us 0.11pus | 1.51us
packet synchronization 5.65us 0.11us | 5.76us
channel estimation 0.82us -1 0.82us

Signal Field (FEP) 1.69us 1.94us | 3.63us
Signal Field (DEINTL)| 0.64us 0.98us | 1.62us
Signal Field (CHDEC)| 0.64us 0.63us | 1.27us

Table 3.12: Task Runtime for the DSP Engines - Constant Part

In Fig. 3.9 illustrates the distribution of the processiimye over the different resources. The FEP
is required most of the time, followed by the DMA transferstba baseband side. Deinterleaver
and Channel Decoder operate only on vectors with a size cid®lkes and thus need only a small
amount of the overall processing time.

For the DATA field detection, the actual processing time dejgeon the modulation scheme, the
code rate, the symbol grouping and the number of symbolsret in the field)V,,,,,. Table 3.13
lists the different processing times for a group size of ki(fimlue) and a group size of 8 (second
value) for the different modulation schemes and code r&testhe latter, the average processing
time per symbol is given. It can be seen that the FEP and thet®kiaver execute their tasks
within the required §:s while for 64-QAM with code rate 3/4 this is almost not pogsit5o we
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see already at this step that either an optimization of then@&l Decoder or a higher frequency
is necessary (when applying a frequency of 133 MHz, the reménts are fulfilled for all DSP

engines).
FEP DEINTL
68% 5% memcopy leon 8%
memcopy baseband 14% LEON3
CHDEC
5%

Figure 3.9: Runtime Distribution - Constant Part
DSP BPSK BPSK QPSK QPSK

rate 1/2 rate3/4 rate 1/2 rate 3/4
FEP 3.07us/2.56us | 3.07us/2.56us | 3.15us/2.64us | 3.15us/2.64us
DEINTL | 1.62us/0.85us | 1.95us/1.184us | 2.28us/1.51us | 2.94us/2.17us
CHDEC | 1.27us/0.92us | 1.76us/1.36us | 2.14us/1.79us | 3.01us/2.66us
DSP 16-QAM 16-QAM 64-QAM 64-QAM

rate 1/2 rate 3/4 rate 2/3 rate 3/4
FEP (init) 2.67us 2.67pus 3.18us 3.18us
FEP 4.84us/3.83us | 4.84us/2.83us | 6.53us/5.02us | 6.53us/5.02us
DEINTL | 4.08us/2.17us 5.4us/4.42us | 7.12us15.93us | 7.78us 1 6.59us
CHDEC | 3.88us/3.53us | 5.62us/5.27us | 7.36us/7.01us | 8.23us/8.01us

Table 3.13: Task Runtime for DSP Engines (including memgpey DATA OFDM Symbol

The results in the following present the runtime distribatfor the minimum and the maximum
group size. For the Deinterleaver processing, the worst saassumed when the permutation
table is copied from the VCI RAM into the Deinterleaver MS$ &ach DATA symbol group.
This effect mainly occurs for short packet lengths wheredgtmip size is not always constant
while for a long packet length it can be assumed, that the piation table is copied only three
times (in worst case): for the first / last group and for thea#img groups with the length of the
max group size. Not copying the permutation table reduce®tisy time of the Deinterleaver by
around 17 %.

Fig. 3.10 and Fig. 3.11 show the runtime distribution resfdt the minimum case (BPSK, coding
rate 1/2) and the maximum case (64-QAM, coding rate 3/4).1&\fbr BPSK the FEP takes most
of the resources, it is the Deinterleaver for 64-QAM. Thesagefor that can be found in the longer
permutation table required for 64-QAM. Recalling Table, 3t number of data bits per symbol,
Napps is 24 for the BPSK example and 216 for the 64-QAM example teguin permutation
table lengths of 48 and 512 entries for a group size of one.ré&sdlts further illustrate that the
resource distribution is almost similar for the two diffetgroup sizes. But this will change most
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probably once the communication overhead is consideredeis What changes already is the
overall processing time that has been reduced by 17 % for Biriskby 13 % for 16-QAM per
group. It is worth to mention, that the results of these figune based on a sequential processing
flow. The possible parallelism of the different DSPs is natsidered yet.

When changing the overall packet length and thus the numbBABA OFDM symbols in the
DATA field, the processing time depends on the size of theggolf N,,,, is a multiple of eight,
the overall processing time is achieved by multiplying theven results by eight. The percentage
values will not change. IV, can be split in groups of eight plus a group with size x, thealve
processing time will be eigth times the values related tocaigrof eight plus the values for the
group X. The probability of a percentages change will depamdhe overall size of the packet
but in any case the percentage values will be between thellivetrated cases in Fig. 3.10 and
Fig. 3.11.
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3.5.2.1 Case Study: Multi-Standard Processing of IEEE 8021p and ETSI DAB
A) Motivation

The combination of C2X communication (IEEE 802.11p) and GFEformation (ETSI DAB

[44]) brings not only safety but also commercial benefitsadgimable use cases of the latter are for
example entertainment and comfort applications like laddf@rmation about restaurants, internet
in the car, TV, etc. The standards supporting these newcaigins are less latency critical and
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reliability is not of such importance than for safety apations.

The ETSI DAB standard used for TPEG information has beenldpgd between 1987 and 2000.
Although the standard was not very successful at the begintie work on it has been restarted
in Germany in 2011 in the context of DAB+. The aim is to devdiogt applications that can reuse
the already existing infrastructure.

The necessary scheduling of IEEE 802.11p and DAB includiegésource management for mul-
timodal processing is still an open research topic. Forron there is not so many information
available yet. In a recent paper ([71]), an SDR control fraoré to provide the required co-
existence services and necessary interface was presentedframework is based on an SDR
technology demonstrator presented in [72]. The goals efdemonstrator are manifold. It is not
only used to prove that different wireless communicati@ndards can be dynamically installed
or started but also that they can run in a coordinate fasHibis means that all standards are real-
time compliant and that the hardware resources can be stmagdefficient manner. In [71], the
presented scheduling is performed by putting the operatiqnest from the standards into a com-
mon timeline which is executed in small slices that are dadteheduling windowTheir selection

is not static as it depends on the number of active channeishvelne the wireless communica-
tion standards to be processed in parallel. Further theyifgdhree different types of scheduling
tasks:

e A rigid operation is an individual operation whose time slot has a fixed stadteard time.
Their length does not exceed the scheduling window and tifiereit operations do not
depend on each other.

e A set of multiple rigid operations that have boolean relaidike and or or are called
flexible operations As an example they mention a primary uplink/downlink slair gTX1
+ RX1) which is followed by two backup slot pairs as appliedifestance in Bluetooth.

e The last type of scheduling tasks a@ntinuous operationswhich may exceed the window
length. So they have to be scheduled piecewise.

The work presented in this context is based on the first typeloéduling tasks.
B) ETSI DAB Receiver Mapping on the ExpressMIMO Platform

The DAB [44] prototype has been developed at BMW and TUM arsdrbeently been presented in
[73]. The standard defines four different transmission rsadeere mode | is the most commonly
used. Table 3.14 lists the modulation parameters for thiegppansmission mode I. In contrast
to IEEE 802.11p, DAB is a frame based standard where eaclefra®a duration of 96 ms.

Parameter Value

frame duration 96ms, 76 Symbols
symbol duration (total, useful, guard)1.246ms, 1ms, 246us
null symbol duration 1297ms

transmission bandwidth 1.536 MHz

OFDM type 2048-FFT, 1536 used
modulation D-QPSK

bitrate 2.4 Mbps

Table 3.14: ETSI DAB Specification: Transmission mode |
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The DAB frame structure is shown in Fig. 3.12. Each frame Hasgth of 96 ms and consists of

a Synchronization Channel (SC), a Fast Information Chatfl€l) and a Main Service Channel

(MSC). While the SC is required for basic demodulator fumtdi (transmission frame synchro-

nization,...) the FIC is needed for a fast information as@@® contains information on the MSC
data such as labels, type, length or protection level. Bmsmission mode | it is composed of 12
Fast Information Blocks (FIB), each with a size of 256 bit.ddaand data service components are
carried by the MSC. For transmission mode | it is build of 4 @aom Interleaved Frames (CIF)

where each CIF is composed of 864 so-called capacity urdtshtive a size of 64 bits.

Synchronization Fast Information Main Service
Channel Channel Channel
| | |
| | |
1 1 1
] FIB1 I lFIBlZ| CIF1| | CIF4’

Figure 3.12: ETSI DAB Frame

The basic DAB receiver structure is sketched below. Goitgtimo much details would go beyond
the scope of this report. For more details about the difteméigorithms please refer to [74].

1. To lock to the DAB signal, an initial time synchronizati¢8Tl) and a coarse and fine
frequency estimation (SFC, SFF) are performed. STI is @redcanly once by using a
sliding window. Goal is to find the zeros that are separatimegdifferent frames. All these
operations can be performed by the FEP, except the slidindawi operation to determine
the actual start of the frame and the:tan to find the actual frequency offset which are in
the responsibility of the main CPU.

2. Once the synchronization is performed, changes causeyydigm variations have to be
tracked. This is done by tracking time (TTI) and fine frequeaffset (TFF). These opera-
tions are performed by the FEP as well, except for the detextion of the frame start the
actual frequency offset.

3. Next the fine frequency is corrected based on the estirbéldé) @nd the OFDM symbols
are demodulated (FFT, DEM). The DAB OFDM symbol consists&#@lactive carriers and
is modulated using DQPSK (differential QPSK). For DQPSK dduiation, the carriers of
the current OFDM symbol are just multiplied with the carsi@f the previous one. The
OFDM demodulation (FFT) is thus performed using a 2048-0F6r. both operations the
FEP is needed.

4. For frequency deinterleaving (FDI) which is performe@iogne OFDM symbol the Dein-
terleaver is taken. Instead, the time deinterleaving tacedhe fading channel effects runs
on the main CPU. The reason for that is that this operatioarf®pmmed over the span of sev-
eral frames (total depth of 384 ms). This size does not fitimdMSS of the Deinterleaver.
The time deinterleaver is not needed when decoding the FIC.

5. Unpuncturing (PNT) is performed by the Deinterleaver. BDdupports a wide range of
different code rates between 8/9 and 1/4.

6. For Viterbi Decoding (VIT), the Channel Decoder DSP isuieed. The constraint length is
7 and 8 bit for soft decision are used.
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7. Finally, energy dispersal (EDI), audio decoding (MP2) #me extraction of additional in-
formation from the FIC are done in the main CPU. EDI is perfednby the XOR of the
current sequence with a pre-defined pseudo-random one.

To simplify the DAB receiver implementation we enhancedatbditional layer called

expressm nmo_emnuthat has previously been presented by the missing DAB fonstiThe run-
time results can be seen in Table 3.15. As the FEP memory itetino 4x4 kSamples, the FEP
context has to be saved and restored several times in the DBR2 control side. Fig. 3.13 illus-
trates the runtime distribution for one DAB frame of 96 ms. ¥lof the processing resources are
due to the memcopy operations between the baseband engitizeaDDR?2. The overall process-
ing time is about 8.22 ms and the longest single DSP call foamé of 96 ms is a Deinterleaver
task of 1.23 ms. So there are a lot of resources for IEEE 8p2dsks available.

Task DSP Memcopy total

SFF 0.1 ms (17.2%) 0.48 ms (82.8%) 0.58 ms
STI 0.33 ms (9.2%) 3.26 ms (90.8%) 3.59 ms
SFC 0.3 ms (21.6%) 1.09 ms (78.4%) 1.39 ms
TTI 1.06 ms (18.1%) 4.80 ms (81.9%) 5.86 ms
TFF | 1.60 ms (13.0%) 10.7 ms (87.0%) 12.3 ms
FFT | 2.54 ms (25.5%) 7.43 ms (74.5%) 9.97 ms
DEM | 2.95 ms (14.3%) 17.6 ms (85.7%) 20.6 ms
FDI 4.37 ms (18.6%) 19.1 ms (81.4%) 23.5ms
PNT | 6.08 ms (56.8%) 4.65 ms (43.2%) 10.7 ms
VIT 1.52 ms (24.6%) 4.65 ms (75.4%) 6.17 ms

Table 3.15: Task Runtime for DSP Engines and Memcopy for @& of Audio Data

FEP DEINTL

11% 12% memcopy leon 73%
memcopy baseband 0% LEON3
CHDEC

4%

Figure 3.13: DAB Runtime Distribution for 1 DAB Frame (96 ms)

C) Runtime Distribution Comparison of ETSI DAB and IEEE 802.11p

The differences between the two standards are listed ineTaldl6. While the DAB receiver

is operating on long vectors and has no latency requirem&BEE 802.11p needs a very fast
baseband engine to fulfill the strict latency requiremenhte critical DSP in the design is the FEP.
Although Deinterleaver and Channel Decoder also requiie gome resources to process both
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standards, usual tasks to be scheduled comprise only omatiope Instead, the FEP processing
is split in a lot of different tasks that can be grouped to roagerations like channel estimation
or data detection. The FEP DAB runtime distribution for arfeaof 96 ms is given in Table 3.17.
Most of the tasks are vector processing operations, thabeaplit easily at runtime if necessary.
Critical are the DFT / IDFT operations requiring a procegdime of 9.493us. A major challenge
processing the two standards simultaneously is that thedsitér has to ensure, that these 27
operations can be scheduled without causing problemséairtting of the IEEE 802.11p receiver.

ETSI DAB IEEE 802.11p

frame based standard packet oriented standard

2048-OFDM 64-OFDM

OFDM symbol duration of 1 ms | OFDM symbol duration of 64:s

DAB frame duration of 96 ms variable packet length (between 48 and 10.968 ms)

deterministic timing and processirngprocessing time depends on packet size
modulation scheme, interarrival time

Table 3.16: Comparison of ETSI DAB and IEEE 802.11p

Duration | Number of Calls
0.113us 443
1.813us 10
3.520us 15
6.933us 42
9.493us 27
13.760us 15

Table 3.17: FEP DAB Runtime Distribution for one Frame (9§ ms

Table 3.17 illustrates the FEP runtime distribution for EBEE 802.11p receiver. The group size,
denoted by N, strongly influences the number of tasks to bedsdéd. Taking the worst case
example of BPSK with a code rate of 1/2, the number of DATA OFBywhbols is 1366. For a
group size of one, there are 2740 operations a s4®ut for a group size of eight (plus one group
with a size of six), this can be reduced to 1376 operationsagzoing Table 3.16 with Table 3.17
it can be seen, that all entries in the IEEE 802.11p tableragdlar than the second entry in the
DAB table. To avoid a permanent scheduling of IEEE 802.1%kddt is therefore recommended
to group the FEP functions into execution groups. For thenfedeaver and the Channel Decoder
grouping of commands is only of interest when the DSP comneamdbe combined with DMA
transfers.

Duration | const. part | init 16-QAM | init 64-QAM | BPSK/QPSK | 16-QAM | 64-QAM
0.39us 2 N N N
0.43us 3 2 3 2 5 8
0.44us 1 N N N
1.39us 1
1.4us 2
1.43us 2

Table 3.18: FEP Runtime Distribution IEEE 802.11p
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D) Presentation of a Possible Scheduling on the ExpressMIM®latform

The scheduler being developed for the ExpressMIMO platfoasito be able to cope with different
wireless communication standards that may have contréendg requirements. Challenging in
our case is the real-time processing of IEEE 802.11p despitike simultaneous processing of
DAB. Reconsidering the presented results, not much timefisfér DAB FEP tasks once the
beginning of a packet has been detected. Furthermore thke\sbbeduling is unpredictable as
the arrival time of the next IEEE 802.11p packet is not knowadvance.

The main goal of the scheduler is to keep the invoked DSPs tmasy of the time to achieve the
best cost-performance relation. Factors to be consideheshwesigning the scheduler are (1) the
data dependencies for both standards, (2) the processirgfithe tasks to be scheduled and (3)
the available memory space to avoid unnecessary memcopgtigpes. For (3) it is important to
group IEEE 802.11p operations in so-callegecution Groupshat comprise all the operations
that have to be scheduled at once. To recall, possible giampbe the constant part of the packet
and the different groups of the DATA field. In addition the DAIBsign has to make sure, that after
each group, the DAB can use the resource it asked for witlomsirhg any information. For the
FEP, this is not a big problem. The MSS of the FEP is organiaddur different banks of same
size. While the IEEE 802.11p receiver uses all four banksDIAB requires only three out of the
four banks for its processing. So all known values, like #fenence STS, as well as the circular
buffer of the incoming samples of the IEEE 802.11p receiaertwe stored in this unused memory
bank.

Another challenge is that the scheduler has to be able talelelinamically at runtime how to
copy the data samples from one DSP to another. In case th®6&xis busy, the samples have to
be stored into the VCI RAM to unblock the just executed DSRliernext task. If the next DSP
is not busy, the samples can be copied directly (Fig. 3.14).

receiver 1 ’vciZchdec | chdec | chdec2deintl | deintl | deintIZti

receiver 2 ’ vci2fep | fep | fep2vci | |vci2chdec | chdec ‘

Figure 3.14: Flexible Memcopy Scheduling at Runtime

When scheduling DAB FEP tasks it is recommended to split timeonsmaller operations to guar-
antee the real-time behavior of the IEEE 802.11p receimasrder to avoid unnecessary memcopy
operations, the scheduler has to decide dynamically amernif a splitting of vector operations is
necessary or not. The only operations that are not splita®AB DFT / IDFT operations which
take 9.493us. To ensure a high performance of both standards we theresfoommend to add a
separate DFT / IDFT unit in the design.

For DAB, the long Deinterleaver tasks are only executed ftiome to time. In case IEEE 802.11p
requires the same resource, its samples have to be buffetied YYCl RAM and executed at once
as soon as the DAB Deinterleaver task is finished. To do so Efe dan already continue pro-
cessing without being blocked till the IEEE 802.11p sampkes be copied. The same is applied
for the Channel Decoder. It is obvious that this only workth# main scheduler knows exactly
at runtime how many data symbol groups are stored in the VQVIRA that it can program the
Deinterleaver and the Channel Decoder accordingly.

Within our collaborative work, a first scheduler has beenléanented and tested in a software
environment only. Nevertheless we enhance the followiggimentation for the hardware pro-




50 3. IEEE 802.1% RECEIVER FOR THEEXPRESMIMO PLATFORM

cessing.

Both receivers are single-threaded. The parallelism oflifierent DSPs on hardware is realized
within the execution groups by programming the differentF3Susing a Round Robin sched-
uler. Each receiver task to be scheduled contains a flagigtétithe task isbl ocki ng or
unbl ocki ng. Blocking operations occur only within an execution groum atate, that the
scheduler is not allowed to give the DSP to another apptinatht the end of the execution group,
the flag is set to unblocking to force the next action by theedater. The scheduling queues of
the DSPs and the DMA engines have therefore a depth of onlycomenand. We still have to
include the deadlines of the macro operations. They have fardvided with the first command
of an execution group and should represent the availableepsing time of the whole group and
not of single tasks.

When applying a distributed control flow in the future, it scommended to execute the content
of the execution groups on the baseband side. In this caseydin CPU would only take care of
the main scheduling of the execution groups and not of sitagles.

3.5.3 Runtime Performance Analysis - Hardware Results

The hardware results have been obtained via a cycle acddvet&W co-simulation using Mod-
elsim. Besides the processing time that we already anaiyzthe@ previous section, the presented
results now include the communication overhead when aaler®d control flow is applied and
exploit a parallel processing of the different DSP enginethe ExpressMIMO platform.

The communication overhead can be observed when none of $ifts 3 busy. By evaluating
the relation between this factor and the processing timb®TISPs, clear statements about the
receiver performance can be made.

3.5.3.1 Constant Part

Table 3.19 lists the DSP processing time and the commuaicatierhead for the different algo-
rithms implemented for the constant part. These are enatgction, packet synchronization, the
calculation of the channel estimate and the SIGNAL fieldct&ia. The communication overhead
of the first two entries contains the programming time of therations as well as the value com-
parison to a known threshold in the main CPU or, more spetiifiche LEON3 processor. The
latter takes 350 ns once the result stored in the FEP MSS leaiscopied to LEONS3.

The SIGNAL field detection requires three different DSP aegi FEP, Deinterleaver and Chan-
nel Decoder. The busy times including the DMA transfers amaraarized in Table 3.19. The
DMA transfer of the results between the DSPs are therefansidered twice (once per affected
DSP) meaning that sum of the busy times does not correspahé tuverall DSP processing time
of the SIGNAL field. The additional communication time remai for the FEP processing is re-
lated to the channel compensation algorithm where thetre$uhe FEP sum operation has to
be transformed into a complex 32 bit value in LEON3. Durinig time, the FEP should not be
interrupted by another task. Furthermore, the calculatfaine parameters needed for the DATA
field detection (number of DATA OFDM symbols, code raterequires an additional processing
time of 2.74us.

To sum up, the overall processing time of the constant padbdsit 23us plus the time required
for an internal DMA transfer in the FEP MSS due to some interestrictions. This additional
processing time may vary and causes an additional worstrasessing overhead of 26 when
using the internal FEP DMA engine but can be reduced tqu6.@hen using the MOV operation
of the FEP instead. Not considering this variable transfiee tonly 40% of the Signal Field pro-
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cessing time is required by the communication overheads Wdue is still not optimum but can
only be decreased by a distributed control flow on the platfor

total proc. time | DSP proc time | communication overhead
Energy Detection 2.82us | 1.51us (53.5%) 1.31 s (46.5%)
Synchronization 8.01us | 5.76 us (71.9%) 2.2545s (28.1%)
Calculation 1.65us | 0.82us (49.7%) 0.83 s (50.3%)
Channel Estimate
Signal Field 11.64us | 5.26 us (45.2%) 6.38us (54.8%)

Table 3.19: Runtime Performance Results

DSP proc time | communication overhead
FEP 2.99us (58.3%) 2.14 s (41.7%)
DEINTL 1.62us -
CHDEC 1.27us -

Table 3.20: DSP Busy Times (Constant Part) including the DMansfers between the DSPs

3.5.3.2 Variable Part (DATA Field)

The FEP operations of each DATA field OFDM symbol comprise taain tasks: channel com-
pensation and data detection. The average processing siraeftaction of the group size for
the data detection is illustrated in Fig. 3.15. BPSK and QR&Knot listed, as the result of the
channel compensation can directly serve as input for thatBdeaver. For 64-QAM, the com-
putation of the remaining bits results in a higher procestime of the FEP than for 16-QAM as
two more bits have to be calculated. Furthermore it can bergbd, that for an increasing group
size, a boundary value is reached which is equal to the paaepsing time of the DSP plus the
communication overhead plus some delays due to the schedule

Fig. 3.16 illustrates the performance loss when applyingoard Robin scheduler. For that the
average processing time of the Deinterleaver for 16-QAMwitcode rate of 3/4 is given. The
dotted curve represents the ideal case where tasks of tharfEte Deinterleaver are scheduled
instantaneously while the other curve shows the resultsnatiRound Robin scheduler is applied.
Finally Fig. 3.17 and Fig. 3.18 illustrate the overall presiag time including the DMA transfers
of the DATA symbols for the FEP and the Deinterleaver. As e, BPSK and QPSK perform
best as onlyR, ,, has to be copied from the FEP to the Deinterleaver. A cenga@lcontrol flow
is possible for BPSK, QPSK and 16-QAM as the processing tiftkeorequired DSP engines is
below 8.:s which corresponds to the duration of one OFDM symbol.

More detailed results concerning the DSP processing tirdgt@communication overhead for a
group size of eight are given in Table 3.21 and Table 3.22 th&FEP, the DSP processing time
takes between 40.1% and 56.03%. Best performs 64-QAM aglittigamal operations related to
the data detection can be programmed while the FEP is busig dily the DSP processing time
increases while the additional communication overheadisralmost unchanged. For the Dein-
terleaver, the processing time takes between 52.41% afié%6.The highest value is achieved
for 64-QAM with a code rate of 3/4 as the Deinterleaver osrain the largest possible vector in
this design with a size of 8*432 samples.
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Figure 3.16: Round Robin Scheduler for 16-QAM
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total proc. time DSP proc time | communication overhead
BPSK 50.62us | 20.5us (40.5%) 30.12us (59.5%)
QPSK 51.26us | 21.14us (41.2%) 30.12us (58.8%)
16-QAM 61.74us | 30.67us (49.7%) 31.07us (50.3%)
64-QAM 71.75us | 40.2us (56.0%) 31.55us (44.0%)

Table 3.21: FEP Busy Times DATA Field (group size of eight)

total proc. time DSP proc time | communication overhead
BPSK (1/2) 11.6pus | 6.08us (52.4%) 5.52 us (47.6%)
BPSK (3/4) 14.61us | 8.48us (58.0%) 6.13 s (42.0%)
QPSK (1/2) 16.36us | 10.88us (66.5%) 5.48 s (33.5%)
QPSK (3/4) 25.14us | 15.68us (62.4%) 9.46 s (37.6%)
16-QAM (1/2) 30.96.s | 22.64.us (73.1%) 8.32s (26.9%)
16-QAM (3/4) 40.24us | 32.24us (80.1%) 8 s (19.9%)
64-QAM (2/3) 52.15us | 43.364s (83.1%) 8.79us (16.9%)
64-QAM (3/4) 55.51us | 48.16us (86.8%) 7.35us (13.2%)

Table 3.22: Deinterleaver Busy Times DATA Field (group siteight)

3.6 Conclusions

In this chapter, we have presented a first receiver protdiypthe ExpressMIMO platform. Cho-
sen standard was IEEE 802.11p that is used for C2C and C2I ooination. Its short data sets
and strong latency requirements made these standard drfildease case to identify possible
bottlenecks in the design. The different implementatianrcéirrent version of the ExpressMIMO
platform considering an FPGA target included a Matlab gygte, an emulation prototype using
libembb and the prototype running on the real hardware.

Based on the obtained results we can state

e that the IEEE 802.11p receiver can be executed in real-imBPSK, QPSK and 16-QAM.
Assuming a higher target frequency like it is automatic#tly case when ASICs are con-
sidered, 64-QAM is real-time compliant as well.

e that a further reduction of the communication overhead céylwe achieved by a distributed
control flow using the UC or by a microprocessor or sequencghe baseband side.

e that polling is the preferable solution to determine the efithe DSP processing when
working with a standard with short data sets

e that commands have to be prepared for latency critical ataisd For standards with long
data sets like DAB or LTE, the real-time behavior is still guateed even if this recommen-
dation is not considered. When processing a vector oparatier a size of 4096 samples,
for instance, the required processing time would be aboytL2@hile the programming
time of the DSP stays at a maximum of 360 ns.

e that further improvements of the FEP have to include a flextgpe choice of the sum
operation.
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Apart from that this chapter presented a possible mappinbeoDAB standard on the Express-
MIMO platform. The results obtained using the libembb Ifyrhave been compared to the IEEE
802.11p receiver results to get basic key figures that arerirapt for the design of an appropri-
ate scheduling algorithm. As critical DSP engine we havatifled the FEP. Although it is not
the computationally most intensive DSP, it has to executstmbthe tasks including the latency
critical ones. Therefore we strongly recommend either &fasd further improved design or the
including of a second FEP in the baseband design. Based qdhigled key figures we further
derived guidelines for an appropriate scheduler and haagepted a first prototype.
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Chapter 4

ASIP Design for Front-End Processing

One of the key DSP engines on the ExpressMIMO platform isrér@-End Processor (FEP). To
overcome performance limitations of the FPGA target wherteting standards with short data
sets as identified in the previous chapter, we replaced th®wr@rocessing unit of the manually
designed programmable solution by a tool-based ASIP defgrdevelopment, the Language for
Instruction-Set Architectures (LISA) that has gained cemwial acceptance over the past years
has been chosen.

To evaluate the proposed ASIP, it is compared to the prograioherDSP solution as well as to two
recent ASIPs from academia. The thorough comparison betiesn is carried out in terms of
architectural differences and in terms of the runtime parfance. For the latter, the processing
time based on the actual cycle counts as well as the comntigricaverhead on the ExpressMIMO
platform is considered. In addition, we provide syntheswuits for different target technologies.

4.1 Motivation

Torecall Chapter 2.3.2.2, the FEP has been designed asrogemeat-end for OFDM/A (Orthog-
onal Frequency Division Multiplexing / Multiple Access)CS-DMA (Single Carrier FDMA), W-
CDMA (Wideband Code Division Multiple Access) and SDMA (8paivision Multiple Access)
air-interface operations. For the evaluation of the IEEE.80p standard, we considered a pro-
grammable DSP solution which is denotedG&EPin the following. This DSP is composed of
a vector processing unit combined with a DFT / IDFT unit. |a firevious chapter, we identified
the need for a second FEP block or for an additional DFT / IDRIT to increase the performance
especially when processing standards with short data Bktis drawback of the design was the
huge communication overhead that leaded to a significafdnoeance drop. It is worth to note,
that these limitations are related to the FPGA target andmtite final ASIC one. For the re-
design of the FEP we took the chance to collaborate with RWHdh&n University (Germany)
to evaluate the ASIP design methodology for ExpressMIM@@ien design. Another aim of our
collaboration was to overcome the C-FEP drawbacks for vegeration processing by removing
the DFT / IDFT unit from the standardized DSP shell and byaeiplg the vector processing unit
by an ASIP solution calle&-FEP. Following this approach, the A-FEP can easily be embedded
in the baseband processing engine of the ExpressMIMO phatémd FEP tasks can be split and
scheduled on the two FEP solutions simultaneously. Fogdesialuation, the A-FEP is not only
compared to the C-FEP but also to other ASIP solutions froad@mia in terms of architectural
differences and processing time.
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But where is the main advantage of ASIPs when compared ta ¢dkcbnologies? Important
factors to be considered for SDR platform design are areapamgr consumption as well as
the production costs. Major goal is to decrease the areacanmdnimize the power as much as
possible by maintaining the performance. In [75], a detiadieerview of the different System on
Chip (SoC) implementation techniques is provided. Teabgiek of interest are

e General Purpose Processorthat can be divided into two categories, GPP proper for gen-
eral purpose applications and microcontrollers for indalsapplications.

e Digital Signal Processomwhich are a subcategory of Application Specific Process&RA
DSPs are programmable microprocessors used for extensiverital real-time applica-
tions that are specialized for the digital signal procagsiomain.

e Application Specific Integrated Circuits which are also a subcategory of ASPs. They
are implemented in hardware, usually with a Hardware Dpsori Language (HDL) like
VHDL or Verilog.

e Application Specific Instruction-set Processorsvhich are a subcategory of ASPs as well.
They can be seen as a class of microprocessors coming withcakped Instruction-Set
Architecture (ISA).

The authors conclude, that ASIPs, tend to be suitable catedichs they are meant to fill the gap
between GPPs and ASICs. Being tailored to a specific apipicadSIPs offer a higher flexibility
than ASICs by exhibiting a lower energy consumption than &S®HDSPs at the same time. Or in
other words, ASIPs allow to tradeoff the performance of AS#gainst the flexibility of GPPs.

By additionally taking the advantage of high level tool® tirototyping is facilitated whereas the
generated design is not hardware optimized and may not fdédeated resource (e.g. FPGA).
On the other side, VHDL allows a resource-efficient FPGA glesilthough the implementation
requires a lot of time and resources. This drawback is oveecby tools like System Generator
from Synopsis which speed up the VHDL design process by aleigd block design and by the
support of fast design modifications.

4.1.1 Related Work

During the past years, lots of different solutions for flégifront-end processing as well as dif-
ferent ASIP design approaches and architectures have beposed. The work presented in this
section does not demand to be complete but shall give anievenf these different strategies.
Usually, ASIP architectures are evaluated in terms of feegy, area, power consumption and
the number of Millions of Operations or Instructions Per@et(MOPS / MIPS). Unfortunately,
the latter does not provide any information about the preingstime of the different air-interface
operations like channel estimation or data detection. &fbez we opted for the processing time
based on the cycle counts. Two recent ASIP solutions pnogitliis information are the ASIPs
developed by ETH Zirich [76] and by the Cairo University [7&$ these two solutions are mainly
considered for comparison in the remainder of this chaptdetailed architectural description is
provided at the end of this section.
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4.1.1.1 Front-End Processing Solutions

For the design of flexible front-end processing, [23] and| [T&e endorsed the efficiency of a
vector processing unit combined with SIMD operations. éiltbh a higher performance can be
obtained by exploiting instruction level parallelism wsMLIWS or by task level parallelism.

In Chapter 2.2 an overview of commercial and academic SDRopfa solutions has been pro-

vided, where flexible front-end processing was supporte8§IMD and VLIW designs. Examples

that have already mentioned comprise the EVP provided byrig3$6n [79] which is a key DSP

engine for 3G+/4G applications on low-power terminal amttures, the Systemonic HiperSonicl
[24], the Freescale MSC8156 high-performance DSP [25] hadSandbridge SB3011 Platform
[26].

Further solutions to be mentioned are

e C66x Baseband DSPThe C66x Baseband DSP is provided by Texas Instruments {&D] a
supports 2-way SIMD operations for 16 bit data and 4-way Sidierations for 8 bit data.
The instructions are based on 128 bit vectors.

e SODA (Signal-Processor On-Demand Architecture)SODA [81] is a fully programmable
SDR architecture that consists of multiple processingiest(PE), a scalar control proces-
sor and a global scratch-pad memory that are all connected shared bus. The design
of each PE includes an SIMD vector processing pipeline, a Digine, a scalar and an
AGU pipeline as well as local memories. The architecturaiithbr composed of an ARM
Cortex-M3 processor being responsible for top level taskswell as a system bus that
connects a global memory and four different processing etdsnwhere the latter support
data-level parallelism. Achieved performance is 2 Mbit's\W-CDMA and 24 Mbit/s for
IEEE 802.11a (including Viterbi decoding).

e ADRES: ADRES [82]is a coarse-grained reconfigurable processosthpgports instruction-
level parallelism by tight coupled VLIW instructions. Itsniplate consists of a set of dif-
ferent basic components whose types and interconnectierspacified at design time.

¢ SAMIRA: SAMIRA [83] is based on the STA approach that has already emduced
in Chapter 2.2. It is a low-power high-performance floatpaint vector DSP that supports
instruction level parallelism in a VLIW fashion. Per cyckach vector processing unit is
able to compute eight single precision floating point openst The whole design runs at a
frequency of 212 MHz.

e RaPID: The datapath of the RaPID design consists of a variable nuofdéear array
functional units (FUs) that can be Arithmetic Logic UnitsL(8s), multipliers, registers or
storage units. They are connected via a reconfigurable netRarpose and quantity of the
FUs are determined at design time. In [84] a 4 antenna OFDRkIvecbased on RaPID has
been presented. Algorithms of interest in this paper arimgjraynchronization and the FFT
of the four receive streams. These algorithms have also ioagped on ASIC, FPGA and
DSP targets for design comparison. Main conclusion of theep# that RaPIDs fill in the
gap between ASICs and DSPs when considering the perforntaste relation.

e Tensilica ConnX Baseband EngineTensilica [85] is one of the big industrial provider for
front-end DSPs. Its ConnX Baseband Engine [86] targetsfathigpughput for OFDM and
MIMO applications and includes among others complex carti@hs for synchronization,
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FIR filters, FFT, complex vector multiplication, vector mgtoperations, minimum search,
support for searching and sorting functions, division afiens, and so on. Basis of the
design is the Tensilica Xtensa Processor featuring SIMBDungons. Per instruction, six-
teen 18 bit multiplications, eight 20 bit additions or foulr it additions may be executed
in parallel. Additionally, the baseband engine supporésdakecution of three instructions
simultaneously (3-way VLIW architecture). Running at 4004%&) the vector processing
performance is similar to the one of the EVP but ConnX addéily comes with flexible
SIMD processing, configurable hardware blocks and an ekierigstruction-set.

e Coresonic Solutions:Another big industrial provider for front-end DSP solutsois Core-
sonic. In the following, some products are presented:

— Coresonic’s LeoCore:The LeoCore ([87]) is specifically designed for baseband pro
cessing applications. Its design is based on SIMT (Singl&uiotion stream Multiple
Tasks) where parallel tasks are controlled by a singleunstn flow. SIMT architec-
tures obtain the same performance as SIMD / VLIW ones but avgmaller program
size and a simplified control hardware.

— Coresonic's BBP1 processorThe BBP1 processor ([88]) is a multi-standard base-
band processor mainly designed for WLAN standards. Itsb@ask processing core
comprises an ALU and a complex-valued MAC unit as well as da¢snories and
specialized data processing blocks that can be programtmadtane.

— Coresonic’s BBP2 processorThe BBP2 processor ([89]) is an improvement of the
BBP1 processor by enhancing the first with the ability for tistdndard processing.
Its design includes two 4-way SIMD units operating on 16 binplex vectors. Up to
three different contexts for three different tasks are sujggl.

4.1.1.2 ASIP Design Approaches for Front-End Processing &tions

One common approach when designing ASIPs is the usage efdtiff Architecture Description
Languages (ADL). In general, these languages can be granplecke different categories ([90]):

1. Instruction-set centric languagesmainly focus on the instruction-set of the processor. As
stated in [90], they represent the programmer’s view of tishitecture and are mainly used
to describe the instruction encoding, assembly syntax ehed\ior. Examples are nML [91]
or ISDL [92].

2. Architecture centric languages mainly focus on the structural aspects for the architec-
ture. In contrast to instruction-set centric languagesy ttepresent the designer’s view.
Therefore, functional building blocks as well as intercections are used to describe the
hierarchy of the processor architecture. One example ¢f adanguage is MIMOLA [93].

3. Mixed instruction-set and architecture oriented languages are the combination of the
two previous listed language types. Here, instructiondestription and structural aspects
are combined which leads to ADLs being able to target all iptss\SIP domains includ-
ing architecture exploration and implementation as we#lyasem integration and software
development tool generation. Examples are EXPRESSIONgBd]LISA [95], [96].

During the past years, lots of different ASIP solutions famt-end processing have been pro-
posed, that were designed using the presented ADLs. Sonte @frthitectures focus only on
some air-interface algorithms while other designs arertadl to the processing of a specific group
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of standards. Examples for the first group are [97] where mblagqualization based on the TTA
approach is presented, [98] which focuses on an ASIP forr@iastimation, [99] which presents
an ASIP for signal detection and coarse time synchroniazaiging LISA or [100] which focuses
on a flexible ASIP design for wireless communication stadslaiAs a case study [100] presents
the implementation of a HSDPA / WLAN equalizer and shows thatproposed architecture is
capable to process the IEEE 802.11a standard in real-time.

One example where the processing is tailored to a specifigognb standards is [101] where the
proposed ASIP supports the execution of the IEEE 802.1%adalard only.

In contrast to these ASIP solutions, the A-FEP being desigoethe ExpressMIMO platform
shall support

1. awide range of different wireless communication stadgsiand

2. awide range of different air-interface operations

in a multimodal fashion including MIMO reception and transsion.

Most of the presented solutions are based on RISC (Redustdidtion-Set Computer) archi-
tectures. In contrast to CISC architectures which combiitaraetic, logic and memory access
instructions in only one instruction with a variable lengtie length of the RISC instructions is
fixed at design time [102]. This results in a simplificatiortled overall design process, especially
the automatic code generation. Usually, RISC processerbaged on a load-store policy using a
set of general purpose registers. Programming is realigédeoprocessor’s instruction-set that is
stored in the Program Memory (PM).

The presented A-FEP prototype is based on a RISC archigeetunl has been designed using
LISA. Compared to ADLs like nML, ISDL or EXPRESSION, LISA cas with various advan-
tages. It provides not only cycle-accurate processor nsdoi@l also supports VLIW / SIMD /
MIMD (Multiple Instruction, Multiple Data) instructionsis strongly C/C++ oriented so that the
language is easier to learn, supports instruction aliaasgvell as complex instruction coding
schemes and allows to determine the abstraction level girtheessor model.

4.1.1.3 ASIP Solutions for Design Comparison

In this section, the three solutions chosen for design coisgrain Chapter 4.9 are presented. The
first ones are the two ASIP solutions developed by ETH Zurfé]j {vhich we denote aBSPE A

in the following. Their architectures are based on the Agaftream Processing Engine (ASPE)
[103] which is a coarse-grained ASIP architecture beingnuped for data processing. Main
advantage when compared to other solutions are the lowts based on the shortened design
time and the limited runtime reconfigurability for bug fixéBesides ASPE designs come with a
better performance when compared to VLIW architecturesaltiee reduced load/store overhead.
Each ASPE design is connected to a GPP taking care of theotantt of performance uncritical
tasks and includes three different building blocks whosantjty and type can be selected from a
library at design time, depending on the target application

1. Functional Units (FU) contain the arithmetic operations and can be combimedplement
more complex ones like CORDIC. The number of internal pipeéitages is flexible and can
be chosen at design time.

2. Storage Units(SU) are used for local data storage. They are connectecetblls via a
runtime configurable network.
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3. Sequencer Units(SEQ) control the configurable network between FUs and SUsy T
further support control related tasks like zero-overhesmps$ or a data dependent control
flow.

The clock frequency is limited by the complex control netivoin theory, each ASPE design
should be able to schedule concurrent accesses of SEQsRUshd herefore, the control network
becomes a major design bottleneck in case only one SEQ is used

In [76], first a Single Input Single Output (SISO) receivaidied to the processing of the IEEE
802.11a standard is presented. Its ASPE A configurationtéslele in Table 4.1.

Ressource| Quantity | Comments

SEQ 1 Program Memory (512 words a 192 bit)
- storage of the program control flow

- storage of the 16 bit command words

FU complex-valued multiply and accumulate unit
complex-valued arithmetic logic units
SuU registerfile (16 registers)

input data buffer (64x32 bit)
data storage (256x32 bit)

olR| Rk IN|F

Table 4.1: ASPE A Configurations for the IEEE 802.11a/n Rexei

In contrast, the presented 2x2 MIMO receiver is tailoredn® lEEEE 802.11n standard and en-
hances the described configuration by a second ASPE ASIRatkasASPE B Tasks to be per-
formed on ASPE B are MMSE (Minimum Mean Square Error) estinmeaind MIMO detection to
achieve a higher performance of the overall design. Thesks &@re neglected for the comparison
to the A-FEP.

The last ASIP solution chosen for comparison has been deseloy the Cairo University and was
presented in [77]. As this design only covers synchrororasind acquisition of different OFDM
standards like HIPERLAN/2, IEEE 802.11a or LTE, it is dembésSync-ASIAn the remainder
of this chapter. The Sync-ASIP includes six 12 bit real agiddree 13 bit real multipliers, two
12 bit rounders, two 24 bit accumulators, ten 13 bit muliipks and two 24 bit shifters that are
distributed over three different pipeline stages. Like &AS®, it supports more complex vector
processing algorithms like CORDIC, maximum likelihood arrelation functions whereas the
maximum vector length is set to 256. This corresponds to tagimum correlation length re-
quired for IEEE 802.16e and LTE. The MSS is accessed via alsidBU and is build of 286
word dual-port banks a 24 bit. The instruction-set of thecSK&IP is composed of program flow
instructions (conditional / unconditional jumps, move, optimized instructions to facilitate the
implementation of the synchronization tasks and vectdructons.

The synthesis results for the presented solutions are tlosviog: For a 0.13um CMOS target
process, the ASPE A SISO receiver configuration obtainscauéecy of 160 MHz and requires a
silicon-area of 1.9 m Instead the ASPE A MIMO receiver has been synthesized fot &yon
CMOS target process. For a target frequency of 160 MHz theosilarea is 7.6 m#) although
the ASIP can be executed up to 250 MHz.

Synthesizing the Sync-ASIP for the same target, the oldairguency is 120 MHz and the area
is 1.1 mn?.
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4.1.2 Contributions

All results presented in this chapter have been obtainedliabtoration with the RWTH Aachen
University (Germany). For the LISA design we used the PremeBesigner from Synopsis (for-
mer Coware).

Throughout the collaboration, two different versions & %SIP were developed:

1. The first version of the A-FEP, called A-FEP-V1, has beesigieed together with a col-
league and was based on the FEP specification he derivedychisiiPhD thesis. We will
denote this first C-FEP design as C-FEP-V1. Soon after thdtsesf our work were pre-
sented in his thesis report [37], the specification of the RE® been reworked for design
and performance improvements and some of the additionaER-¥1 features have been
included in the current design of the C-FEP. For this reasmhadso to overcome the draw-
backs of the first design (mainly the low frequency), we ogtada second ASIP version
- although the first version was already very flexible. In ttliigpter we provide a short
introduction and overview of the main results of this firsE&P version and mainly focus
on the second contribution.

2. The second contribution is a new ASIP design based on thd-B® specification. In con-
trast to the first version, the A-FEP also includes genergdgse instructions and does not
only replace the FEP but also extends it by UC operations. Utids kept in the stan-
dardized DSP shell for the handling of DMA transfers but rtdlgorithmic processing.
Compared to the first version of the A-FEP the second versiones with an enlarged
instruction-set and obtains a higher frequency.

4.2 ASIP Design Methodology

The traditional process of embedded processors desigrecsplibover four different phases [95]:

1. Architecture Exploration Phase

In this phase, the micro-architecture is fixed and the icfivo-set is defined based on a
detailed HW/SW patrtitioning. There, the target applicatims to be analyzed to determine
critical operations that may require a dedicated hardwappart through specialized in-
structions. Furthermore the designer has to identify whistructions are required for pro-
cessing and how the application functionalities have to Bpped onto the chosen processor
architecture by achieving a maximum performance. The siéfiss phase are performed
in an iterative way and repeated till the best solution isithuThis is very time consuming
as every change in the architecture results in a manualigedekthe processor.

2. Architecture Implementation Phase
In this phase, the previously designed processor is tremsfib in an HDL model using
languages such as VHDL or Verilog. The outcome of this phasess as input for synthesis.

3. Software Application Design Phase
In this phase different software development tools necgdsaprogram the processor are
designed. These tools include C-Compiler / assemblerétihdebugger / simulation tools.
In contrast to the hardware design where accuracy, resoufgewer consumption are im-
portant characteristics, main goal of the software desida obtain fast simulation models.
This results in a reimplementation of the tool-suite. Thecpss is time consuming and
comes with a high probability of consistency problems.
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4. System Integration and Verification Phase
In this phase, different co-simulation interfaces are tged so that the software simulator
can be integrated in a system simulation environment. Mwatifins are time consuming as
the interfaces have to be changed manually in case of actliéd changes.

The two hardware and two software phases are usually exeruparallel by different groups of
designers. This results in a potential inconsistency ofitggns and thus in very long develop-
ment periods.

The major advantage of the LISA processor design platforthas HDL code and software de-
velopment tool generation are based on the same LISA modiehwbkduces problems due to
inconsistency significantly. In general, the software aaditvare development processes are iter-
ative and are executed in parallel. Based on the functigmediBcation a first LISA description
model is implemented. Through compilation either a sofenaondel or a synthesizable hardware
model can be generated. While the first can further be valiiand evaluated with the help of
software development tools, the latter can be simulateddlg like Modelsim or can directly be
synthesized. Based on the results of these two design flo@gunctional specification and the
LISA model are reworked. It is worth to mention, that the heace and the software flow are an-
alyzed in parallel so that design optimizations and bug forethe LISA description level directly
influence both design flows.

4.3 Front-End Processing Algorithms

The FEP has been designed to deal with the different airfatte operations at the transceiver
side including OFDM/A, SC-FDMA, W-CDMA and SDMA. The resinigy set of operations to
be executed at the transceiver side has been identified jraf@i7fcomprises channel estimation,
synchronization, carrier / coarse frequency offset egtonand data detection. In [23] it has been
shown that these operations can be build from componem-wéstor operations and a DFT /
IDFT unit:

e component-wise vector additiotZ[i] = X[i] 4+ Yi]
e component-wise divisionZ[i] = X[i]/Y[i]

e component-wise vector producki| = X[i] x Y[i]
e dot product:X.Y = "N P X i) x Y[i]

e energy calculation®(X) = SN 1| xTi] 2

e max/min, argmax / argmin operations

e DFT/IDFT

To increase the programmability and thus the flexibility o design, both A-FEP versions do
not contain the dot product and the energy calculation dipeislike stated above. Instead their
computation is based on basic vector operations. An eneigylation can simply be computed
by a vector square modulus and a vector sum. Similarly, themluct of two vectorsX|[i] and
Y'[i] can be computed by a component wise vector multiplicati@haavector sum.
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4.4 First Version of the A-FEP (A-FEP-V1)

The first version of the A-FEP (A-FEP-V1) was implementedetbgr with a colleague by the
end of his thesis. As a detailed description of our work caeaaly be found in [37] we will just
provide an overview of the architecture and the main regultisis section.

4.4.1 Functional Specification

Like it is the case for the current version of the A-FEP, th&RBP-V1 is embedded in the for-
mer version of the standardized DSP shell whose archiedcsuslightly simplified and does not
support any command preparation. The A-FEP-V1 replacesdbtior processing unit of the for-
mer C-FEP version (C-FEP-V1) which implements directlyiasic functions resulting from the
air-interface analysis. These functions are componesg-waiddition, component-wise division,
component-wise product, dot product, energy calculatioth aximum / minimum, argmax /
argmin calculations. To obtain the desired throughput af Wector elements per cycle, two or
four complex input vector elements a 32 bit are read in andoorte/o result vector elements a
32 bit are written back. All real and imaginary parts are espnted in Q1.15 format while the
vector length differs between 1 and 8192 complex vector eigm

The C-FEP-V1 vector operations can either be performed emtiole vector or on a sub-band
level. For the latter, a large vector is split into differsab-vectors of same size. Inside each sub-
band, the parameteski p andof f set may enable a skipping of addresses (Fig. 4X) set

is the distance between the start of the sub-band and theditkir element. Starting from this
vector elementski p defines the distance between two consecutive vector elsrtikitte end of
the sub-band is reached.

- ———— P ——— P

- -
offset skip

A
Y

sub—band size

Figure 4.1: Definition of Skip and Offset within one Sub-band

The size of the input output data space of the MSS is 128 kBadhess delay is two cycles. Ad-
ditionally an LUT can be stored at any memory location. Thldd contains the possible division
factors%, wherez can be any value in a Q1.15 format. Without optimizations,réquired LUT
would have a size of 64 kbit. To decrease this memory, we #iegbkhe table by

1. storing only positive values. In case a negative valuedsired it is negated in the A-FEP-
V1 pipeline.

2. ignoring most of the repeated values (e.g. between asigfésnd2'! — 1 only each 64th
value is stored).

The resulting table has a size of 10.2 kbit.
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44.1.1 ASIP Enhancements

In addition to the C-FEP-V1, the A-FEP-V1 has been enhangesbime features that have become
part of the current version of the C-FEP. Besides the sumpalifferent data types which are 8, 16
or 32 bit integer values and pre- and post-processing vaagdifitations including absolute value
calculation, zeroing, negation and rescaling, anotheonm&jhancement of the A-FEP-V1 is the
very flexible AGU. Thanks to programmable addressing scliemector elements can be read
(written) from (to) non-contiguous addresses in the MSS3thiemmore address skipping, address
repetition and periodic addresses as well as address wgppimplement circular buffers inside
the MSS are supported.

4.4.2 Architecture
4.4.2.1 Instruction Set

The instruction-set of the A-FEP-V1 consists of three difd types of instructions, each having
a size of 32 bhit.

1. Control Instructions: The control instructions arOP (no operation) JMP (jump to a
given address in the program memory) aR®) (interrupt request).

2. Configuration Instructions: The configuration instructions program the AGU and are only
set in case of parameter changes.
- agu_cfg_vector (basic AGU processing parameters like the vector size &ye se
-agu_set vecO_addr (start address first input vector)
-agu_set vecl addr (start address second input vector)
-agu_set res addr (start address result vector)
- agu_cfg_sub_vec a (number of sub-vectors and their size)
- agu_cfg_sub_vec b (offset, skip)
-agu_set_lut addr (start address LUT)

3. Arithmetic Instructions: Arithmetic instructions are executed over multiple cychd®se
actual number depends on the vector length. While exectitiege instructions, the Pro-
gram Counter keeps its value and does not increment tillatserésult vector elements are
in the pipeline.

- vec_mult (complex vector multiplication)

- vec_add (complex vector addition)

- vec_sub (complex vector subtraction)

- vec_div (complex vector division with a real vector)

- vec_mult_r (complex vector multiplication with a real vector)

- vec_abs square (absolute square of a complex vector)

- vec_sum (sum over a complex or a real vector)

- vec_shift (vector shift)

- vec_square (vector square)

-vec_max_min (complex vector maximum / minimum in combination with argnAargmin)
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4.4.2.2 Pipeline Structure

The pipeline is split over six different stages.

In Pre-Fetch (PFE) the Program Counter is incremented by one each cycle tb fbt next
instruction from the Program Memory. The only exception arighmetic instructions that are
executed over multiple cycles. There the Program Counfeoien.

Due to the two cycles delay when reading from the MSSFRéteh (FE) stage is kept empty.

In theDecode (DC)stage, the instruction is loaded from the Program Memorpebding on the
instruction to be performed, the top level process is aigttaln case of arithmetic operations, the
signals to read the first input vector elements from the M&Sat.

Execute 1 (EX1)andExecute 2 (EX2)contain the ALU operations required for the arithmetic
vector operation processing. In addition, EX1 containessthAGU functions as well as the LUT
access. Per cycle, two or four input vector elements areindad 1 to achieve a throughput of two
vector elements per cycle. To reuse the existing resoutitesjector elements are reallocated to
the multiplier ports in case ofec_abs_squar e,vec_sumvec_max_Im n,vec_square
andvec_di v_s. To give an example: The multiplier consists of eight 32 bitltipliers. In
default case, the first one multiplies the real part of the ¥iestor with the real part of the second
one. In case ofec_squar e it has to multiply the real part of the first vector with itseo a
reallocation of the signals before starting the multipl&enecessary. In case the multipliers are
not needed, the vector elements are sign extended. In EXRtHe vector elements are inverted
if necessary which is the case for a subtraction for instaridee ALU consists of two adders
that compute the sum of three 32 bit values and two adderctmapute the sum of two 32 bit
values. Furthermore it contains shift left / right and maxirt frargmax / argmin operations and a
truncation unit that is activated in case none of the othed Alinctions is executed.

Finally, the results are truncated to 32 bit vector elemantbwritten back in th&Vriteback (WB)
stage. The necessary addresses are generated in WB as well.

A simplified architecture view of the whole pipeline is prded in Fig. 4.2.

4.4.3 Design Comparison

Compared to the C-FEP-V1, the A-FEP-V1 exhibits a highegmmmability and thus a higher
flexibility at runtime. The throughput of both designs is 8#me for common operations except
for dot product and energy calculation. There the througlapihe A-FEP-V1 is decreased by
a factor 2 as two vector processing instructions are redqudoethe calculation of the result. In
terms of memory, the input / output data space of both vessiothe same. Only difference is
that the MSS of the A-FEP-V1 includes a Program Memory fogpmn code storage while the
C-FEP includes some additional memory space required bpEie/ IDFT unit.

Synthesizing the A-FEP-V1 for the baseband engine FPGAedEtpressMIMO platform (Xilinx
Virtex 5 LX330, speed grade -2) the design obtains a maximweguiency of 78.6 MHz after
place and route and needs 7493 function generators, 1874s@ie3, 1394 DFFs or latches and
8 DSP48E slices.

In the future, an ASIC target may also be considered. Tal2ldists the results for a 65nm target
library with low power and high voltage threshold. It is cheterized for a typical manufacturing
process at 1.2 Volts power supply and®23emperature.
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Design Target clock period | Target Freq. | Silicon area Slack | Max Freq.
(ps) (MHz) |  (um?*/FG) (ps) (MH2Z)
3300.00 303.03 107968 | 1585.00 204.71
C-FEP-V1 5400.00 185.19 97987 | 114.00 181.36
5430.00 184.16 99497 0.00 184.16
2000.00 500.00 91686 | 1095.00 323.10
A-FEP-V1 3095.00 323.10 93495 0.00 323.10
3291.00 303.86 82166 0.00 303.86
3350.00 298.51 82168 0.00 298.51

Table 4.2: Synthesis Results for the C-FEP-V1 and the A-WEP-

Based on these results we can state that the hardwired CvEFferforms better than the A-
FEP-V1 in terms of area and frequency. The silicon area &as&® by 19% and the decrease in
the maximum achievable frequency is almost 70%. In additibe obtained frequency for the
FPGA target is not high enough to process the A-FEP-V1 on #pedssMIMO platform where a
frequency of at least 100 MHz is required. The critical path be found in EX1 (LUT access).

4.5 Functional Specification

To overcome the flexibility limitations of the first C-FEP dgs there was a need for the design
of a new version. The underlying functional specificatiothis same for both designs, C-FEP and
A-FEP, except for the DFT / IDFT unit which is therefore negésl in this context.

4.5.1 Vector Processing

Like for the previous version, the throughput of the arattitees is two samples per cycle. That is
why the number of input vectors read in and output vectorttewriback to the MSS depends on
the operation to be performed. In contrast, now four difiedata types are supported: vectors of
8 or 16 bit signed integers (t 8,i nt 16) and vectors of complex numbers where real and imag-
inary parts are 8 or 16 bit signed integecpx 16, cpx32) as well as type conversions between
them.

The C-FEP includes a set of basic vector operations listethbie 4.3. The maximum vector
length of all operations 8.

Component-Wise Addition (CWA) Z[i] = X[i] + Y[i]
Component-Wise Product (CWP) Zi] = X[i] x Yi]
Component-Wise Square of Modulus (CWM) | Z[i] = | X[i]|?
Move (MOV) Z[i] = X[i]
Component-Wise filter by a Lookup table (CWL)Z[i] = Y[X|i]]

Table 4.3: C-FEP Vector Operations

Inputs can be modified on-the-fly before the actual comprngtzeroing, absolute values, negate,
conjugate, re-scaling, etc.) and outputs can also be mddifter computation and before storage.
Optionally, sum, max, min, argmax and argmin (8idAvalues) can be computed on-the-fly for
each of these operations and independently on real andnarggparts. In the C-FEP, the CWL
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vector operation consists in filtering an integer vectdi| through another oné;[:|, which is used
as an LUT. A programmable number of most significant bits efdbmponents oK [:] addresses
the LUT. Optionally, the remaining least significant bitside used to interpolate or extrapolate
between two consecutive entries of the table. This operaproximates non-linear operations
like the invert, log, square root, sine, cosine, etc. A congmi-wise division can be computed
by first running CWL to store the inverse of the division fadtothe MSS and a component-wise
multiplication afterwards.

For the A-FEP design, the functionality of the C-FEP is splir different instructions (Table 4.4).

Component-Wise Addition (CWA) Z[i] = X[i] + Y[i]

Component-Wise Product (CWP) Z[i] = X[i] x Y[i]

Component-Wise Square of Modulus (CWSM) Z[i] = | X[i]|?

Move (MOV) Z[i] = X[i]

Component-Wise filter by a Lookup table (CWL)Z[i] = Y [X[i]], only division implemented
Component-Wise Square (CWS) Z[i] = X[i]?

Vector Sum (VECS) Z =5 X|i]

Vector Shift (VECSI) Zli] = X[i]| >> 1, Z[i] = X[i] <</l
Vector max / min (VMM) Z = max(X[i]), Z = min(X[i])

Table 4.4: A-FEP Vector Operations

It can be seen that the SMA value computation is represetdtely own instructionsMec_sum
vec_nmax_m n) and that additionally, a shift operation has been implaestn The complete
CWL functionality is not included in the current A-FEP prtytpe yet. For the moment only a
division can be performed to fulfill the requirements presdnin Chapter 4.3. How the complete
CWL functionality could be included in the A-FEP is illusted in Chapter 4.8.

4.5.2 Memory Sub-System (MSS)

The MSS is build of a set of different memory blocks:

. UCM, the 2 kBytes microcontroller program and data memory.

. MIO, the 64 kBytes input-output data space

1

2

3. TMP, the 50 kBytes temporary DFT/IDFT memory

4. TWD, the DFT/IDFT 2 kBytes twiddle factors read-only memory
5

. PM, the 4 kBytes A-FEP Program Memory

For the C-FEP, the MSS is made up of UCM, MIO, TMP and TWD. TME awD are local
private memories and are hidden to the host system. As the/BHT unit is currently not part
of the A-FEP, TMP and TWD have been removed from its MSS. Aalaiilly, a Program Memory,
has been included to store the instructions of the prograie.cdlO and UCM are the same for
both designs. From the external view, the MSS is seen as drerer@t memory block that can
be accessed by the processing unit, the DMA, the target Ai€liace and the UC. The highest
priority is given to the processing unit, followed by UC, DMéad AVCl-Interface.

The number of cycles required till the instruction is avaléain the A-FEP pipeline or till the
C-FEP has read a value is fixed to three cycles.
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4.5.3 Address Generation Unit (AGU)

The addressing schemes are programmable and allow to hpild vectors from non-contiguous
data sets in the MSS. Symmetrically, the results can bedstineon-contiguous locations. In both
directions, address skipping and (periodic) address itepeare supported. In addition, the MSS
sections can be turned into circular buffers. Possible Baries for these buffers are one half, one
guarter or one eighths of an MSS bank. Fig. 4.3 illustratesattapping section distribution over
one MSS bank for an input or output vector type oft 8.

wrap =3 wrap = 2 wrap =1 wrap =0

0 0 0
2047
4095

0

8191

16383

1/4 1/8

8 bit

Figure 4.3: Wrapping Sections FEP MSS( 8)

The number of components,. per wrapping section can be expressed as
n, = 21Hwrep /i (4.1)

wherek depends on the vector type and represents the number offigrtgsctor element (t 8:
kE=1,int16: k =2, cpx16: k = 2, cpx32: k = 3). wrap represents the chosen wrapping
section as shown in Fig. 4.3.

The address of the first component inside this wrapping@ectienoted as,, can be calculated
if the addressed MSS bank is known.

by = bank_index— (bank_indexmod n.) 4.2)

Both, n. andb, remain unchanged for each vector. Consequently, thesessahn be calculated
as soon as the required parameters are available.

Each address depends on the memory bank and on an addressTdfis latter is type dependent
and has therefore to be multiplied with the number of bytethefinput / output vector elements

(k).
addr_offset=u; x k (4.3)

u; is the bank indice inside the memory bank. For its calcutdfiist an increment factor is needed
which is based on two different parametetisandm. n is the integer part of the increment,

is the fractional part. By choosing these two values apjatgly, address skipping and address
repetition can easily be implemented. The increment may batween each of the two input

vectors and the result vector.

(4.4)

n ifm=20

] {n—i—l/m if m=#0
inc =




72 4. ASIP DESIGN FORFRONT-END PROCESSING

Finally, the resulting bank indice for each of the addressesbe expressed as
u; = bxo + (bank_index+ (—1)iner_sign | x inc)) mod ne (4.5)

The sign of the increment can either be positive or negalivease of the latter, the addresses are
decremented.

In read mode, addresses can also be periodic. For that a @@rais provided that represents the

number of addresses to be generated within one period. @isceaiue is reached, the increment

factor is reset to zero.

Table 4.5 presents possible addressing schemes for diffeagameter settings.

vector type int8 | int16 | cpx32 | cpx32 cxp32
bank_index 15 3 2 0 1011
incr_sign 1 0 0 0 0

n 1 1 0 1 6

m 0 2 2 5 0

address period 5 0 0 0 0
wrap 3 3 3 3 0

up/addr_offsety | 15/15 3/6 2/8 0/0 | 1011/4044
ui/addr_offset; | 14/14 4/8 2/8 1/4 | 1017/4068
us/addr_offset, | 13/13| 6/12| 3/12 2/8 | 1023/4092
ugladdr_offset; | 12/12| 7/14| 3/12| 3/12| 517/2068
us/addr_offset, | 11/11| 9/18 | 4/16| 4/16| 523/2092
us/addr_offset, | 15/15| 10/20 | 4/16 | 6/24 | 529/2116
ug/addr_offsety | 14/14 | 12/24| 5/20| 7/28 | 535/2140

Table 4.5: AGU Adress Generation Examples

4.6 Architecture of the C-FEP

The C-FEP is a programmable DSP engine that has been dedtdiggbe System on Chip Lab-
oratory (LabSoC) of Télécom ParisTech. Like for all other3%n the ExpressMIMO platform,
the required processing parameters are included in the €®8 standardized DSP shell. These
parameters define the input / output data types, the veder eiic.

The pipeline architecture is illustrated in Fig. 4.4. It denseen that the processing core is split
over two identical processing units (PU). To fulfill the re@gments of the DFT / IDFT as well,
each of them embeds twenty-fo2i x 18 bit signed multipliers and twelve 43 bit accumulators.
For DFT processing, they implement two radix-4 butterflias the same resources are used for
the vector processing as well.




2IM28NY2IY d34-D 7't 2inbi4

Css

| AGU |
I (read) :

LAGU |
I (read) :

MIO | AGU |
access " (cwl) !
(read) R

MIO
access

(cwl)

PU

Memory SubSystem (MSS

PU

value
modification

SMA
values

value
modification

MIO
access

(write)

D Operation

Parameters

Vector Operation 1
Processing h--

Address
Generation Unit

€L



74 4. ASIP DESIGN FORFRONT-END PROCESSING

On the Xilinx Virtex5 FPGA target, the PUs are mapped on thellwaied DSP48E slices. Please
note, that the pipeline has to be emptied before the nexbwegeration can be executed. When
processing large vectors, the instruction fetches / ddathds ratio is close to zero. But on the
other side this results in a significant performance drop@sfly when processing standards with
short data sets which is worse when compared to a classicnmocessor and even worse than
with a DSP.

4.6.1 Synthesis Results

Synthesizing the C-FEP (PU and MSS) for the Xilinx Virtex 5330 FPGA with a speed grade
of -2, a maximum frequency of 96 MHz is achieved after place soute by requiring 20119
function generators, 5030 CLB slices, 10945 DFFs or latcBgdlock RAMs and 24 DSP48E
slices. Although the maximum processing frequency of theréssMIMO platform is currently
set to 100 MHz, this frequency value is acceptable as the imgyom the FPGA changes once all
the DSPs are considered for synthesis. For the IEEE 802ethiver where we included Channel
Decoder, Deinterleaver, FEP and VCI RAM, the obtained C-FE&uency slightly increases so
that the platform design can be processed at the mentiorgst feequency.

For the ASIC target (65nm target library), only the procegsengine of the C-FEP has been
synthesized as the new MSS design is still not finalized. Thgimmum frequency achieved is
about 450 MHz; the required area is 0.48fm

4.7 A-FEP Design

The A-FEP design is based on the same functional specificasadhe C-FEP but has been op-
timized for an efficient processing of standards with shatadsets. Like all other designs it is
embedded in the standardized DSP shell so that the A-FEPecadded as a separate unit in the
baseband engine if necessary. In this case, latency tititisks can be scheduled to the A-FEP
while DFT / IDFT and latency non-critical tasks are still hetresponsibility of the C-FEP.

4.7.1 Instruction-Set and Opcode

The instruction-set of the ASIP comprises three differgpes of instructions: (1) configuration
instructions needed by the AGU, (2) Arithmetic Vector Opiera(AVO) instructions and (3) Gen-
eral Purpose (GP) instructions.

The number of theonfiguration instructions can vary and depends on the amount of AGU pa-
rameters to be updated. Per AVO instruction, between 3 an@d\8 ixstructions are needed which
results in an average overhead of maximum 6 cycles per ot&tru For long vector operations
this overhead is negligible.

Table 4.6 gives an overview of these instructions and therpaters associated with each of them.
The parameters are further detailed in Table 4.7.

The second type of instructions are the nine diffel®D instructions identified in context of
the functional specification. Each instruction has the ssshef parameters where the vector type
or a downscaling factor can be set. Table 4.8 gives an owermvighese instructions and the pa-
rameters associated with each of them. The parametersrtverfdetailed in Table 4.9.
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instruction opcode | parameters

agu_cfgl 0010 vec_size || wrap_vecO || wrap_vecl || wrap_res || mss_\motk||
mss_bank_vecl || mss_bank_res

agu_cfg2 0011 type_vecO || type_vecl || type_res || incr_n_vecO || ingeai || incr_n_res
|| cwl_enable

agu_cfg3 0100 incr_m_vecO || incr_m_vecl || incr_m_res || |_cwl_vecl

agu_cfg_writeindex | 0101 index_res || incr_sign_vecO || incr_sign_vecl || incn Sigs

agu_readindex 0110 index_vecO || index_vecl

agu_period 0111 period_vecO || period_vecl

Table 4.6: Instruction Set and Opcode (AGU Configuratiotrugions)

Parameter

Type Description

vec_size

ui nt 15 | Vector length { <1 < 2™)

type_vecO, type_vecl, type_res

uint2 Type of components

mss_bank_vec0O, mss_bank_vecl, mss_bank|

| nesnt 2 MSS bank

index_vecO, index_vecl, index_res

ui nt 14 | Base bank index

incr_n_vecO, incr_n_vecl, incr_n_res

uint7 Integer part of index increment

incr_m_vecO, incr_m_vecl, incr_m_res

uint8 Fractional part of index incrementy # 1)

incr_sign_vecO, incr_sign_vecl, incr_sign_res

uintl Sign of index increment

period_vecO, period_vecl

ui nt 14 | Period

wrap_vecO, wrap_vecl, wrap_res

ui nt 2 Wrapping section

Table 4.7: Overview of the AGU Configuration Instruction &aeters

instruction opcode | opcode | parameters
1000 XXXX mod_v0_real || mod_v1_real || mod_vO_img ||

mod_v1_img || maxmin || res_shift || shift_info ||
interpolate || scale_vecO || scale_vecl || scale_res ||
info_res

vec_mult 0000

vec_add 0001

vec_square_modulus 0010

vec_square 0011

vec_move 0100

vec_sum 0101

vec_shift 0110

vec_max_min 0111

vec_cwl 1000

Table 4.8: Instruction Set and Opcode (AVO Instructions)
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Parameter Type Description

mod_vO_real| ui nt 2 modification real part vector O
mod_v1_real| ui nt2 modification real part vector 1
mod_v0_img| ui nt 2 modification imaginary part vector 0
mod_v1_img| ui nt2 modification imaginary part vector 0

maxmin uintl =1 if max processing

res_shift uint3 number of right shift before the output value modification

shift_info ui ntb MSB = 1 if left shift, the remaining bits tell how many positi®to shift
interpolate uintl =1 if interpolation (currently not used)

scale_vecO | uintl =1 if downscaling by 256

scale_vecl | uintl =1 if downscaling by 256

scale_res uintl =1 if downscaling by 256 / saturation

info_res uintl =1 use the real part (cpx->int)

Table 4.9: Overview of the AVO Instruction Parameters

For the A-FEP, the component-wise divisiai[{] = Y'[:]/X[i]) is realized as a component-wise
multiplication of Y[i] and1/X[:] by using the CWL instruction. This introduces an additional
delay of three cycles a5/ X [i] has first to be read from an LUT that has been stored in the MSS
before. To access the LUT, the 11 LSBXf:] are used. In contrast to the C-FEP, the component-
wise division can be performed with only one instruction lefitiis split over two vector operations

in case of the C-FEP.

The last type of instructions are tl@&P instructions, including NOP, IRQ and load / store in-
structions as well as conditional branch, compare and cam#idJ instructions. For these in-
structions, a Registerfile with a size of 16 registers a 3h&# been addedmmediatevalues
denote values included in the instruction word, wisitec anddst refer to registers in the Regis-
terfile. Per cycle, one instruction is read from the Prograemdry. Only exception is thieoad
instruction, where a value has to be read from the MSS whicbdaces an additional delay of 3
cycles.

e IRQ & NOP instructions:
For IRQ, an output pin of the A-FEP is set to one for one cyclgispin can be interpreted
by the CSS and is connected to the CSS IRQ pin to signal the GRiihthat the processing
of a scheduled task is finished. Table 4.10 gives an overvighese instructions.

instruction | opcode
nop 00000..0
irq 00010..0

Table 4.10: Instruction Set and Opcode (IRQ, NOP)

e ALU instructions:
Each of the two main instructiona)] u_rr andal u_ri (Table 4.11), can further be spec-
ified by a set of sub-instructions like xor, or, etc. The reg@iblways written back to the
Registerfile. ALU operations can either be performed betwe® register values or be-
tween a register value and an immediate value. In case tlseguént instruction requires
the result of an ALU instruction, a NOP has to be included leetwthe two as the processing
is split over two different pipeline stages.




77

alu_rr (ALU operation between two register values) 1001 | opcode | srcl || src2 || dst
alu_ri (ALU operation between a register value and an immediat&p10 | opcode | srcl || dst || imm16
opcode

xor 0000

or 0001

and 0010

sub 0011

add 0100

addc (add with carry) 0101

asr (arithmetic shift right) 0110

asl (arithmetic shift left) 0111

addu (add unsigned) 1000

adduc (add with carry unsigned) 1001

subu (sub unsigned) 1010

Table 4.11: Instruction Set and Opcode (GP - ALU)

e |oad / store instructions:

Load / store instructions load a value from the MSS or stoie the MSS. For load in-
structions,sr ¢ always denotes the MSS bank while theml6 value contains the 16 bit
address offset inside this banist is the destination register in the Registerfile. For store
instructions, thesr ¢ denotes the register in the Registerfile, wiikt stands for the MSS
bank in which the value has to be stored. Like for the loadm$ibns, the ml6 value
contains the 16 bit address offset inside the MSS bank. FabRgives an overview of the
load / store instructions and the parameters associatbceaith of them.

src || dst || imm16

1011 | opcode
Idc_ri (load sign extended immediate) 0000
lui_ri (load zero extended immediate) 0001
Ihu (load half word unsigned) 0010
Ibu (load byte unsigned) 0011
Ib (load byte) 0100
Ih (load half word) 0101
Iw (load word) 0110
sb (store byte) 0111
sh (store half word) 1000
sw (store word) 1001

Table 4.12: Instruction Set and Opcode (GP - LOAD / STORE)

e branch instructions:

Branch instructions influence the address of the Progranmteoand apply on values stored
in the Registerfile. A special instructioni®ve wheresr c2 denotes the new address of
the Program Counter. Otherwise a branch to the addressdeabtiy thei L6 value is
performed depending on the outcome of the comparison ofghes stored in the Register-
file at addressesr c1 andsr c2. Table 4.13 gives an overview of the branch instructions
and the parameters associated with each of them.




78 4. ASIP DESIGN FORFRONT-END PROCESSING

1100 | opcode | srcl || src2 || imm16
mov (move) 000
bge (branch if greater or equal than) 001
ble (branch if less or equal than) 010
bgt (branch if greater than) 011
blt (branch if less than) 100
bne (branch if not equal) 101
beq (branch if equal) 110
bal (branch and link) 111

Table 4.13: Instruction Set and Opcode (GP - BRANCH)

e compare instructions:
Comparisons can be performed either between two registeesar between a register
value and an immediate value. In case the subsequent itistris based on the outcome
of the comparison, a NOP has to be included as the processisgit over two different
pipeline stages. Table 4.14 gives an overview of the compateictions and the parameters
associated with each of them.

cmp_ri (compare register value to immediate)1101 | opcode | srcl || src2 || dst
cmp_rr (compare two register values) 1110 | opcode | srcl || dst || imm16
opcode

geu(greater or equal - unsigned) 0000

leu (less or equal - unsigned) 0001

gtu (greater than - unsigned) 0010

Itu (less than - unsigned) 0011

ge(greater or equal) 0100

le (less or equal) 0101

gt (greater than) 0110

It (less than) 0111

ne (not equal) 1000

eq (equal) 1001

Table 4.14: Instruction Set and Opcode (GP - COMPARE)

4.7.2 Pipeline

To achieve a high performance, the pipeline of the A-FEPistsef 11 stages (Fig. 4.5). Due
to three cycles delay when accessing the MSS, the pipeliglied when performing an AVO
instruction, a branch (in case the required program memddyess is stored in the MSS) or a
load instruction. For AVO instructions, the next instroctifrom the Program Memory is read as
soon as the last vector elements are read from the MSS. Irastid the C-FEP, the pipeline does
not have to be emptied before the next instruction can beepsee! which reduces the internal
latencies significantly.

The throughput of the A-FEP is two components per clock ciaréVO instructions. Some extra
clock cycles (14 or 17) are spent in initialization and teration. Independent of the instruction
type, the writeback (either in the Registerfile or in the M&Bjays happens in the last pipeline
stage. In case a following GP instruction requires the presly computed GP result, bypasses
are used to gain a higher performance of the processor.
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e Pre-Fetch (PFE): The Program Counter indicating the address offset of theinsttuction
to be fetched from the Program Memory is incremented in PEREAYO instructions are
multi-cycle ones, the Program Counter keeps its value dutiis time and is decremented
by three (it takes three cycles to inform PFE that an AVO irtton is processed) before
the next instruction is loaded.

e Fetch (FE): Due to the MSS delay till the fetched instruction is avaalihe FE stage is
kept empty.

e Decode (DC):In DC, the top level processes are activated depending dngtrection that
has been decoded.

e Execute 0 (EXO0): This pipeline stage contains only AGU processes (read mode)

e Execute 1 (EX1):In this stage the samples read from the MSS are availablecawaifded
to the first ALU that scales the vectors down by 256 in casedlaead parameters are set.

e Execute 2 (EX2):EX2 contains the ALU responsible for the input value modtfaa(force
to zero, negate, absolute value calculation). This stagalisactivated if an AVO instruc-
tion is processed.

e Execute 3 (EX3):EX3 contains 8 multipliers (17 x 17 bit) and a sign extensiogase the
multipliers are not required. This stage is only activateahi AVO instruction is processed.

e Execute 4 (EX4): EX4 contains inversion, shift operations and max/min oj@na. This
stage is only activated if an AVO instruction is processed.

e Execute 5 (EX5): EX5 contains 2 adders that compute the sum of two 34 bit valzes
adders that compute the sum of three 34 bit values and a signséon in case the adders
are not required. This stage is only activated if an AVO ungtion is processed.

e Execute 6 (EX6): EX6 contains a truncation unit. How the results are trurctapends
on the instruction that is processed.

e Writeback (WB): In WB, the write addresses are finally generated and the bugues
are modified depending on the parameters being part of theigtisn word. The actual
number of vector elements to be written back depends on #iigtion to be processed.

4.7.3 Synthesis Results

Synthesizing the A-FEP together with its MSS for the Xilinxtex 5 LX330 FPGA (speed grade

-2) a maximum frequency of 105 MHz has been obtained afterepéand route. Compared to

the former version of the A-FEP, the frequency could thusnioeeiased by almost 30 MHz but

with the cost of additional resources. This is also due tofdlog that the A-FEP-V1 has never

been synthesized together with its MSS. Resources regbyréde A-FEP for the FPGA target

are 13122 function generators, 3281 CLB slices, 6433 DFHatones, 17 block RAMs and 8

DSPA48E slices.

For the ASIC target where only the processing engine of tHeER- has been synthesized, a
maximum frequency of about 550 MHz with an area of 0.18’nBrachieved.
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4.7.4 Cycle Counts

The cycle counts of the A-FEP design depend on the instrutkiat is processed. In case only
one AVO instruction is processed and the A-FEP is stoppesivedirds, the number of cycles are
% + 15 with N as the vector length. Usually, AVO and AGU instructions aaet pf a program
code. As the AGU instructions are executed first to prograanABU, 3 cycles have to be added
for the very first AGU instruction and 1 cycle for all subsequenes. This is due to the fact that
the A-FEP can execute different instructions simultangousSor subsequent AVO instructions,
& + 4 cycles have to be added.

4.8 Component-Wise Lookup Table - Example of a Possible Futa
A-FEP Instruction

The complete CWL instruction allows to read out a vector fenmLUT and to store the resulting
vector in the MSS. Optionally it is possible to interpolatgveen two consecutive LUT entries.
Input and output vector types have to be signed integer sakith a size of 16 bit. The vector
length is specified by the parameteror the LUT access, thé (1 < Il < 14) most significant

bits of the input vectoX are used. The resulting length of the LUT is therefdlfe

Each vector elementof X[i] is split into two parts:z;,; andx ¢qc. Zin IS an unsigned inte-
ger stored in thél most significant bits of{'[;]. The remaining bits are denoted as.,.. The
AGU processing is similar to the other AVO instructions wdenly one input vector is read (e.qg.
vec_sum). For LUT access;,; directly serves as address offset in case the pararhstée-
ing part of the instruction word is set to zero, meaning that represents an unsigned address
value. Otherwise, the address is signed 2hichas to be added t& [i] first. This is necessary as
otherwise2'® — 1 and—2'° would be interpreted &&'> — 1 and2'®

@) if ls=0

fi—20-1) ifls=1 (4.6)

Vo <i< 2 Y[z’]:{

The functionf represents an arbitrary function stored in the LUT (e.ge stosine,...). How it is
stored depends drs as illustrated in Table 4.15:

Y ls=0 ls=1

Y[0] /(0) f(=2""1)
YR 1] | J@ D | /(1

Y 2ll71] f(2ll71 f(O
YRI-1 [ /@ -1 [ /fe™ -1

Table 4.15:Y[;] LUT Organization

Once the vector element is read from the LUF,,. can be used to interpolate or extrapolate
between its entries. Extrapolation is performed whgp = 2% — 1 which is the last LUT entry.
The following equations illustrate how the result vectotre CWL instruction is computed:
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intl16(X[i if ls =
_ Juin 6(X1d]) | s=0 @.7)
X[i] + 2% if Is =1
Tint = r8h(z, 16 — 1) (4.8)
T frqe = T mod o16=1 (4.9)
Y0 = Y [Zint] (4.10)
Y[z + 1 if i < 2% — 1 (interpolation
yl = [Tint + 1] ' Tint < ( p . ) (4.11)
2 X Y[int] — Yzine — 1] if 24 = 2% — 1 (extrapolation)
el =2""1 X e (4.12)
=2 —¢cl (4.13)
215 % 0 if 17 = 0 (no interpolation/extrapolation
21— 2% i =0 (o Interpc Polation) 4 14
0 x y0+ cl x yl if li = 1 (interpolation/extrapolation)

Like for the other AVO instructions, the throughput of th@gline has to be two vector elements
per cycle. A possible pipeline processing for the CWL indtinn could be:

1. The AGU is enabled only for the address computation ofripativectorX|i].

2. After the MSS delay of three cycles, the 16 bit vaKig] is retrieved.
(Same AGU processing like for the other AVO instructions!)

3. Once, the valug[7] is available, it is modified in case the paraméteris set to one.

~Juintl6(X[i]) ifls=0
| X[+ 25 if Is =1

4. Based on the obtained valugi], x;,; andx f,,. can be determined:

Tint = rsh(z, 16 — 1)

T frqe = T mod 2161
Then the address;,,; is set to get the required vector element from the LUT:|).

5. In case ofls = 0, the output of the CWL operation i8[i{] = Y'[z;,] and no further
processing is required. If not, the interpolation / exttapion mode is enabled. For that,
the necessary vector elemepts= Y'[z;,:] andy; = Y[x;,+1] have to be provided. Due
to the data bus width of 32 bit, the latter is read automayicghen readingY’ [x;,:]. Once
the two vector elements are available, Equation (4.11) eacoimputed:

- Y [@int + 1] if 25, < 2" — 1 (interpolation)
T2 Y [Tint] = Y[xine — 1] if 24 = 21 — 1 (extrapolation)




83

6. Then the required interpolation factors can be estimased

el =21 Z frac

c0 =2 —c1

7. The resulting output vectdf[i] is then obtained as

Zi] =0 xy0+cl x yl

The simple case is when no interpolation / extrapolatioredégiired. For processing, the existing
pipeline could be reused, although it is recommended to gl@fLUT access in EX5, assuming
the LUT read signals are set in EXX (i is available in EX1). In contrast, additional instructions
or additional adder or multiplier resources are requiradstep 5 to 7 to speed up processing.
Alternatively these equations could also be computed byoa giiogram consisting of a vector
subtraction §1), a vector multiplication 4p), a vector subtractionc{) and a component-wise
multiplication (Z[i]) based orcpx32 vector elements where the imaginary part values are set to
zero.

4.9 Design Comparison and Runtime Performance

4.9.1 Design Comparison A-FEP vs C-FEP

The main differences between the two designs are to be fautlgeir processing engines (Ta-
ble 4.16) as their MSS is almost identical. Instead of theyRnm Memory included in the A-FEP
MSS, the MSS of the C-FEP contains twiddle factor and tenmgatata memories for DFT / IDFT
computation with an overall size of 52 kB.

How these differences influence the performance espeegidlgn processing standards with short
data sets is elaborated more detailed the next section.

Objective C-FEP - processes all required air-interface operations
A-FEP - processes all required air-interface operations

- processes UC instructions (decreased communicatiomead)
Architecture | C-FEP - vector operations, DFT / IDFT

- next command can be prepared when the PU is busy

- pipeline has to be emptied after each operation

- implementation of the complete CWL operation

- for division, two operations are necessary

- 11 to 16 cycles for initialization / termination
A-FEP - vector operation / AGU / GP instructions

- multiple instruction processing

- component-wise division using an LUT

- fast paths for GP instructions

- 14 to 17 cycles for initialization / termination

- for division only one instruction necessary

Table 4.16: Design Comparison A-FEP vs C-FEP
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4.9.2 Runtime Performance

The runtime performance of a DSP engine on the ExpressMIN@goim depends on two differ-
ent factors:

e the DSP processing time and

e the time required for the communication flow between the n@dtt) and the DSP engines.

For a standard like |IEEE 802.11p that is operating on shdd dats, the second factor is of
main importance as it determines the overall performancenwdxecuting the standard on the
platform. Table 4.17 lists the number of cycles and the eacuimes of the IEEE 802.11p

receiver algorithms presented in Chapter 3.3 for a frequend 00 MHz. The results consider

only the pure processing times, the communication overfgeaeglected.

algorithm cycles | cycles | execution time| execution time
A-FEP | C-FEP | A-FEP C-FEP

energy detection 302 151 3.06us 1.51us

channel estimation (CWP) | 45 43 0.45us 0.43us

data detection (16-QAM, init) 173 267 1.73us 2.67us

data detection (16-QAM) 114 129 1.14us 1.29us

data detection (64-QAM, init) 219 318 2.19us 3.18us

data detection (64-QAM) 341 387 3.41us 3.87us

Table 4.17: A-FEP Cycle Counts and Execution Times for tHeHB02.11p Receiver

At a first glance, the C-FEP performs better for the energgdiein. But it has to be considered,
that the A-FEP performs the comparison to the thresholdevidbelf while it is the main CPU in
case of the C-FEP.

For channel estimation, only the cycle counts of the peréatrf@WP operation are given, as the
DFT has to be computed by the C-FEP. In case only one vectoatipe is executed, the process-
ing times of the two designs are almost identical.

For the data detection, the performance of the A-FEP ishdtie to the reduced internal latencies
of the pipeline architecture.

The presented results focus only on the pure processing tifithe DSPs while the communica-
tion overhead is neglected. In the following, the A-FEP arBEP solutions will be compared to
recent ASIPs from academia taking the examples of two @éiffepacket algorithms.

4.9.2.1 Auto-Correlation Based Packet Detection Algoritm

The packet detection algorithm presented in [76] is peréattaking the STS of the IEEE 802.11a/n
receiver. Similar to the presented packet detection alyarfor our IEEE 802.11p receiver, packet
detection is performed by a sliding window over the incomsagnple stream[d]. The main dif-
ference is that the auto-correlation is not calculatedhakine received and the reference STS but
taking the first and the second half of the received STS. Thdtieg auto-correlation function for

a single receiver can be expressed as

Pr[d] = i(r[d—i—m]* x r[d+m+ L]) (4.15)

m=0
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wherelL is set to 80 samples which corresponds to half the size of Tis Afterwards, the energy
inside the current window is computed as

L—1
Rpld) = [rld+m+ L]? (4.16)

m=0
and the beginning of the packet is found if
|Red)?
2
Otherwise the window is shifted and the whole procedurdssteom the beginning.

|Pld]|* > (4.17)

Extending this packet detection algorithm to the 2x2 MIMGeaaauto-correlation and energy
computation are performed individually over the two reeestreams while for comparison, the
average results are used.

2
PL.avgld] = % > Pild] (4.18)
j=1
1 2
Riaugld) = 5 > Rjrld] (4.19)
j=1

The resulting set of instructions and the cycle counts ofeEP for the SISO case are provided
in Table 4.18.

instructions cycles
Pr[d] agu_cfg (6x) 9

vec_move L/2+4

agu_cfg (4x) 4

vec_mult L/2+4

agu_cfg (2x) 2

vec_sum L/2+4
Ry [d] agu_cfg (2x) 2

vec_square_modulus L/2 + 4

agu_cfg (2x) 2

vec_sum L/2+4

agu_cfg (2x) 2

vec_square_modulus L/2 + 4
[Pld)? > B | nop (7x) 7

Iw 5

nop 1

Iw 5

nop 1

bgt 8

Table 4.18: A-FEP Instructions for the Auto-CorrelationsBd Packet Detection

In general, this results in a total amount6k % + 72 cycles including the GP instructions and
6 x £ 424 cycles if the latter are not taken into account. If the C-FE®sed instead, the algorithm
can be simplified (see Table 4.19).
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operations cycles
Pr[d] vector move L/2+11

vector multiplication + sum | L/2 +12
Ry [d] vector square_modulus + supL/2 + 12
|Pp[d]|? > M vector square_modulus + supL/2 + 11

Table 4.19: C-FEP Operations for the Auto-Correlation BleRacket Detection

The resulting amount of cycles dsx é + 46 when only the pure processing time is considered.

But how do these results change when the communication eadrts considered? Table 4.20
provides the resulting cycles counts and processing tiorethé A-FEP, the C-FEP and ASPE A
for the SISO and the MIMO case.

It can be observed that the performance of A-FEP and ASPE Alarest identical for this packet
detection algorithm, although the latter is optimized fug tEEE 802.11a/n standard. Comparing
A-FEP to C-FEP, the communication overhead of the first igladue to reduced internal latencies
of the design and due to the GP instructions that reduce tinencmication overhead between the
A-FEP and the main CPU. Therefore it can be stated that théemenmtation of algorithms is
simplified when using the A-FEP as the required processingpealone by only one resource. No
synchronization between the different processing endgmesjuired.

Solution | cycles | cycles execution time | comm. overhead | execution time | comm. overhead
(SISO) | (MIMO) | (SISO) (SISO) (MIMO) (MIMO)

ASPE A | 296 650 2.96us - 6.5us -

A-FEP 264 572 2.64us 0.48us 5.72us 0.64 us

C-FEP | 312 465 3.12us 1.2us 4.65.5 1.2us

Table 4.20: Design Comparison for the Auto-CorrelationdgbBacket Detection

4.9.3 Energy Based Coarse Packet Detection Algorithm

The second example illustrates the performance diffeeemdeen the A-FEP is compared to a
specialized ASIP for synchronization and acquisition. $lgac-ASIP has recently been presented
in [77] and executes a coarse packet detection algorithnme, @0 energy values denoted @s
andb are computed ovel = 64 vector elements and are divided through each other:

L—1

a= Z rn_r|? (4.20)
n=0
L—1

b= |rapsl’ (4.21)
n=0
m = % (4.22)

In case the result is beyond a certain threshold the pratyatbiat the beginning of the packet can
be found in the current window is high and an auto-correfabased packet detection algorithm
is applied to find the exact beginning of the packet.

The resulting set of instructions and the cycle counts offtfiEP are provided in Table 4.21.
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instructions cycles
a,b | agu_cfg (6x) 9

vec_abs_square L/2 + 4

agu_cfg (2x) 2

vec_abs_square L/2 + 4

agu_cfg (2x) 2

vec_sum L/i2+4
m | agu_cfg (4x) 2

vec_cwl 7

agu_cfg (3x) 3

vec_mult 4

nop (7x) 7

Iw 5

nop 1

Iw 5

nop 1

bgt 8

Table 4.21: A-FEP Instructions for the Energy Based Coaasd? Detection

Including GP instructions, this results in a total amounBof% + 68 cycles, wheres - g + 12
cycles are required for the pure data processing. If the B-iBRised instead, the algorithm can
be simplified again (see Table 4.22).

instructions cycles
a,b | vec_abs_square +sumL/2 + 12
vec_abs_square + sumL/2 + 12
m | vec_cwl 15
vec_mult 11

Table 4.22: C-FEP Operations for the Energy Based Packetbat

Table 4.23 lists the resulting cycles counts and procedssings for the A-FEP, the C-FEP and
Sync-ASIP for a frequency of 100 MHz. As expected, the wegkbgrammable but specialized
Sync-ASIP performs better than the flexible FEP solutionssides, it is worth to note that for
smaller vector lengths, the communication overhead of tHeER is only half of the pure data
processing time while it is twice in case of the C-FEP.

Solution cycles | execution time | communication
overhead

Sync-ASIP| 31 0.31us -

A-FEP 108 1.08us 0.56us

C-FEP 114 1.14us 2.29us

Table 4.23: Design Comparison for the Energy Based CoadeePRetection
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4.10 Conclusions

As an alternative to the C-FEP, we have presented an ASIRi@olior flexible front-end pro-
cessing that fulfills the latency requirements of the latgstless communication standards. The
A-FEP can be included as an additional block in the basebagithe for the execution of latency
critical tasks while DFT / IDFT and latency non-critical kascan be executed by the C-FEP. Ob-
served timing differences are due to the reduced commumicaverhead of the A-FEP which
results in a significant performance gain when operatingtandsrds with short data sets, and
which results in a simplified algorithm design.

Besides the comparison between these two solutions, thERAHas further been compared to a
previous ASIP version and to recent ASIPs from academia.oftirast to the first, the A-FEP
exhibits a higher frequency and a greater functionalityr &packet detection algorithm its per-
formance is similar to the ASPE A - a design tailored to thecpssing of the IEEE 802.11a/n
standard. As expected, the performance is worse than thef@specialized ASIP for synchro-
nization and acquisition.
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Chapter 5

Flexible Sample Rate Converter Design

After presenting the IEEE 802.11p receiver chain includiigP, Deinterleaver and Channel De-
coder and after focusing on an alternative FEP solution \whicmore appropriate for standards
with short data sets, we conclude with the only missing DSfherof the IEEE 802.11p chain -
the Preprocessor. The Preprocessor connects the A/D, Diidecter interface with the remain-
ing baseband engine and is responsible among others fomii@alance correction, sample syn-
chronous interrupt generation, framing and sample ratevession. Most critical is the Sample
Rate Converter (SRC). Its behavior can change dynamically @an be tuned to any frequency
band in the wireless communication domain. In the past, &€ Bas dedicated to each standard
of interest. For the ExpressMIMO platform, this approactias space consuming why one frac-
tional SRC architecture capable to process up- and downsaqs preferred. To ensure a low
phase noise at the A/D and D/A converters, they are triggeritid a fixed master clock. Dealing
with the relation between the different sampling rates é&dfore in the responsibility of the SRC.
In this chapter we propose an efficient design for fractioseinple rate conversion and present
it in the context of the whole Preprocessor DSP engine. Tiiereint models that have been de-
signed comprise C-models for simulation and a VHDL protetat has been synthesized for the
ExpressMIMO platform.

5.1 Motivation

The Preprocessor DSP engine establishes the connectiwadrethe A/D and D/A (ADA) con-
verters through the ADA interface and the remaining basgleagine. This task is quite challeng-
ing as the clock frequency at the converter side is 32.768 MHhiie it depends on the executed
wireless communication standard on the baseband side.yfor instance, the baseband sam-
pling frequency is 2.048 MHz, while for IEEE 802.11p it is s@tl0 MHz (Fig. 5.1). This results
in a resampling factor of 15 for DAB and 3.2768 for IEEE 8011

The relation between these different sampling rates is contynhandled by SRCs which are
well-known architectures applied not only in wireless conmication systems but also in image
processes for instance. For SDR systems, they are one ofdsecnitical and most demanding
elements [104].

Challenges when designing an appropriate SRC solutiorh&EkpressMIMO platform are:

e A detailed analysis of nowadays wireless communicationdsteds has shown that the SRC
has to support a frequency range3oMHz < fq,,, < 61,44 MHz with a resolution of
1Hz.
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ADA Interface

A/D 9862 Processing

RX
AID interface —

TX !
| Baseband

downsampling
ce e 3079 MS/s LTE
e 10 MS/s IEEE 802.11p
upsampling 20 MS/s |EEE 802.11a
2.048 MS/s DAB

clk =32.768 MS/s

Figure 5.1: The Preprocessor connects the ADA Convertdtstive remaining Baseband Engine

e Inthe past usually one dedicated SRC was used per standarthiswide frequency range,
this approach is not applicable as the required resouresgsiabeyond what is available on
the FPGA target. The SRC has therefore to support all pessiahpling rate ratios (integer
and fractional ones) by only one architecture.

e Apart from that the ExpressMIMO platform can process up tar fdifferent channels in
RX and up to four different channels in TX. Each channel isrggfithrough its own set of
parameters.

Thus, when switching between two channels, the system meaygehits behavior dynami-
cally at runtime.

These design challenges lead to different processingregents which can be grouped in func-
tional and non-functional ones. From the platform perdpedt is of atmost importance that the
required amount of DSP48E slices is reduced as much as [@s3ibis task is not that simple

as due to the high bandwidth of the signal coming from the Adbverters, the data rate is very
high. This leads to a higher hardware complexity and a higbarer consumption and results in
a higher number of DSP48E slices and thus in a cost intenppiication. Besides, the design of
the Preprocessor has to follow the same design approachllikéher DSPs on the platform and
should be embedded in the standardized DSP shell.

Additionally the functional requirements comprise

e the preference of a generic design being able to perforntidrad up- and downsampling by
using the same architecture. Upsampling / Downsamplinglstéor increasing / decreasing
the sampling rate. For transceivers where the data rate &[E# converter side is higher
than the one at the baseband engine, upsampling is perfamie¢i while downsampling
is performed in RX.

e the support of three different modes: (1) only receptiohp(®y transmission and (3) recep-
tion and transmission simultaneously. From the platformsjpective, the channels of RX
and TX are executed in parallel while the SRC processes tlmgrsecutively in a Round
Robin fashion. Therefore the channel switch has to happ#rinnane cycle.

e the avoidance of aliasing when resampling. In this conteig important to tradeoff the
length of the lowpass filter and thus the number of multiglierthe design with the com-
plexity of calculating missing filter coefficients.




91

e the calculation of intermediate values of a discrete-tilgaa such that a certain frequency
band of the signal is not distorted [105].

e that a high performance has to be guaranteed to meet thegtipotiand latency require-
ments of the different wireless communication standards.

e that the SRC takes care of the difference between the sagmalies. This approach allows
to fix the master clock of the ADA converters to decrease tlesg@imoise. [105]

5.1.1 Related Work

For the SRC design two different approaches are possiblein@dlog solutions to generate a vari-
able clock for the ADA converters or (2) digital solutions vl the ADA converter clock is fixed.
The first comes with the drawback that the observed phase ddfers between the generated
clocks and may lead to a significant performance drop. As litekds fixed for the second ap-
proach, a high performance one with low phase noise can betsdlat design time. Apart from
that, digital filters come with the advantages of high piiecisof a possible multiplexing between
different channels and of thermal stability but they ar® alsaracterized by a limited bandwidth
and guantization noise.

In the following different solutions from the analog and tigital domain are presented. The
solution finally chosen for the ExpressMIMO platform is aitiijone to keep the phase noise as
low as possible.

5.1.1.1 Analog Solutions

Important terms when talking about how to choose the rightansolution argohase noiseand
jitter that both describe the variation of the ideal signal peridictvis equal to the instability of
the sampling clock. While the expression phase noise is wheth talking about the frequency
domain, jitter is in the time domain [106]. For sinusoidajrsils, the phase noise can easily be
estimated while for Gaussian input signals the derivatheagh sample point has to be calculated
[107].

Another important term igperture jitter or aperture uncertaintythat describes the variation be-
tween the samples in the encoding process [108]. Aperttiez jnfluences the system perfor-
mance in three different ways: (1) it increases the systeisen@) it increases the ISI between
the samples and (3) it increases the uncertainty of the sahgijjnal phase. Worst case values
occur, when sampling a sinusoidal signal with the highessite frequency in the Nyquist band
(= sampling with half of the input sampling rate).

The basic functionality of all analog solutions is the fallag: The input signal is converted into a
digital signal by an A/D converter that is triggered with aighle clock. Different chips that have
been available on the market for years, support two diffecénouit technologies allowing this
flexible clock adjustment. These technologies are Phaskddloops (PLL) and Direct Digital
Synthesizers (DDS).

A PLL is a closed loop frequency control system supportiagtional ratios between the sampling
rates. Its functionality is based on the measurement oflthsedifference between the incoming
and outgoing samples of the control oscillator. To convegtresulting voltage into a frequency,
a VCO (Voltage Controlled Oscillator) becomes necessaay ithsometimes already included in
the PLL. Advantages comprise low costs, widely availapilitell-known architecture and that the
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PLL output can be locked to the reference clock of the inpatsgh An efficient PLL solution of

high performance is the ADF4157 [109]. This design is a 6 Gidetional-N frequency synthe-
sizer with a 25 bit fixed modulus and a subherz frequency uésal that consists of a low noise
digital phase frequency detector, a precision change pund@grogrammable reference divider.

For DDS architectures, the reference clock is scaled dowanfagtor that is provided to the DDS
via a programmable tuning word. The tuning word typicallys lralength of 24 to 48 bit. For
new generation technologies, the DDS power consumptioimias to the one of PLLs. Other
advantages include the micro-hertz tuning resolutionhtgk output frequency span, the tunable
reference clock oscillator that allows a higher operatanmge than a standard VCO, the possibility
of fast frequency changes, the manual system tuning, thldigntrol interface and the phase-
continuous frequency hops with no over/undershoot or gradtated loop settling time anoma-
lies. On the other side, DDS designs cannot achieve exaptdreies for a division factor unequal
to a power of two. Taking the example of 20 MHz, the obtainesiiiteés 19,9999999954 MHz.
To overcome this drawback of an in-accurate frequency géner [110] has presented a pro-
grammable modulus that leads to an exact frequency gemerati

Another efficient DDS design is the AD9913 [111]. It comeshnatlow power consumption of
max. 98,4 mW, supports a frequency range of up to 250 MHz (warse frequency resolution:
0,058 Hz), has an analog output up to 100 MHz and features & D@Aconverter.

Comparing DDS to PLLs the following observations can be njada]:
e DDS support fast frequency changes which make these astiriégs more agile than PLLs.

e The DDS supports a higher frequency resolution of up to ortkkomth of a Hertz.

The DDS performance is higher than the one of PLLs.

Multiple DDS can be synchronized to support among othergligiiare phase offset rela-
tions.

PLLs allow to lock their output to the input phase of a refeesnlock.

e DDS have a lower output phase noise.

5.1.1.2 Digital Solutions

The major aim when designing SRCs for SDR systems is thadradtresampling support in the
all-digital domain by using high performance DSPs. Genevalviews of simple SRC solutions
are provided among others in [113], [114], [115], [116] oLT]. These designs comprise the
sample and hold method as well as different interpolatiqgmr@gches listed below. The basic idea
for all arbitrary ratio interpolation schemes is to use aaleg reconstruction filter for which the
output is resampled. Additionally, a lowpass filter is regdifor both, upsampling and downsam-
pling. For upsampling, the lowpass filter is needed as thisgss may add undesired spectrum
images to the original signal, despite of the fact that thqu\ist-Shannon sampling theorem is ful-
filled. This theorem states that aliasing occurs in caseahwbng frequency is greater than two
times the analog frequency of the signal to be resampleddéwnsampling where the sampling
rate is decreased, there is a high probability that thisrérads not satisfied. Thus the aliased
frequency signal components that are not distinguishabha the original ones have to be filtered
out by a lowpass filter which has to guarantee a high stopb#@edietion.
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For lowpass filter design, two different filter types can beplayed: Finite Impulse Response
(FIR) and Infinite Impulse Response (lIR) filters. Before a$iog the appropriate solution, one
has to consider that an arbitrary fractional rate chang®ifaxan result in relatively large values
of the resampling rate. The passband of the filters has toryenaerow for large values of the up-
sampling factor, while the first stopband is centered aldmitriverse of the downsampling factor
for anti-aliasing. Besides, the transition-band has todreow for large values of the downsam-
pling factor. Designing an FIR filter with these constrailegds to a very long impulse response.
Although providing linear phase characteristics, maindbacks of FIR filters are thus the high
guantity of filter coefficients. On the other side, FIR filtare stable and linear phase which means
that their phase changes proportional to the frequency mhakes these filters the appropriate so-
lution for SRC designs. Due to the linear phase property ttex fias a constant group delay so
that no phase distortion can be observed.

The most significant error contribution arises from the fioieint quantization resulting in changes
of the magnitude response but not of the filter phase. To dserthe quantity of required hardware
resources like multipliers, the FIR filter can be transfadnrea polyphase representation as en-
hanced by [118]. In addition, [119] states that the main athges of such a design include lower
computational requirements, a lower sensitivity to theffittoefficient length, less finite arithmetic
effects, lower order filter design and implementations, lasd storage of filter coefficients.

In contrast, IIR filters do not provide linear phase chamdsties but have a lower complexity
in terms of the filter order by fulfilling the same magnitudspense requirements. In case of
polyphase implementations the number of coefficients isilyeacreased since the number of
coefficients in the feed-forward branches of a direct imm@station of IIR filters is multiplied by
the number of polyphase branches. Although a polyphaseimgitation of IIR filters has no real
advantage over a polyphase implementation of FIR filtersrim$ of performance.

In the following, an overview of different digital SRC sdluts is provided. As we need a frac-
tional design for the ExpressMIMO platform we mainly focus foactional solutions although
there are a lot of different publications about flexible SR@srating on integer ratios available.

e The simplest method for SRC filter design is #znple and hold methodvhere the analog
signal is first sampled and the obtained value is then hotehaftrds. The solution is easy
implementable and requires only few resources but the eethiperformance is too low for
SDR applications. For multimodal processing one could imageveral FIFOs that are
connected with the sample and hold block via a demultipleRecontext switch becomes
necessary in case a value still has to be hold when the swifedrformed.

e The classical SRC method is itacrease the sampling rate by zero insertion and to de-
crease the sampling rate afterwardgFig. 5.2).

x(n) v(k) w(l) y(m)
——{h > LPF h(x) > ~yD —
Rate=f x * N d Rate=I/D*f _x=f y

N 7

> Rate=I*f x=f v~

Figure 5.2: Classical SRC Approach
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The interpolation stage increases the sampling rate ofttesved signat:(n) by a factor!
to obtain the interpolated signa(x).

(5.1)

o(k) = z(%), k=0,+1,£21,...
0 otherwise

As interpolation and decimation stage are not merged onpdes/filter (LPF) is sufficient.
h(l — k) is the impulse response of this filter.

wl)= > h(l—kw(k) = Y Al —kDa(k) (5.2)
k=—o00 k=—0oc0

Afterwards, the filtered signal is downsampled by a fadiband the whole resampling
chain can be expressed as

y(m) =w(mD) = > h(mD — kI)x(k) (5.3)
k=—00
with D

k= LmT |—n (5.4)

By combining Equation 5.3 with Equation 5.4 we obtain
y(m) = nzzoo h(mD — Lm—[DJ[ +nl) x(L#j —n) (5.5)

= mD

= nzzoo h((mD) mod I + nl) * :U(LTJ —n) (5.6)

The required resource consumption of this design is very higd context switches in case
of multimodal processing become more complex than for tmepga and hold method.
[120] has shown that this standard approach can be transtbima more efficient design
by taking advantage of a polyphase filter structure for theired lowpass filter. Employing
this architecture speeds up the time needed for the filtargssy but does not decrease the
number of filter coefficients.

Furthermore [121] describes an architecture where theepteg standard approach is com-
bined an adjustable number of times which is especially wrést in case of high ratios

between the sampling rates. Filter reconfigurability is reofuired as all filter taps can be
precomputed and hardwired.

[122] presents a solution wherdawpass filter is combined with A/D and D/A convert-
ers. This approach is not appropriate for the ExpressMIMO platf due to the limited
resources and due to the choice of one single master clock.

Another standard approach angerpolation filters that compute the missing output sam-
ples / filter coefficients at runtime [121]. To reduce the gpacnsumption, this filter is

usually combined with the required lowpass filter. The panfance therefore depends on
two different factors: (1) on the number of stored filter dméEnts and (2) on the selected
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interpolation method. For the latter it can be stated thahigher the interpolation polyno-

mial is, the higher is the computational effort and the highé¢he space consumption. One
option to deal with this challenging task is the filter coaeéfit calculation in a recursive

way as presented in [123]. But this increases the latencyesudts in additional resources
needed for the filter coefficient calculation.

A good overview of the fundamentals and the implementatibimterpolation in digital
modems can be found in [124] and [125].

For interpolation, different solutions are possible:

1. nearest-neighbor interpolatiorn
This interpolation technique which is also known as proXimgerpolation or point
sampling is the easiest to implement and comes with a simgtgware architecture.
The missing sample values are chosen by allocating the adlilne nearest neighbor.
To guarantee a high performance, the incoming signal has awvérsampled to lower
the resulting phase noise as much as possible. But st#lt¢lchnique has only a very
low efficiency when compared to other interpolation methods

2. linear interpolation :
The linear interpolation comes with a better performanaa tthe nearest-neighbor
interpolation. As the name suggests, missing values ar@u@a with the help of
a linear function. Despite a low space consumption, gooedrfidharacteristics are
possible but the filter coefficients need to be precomputedstored in memory. A
possible design improvement is the replacement of the Isg/fiier by a polyphase
filter structure.

3. polynomial interpolation:
The polynomial interpolation is a generalization of theslin interpolation. The main
difference is that the linear function is now replaced by &mpomial one of higher
degree which results in a higher performance of the desig@][ICompared to linear
interpolation, the calculation of the interpolating padynial is computationally ex-
pensive and the improvement is not as much as between neaighbor and linear
interpolation. So the question is if the required space wmpsion justifies this ob-
tained performance gain.
For higher polynomials it is said that only one polynomiaiséxthat interpolates the
known samples of the incoming signal. This polynomial i@aalledLagrange poly-
nomial The Lagrange interpolator is a polynomial constructedichsa way that each
sample is exactly represented by a function which has zduesat all other sampling
points. Its formula is only simple for low-order polynonsal The filter coefficients
have to be calculated depending on the input samples sohtbdtagrange method
finally serves as coefficient design procedure ([104]).
In general one can say that the Lagrange interpolation flargu) fits an(M — 1)th
order polynomialpy(¢) to a set ofM data points of the incoming signa(ty):

M—

y(t) = x(te)pr(t) (5.7)
k=0

—




96

5. FLEXIBLE SAMPLE RATE CONVERTER DESIGN

with

wi) =TI 7 (58)
t=0,t#k

One possibility of realizing polynomial interpolation st Farrow structure where the

value of the input signal between existing samples is estichg127], [128]). A dif-

ferent solution are Laguerre and Kautz filters ([129]) whéack higher order forms of

the unit delay elements of an FIR filter. By replacing the deiays with these archi-

tectures, one (in case of Laguerre filters) or two (in case aftK filters) degrees of

freedom are added to the final design, leading to a betteopeaince.

Another drawback of the polynomial interpolation is Rusgeghenomenon where the
interpolation polynomial may oscillate wildly between tfeta points for higher order
polynomials. A way of overcoming this drawback is to use atiraik structure where

the interpolation is carried out at a higher sampling fremye To meet the require-

ments in the pass- and the stopband, a digital pre-filterldimudesigned [130].

Most efficient in terms of performance is a solution based agrmmial interpola-
tion in combination with CIC filters as illustrated by [13131C (Cascaded Integrator
Comb) filters are a class of FIR filters with only lowpass chtaastics, a linear phase
response and a constant group delay. Compared to FIR filbessperform better for
resampling factors higher than 10, due to their higher cdatfmn efficiency ([132],
[133]). The two basic building blocks are calladegrator which is a single pole IIR
filter with unity feedback coefficients armmbwhich is an odd-symmetric FIR filter.
Although CIC filters are equivalent to N FIR filters with reatplar impulse responses,
an additional FIR filter at a low sampling rate may be addedbse of the passband
droop (unstable narrow passband). This filter equalizep@ssband droop and per-
forms a low rate change, usually by a factor between two agitt.eAdvantages of CIC
filters include the lack of multipliers and thus the lack digfilcoefficients, the simple
regular structure based on two basic building blockselittintrol and low costs. Main
disadvantages are the integer resampling, the differehitactures for upsampling
and downsampling, that the bandwidth and frequency regpoutside the passband
are severely limited and that CIC filters are only useful &gé ratios while for small
ratios, FIR filters are preferred.

In [134] a solution based on time-variant CIC filters is pregd. Upsampling is per-
formed by zero-insertion while downsampling correspordgit¢king each m-th sam-
ple of the incoming sample stream. This architecture oveaesothe traditional draw-
back of only integer ratio support and enables a fractioaitid between the sampling
rates. Unfortunately the structure is quite space consymit is a combination of
decimators and interpolators. Further an extra outpukdies to be generated which
leads to a higher complexity of the overall design.

. spline interpolation:

The spline interpolation is the most hardware consumingrpaiation method [135].
A spline is a piecewise polynomial of small degree, so thablgms due to Runge’s
phenomenon cannot be observed. The easiest approach iiseiedpline interpola-
tion where existing data points are connected by straigbsli Better are cubic splines
that represent a cubic polynomial between two existing $esnmr even quadratic
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splines. The spline depends on the previous and the folpaample why it has to be
computed at runtime. An arbitrary sample rate conversiamguB-spline interpolation
for SDR has been introduced by [136]. B-splines are unequakto only for a few
samples and allow an accurate approximation of the ideai fifisponse.

5. Whittaker-Shannon interpolation:
The aim of this method is to reconstruct a continuous-timedbaited signalz(t)
from a set of equally spaced samplgs] with the help of the ideal impulse response

sinc(t).
o0

z(t) = Z x[n]sinc(

n=—0oo

t—nT

) (5.9)

The Whittaker-Shannon interpolation is not applicableS&Cs as it only works for
infinite signals. So bandlimiting af(¢) becomes necessary.

6. bandlimited interpolation:
Bandlimited interpolation has been introduced in [137] §188] and is a mixture
between linear interpolation and Whittaker-Shannon paktion. SRCs based on this
approach are easy implementable and provide the sameeatciné for upsampling
and downsampling. The filter coefficients have to precontpated stored in a local
memory.

Based on the presented SRC filter solutions, [139] and [16B¢entrate on how flexible SRC
filters could efficiently be implemented. They conclude t thaingle-stage filter scheme is not
well-suited for preprocessing prior to fine interpolati@xs the filtering should be done at a high
input sample rate, this scheme is computationally intenaivd a large number of filter taps is re-
quired. Besides, the spectral characteristics of the ftkelf must be changed for different output
sample rates. Interpolation is considered as the optimuuii®o when dealing with fractional
ratios between sampling rates. However the underlyingwenrel structure should not be under-
estimated as power consumption is a major issue in mobileragrnitation systems. That is why
there is a need for hardware architectures which enabléegfficnplementations of the necessary
filtering tasks.

5.1.2 Contributions

The main contribution presented in this chapter is the desi@ fractional SRC for the Express-
MIMO platform which is based on the bandlimited interpadatialgorithm. Its architecture can
process up to four different channels in RX (downsampling) ap to four different channels
in TX (upsampling). All channels are executed on the samarpaterizable hardware architec-
ture. To guarantee a continuous filter processing, conteixtises between them happen instanta-
neously within one cycle.

The provided SRC models comprise fixed- and floating-poimdgiels for quantization measure-
ments and analysis of the filter characteristics, as wel\AdRL prototype.

The SRC is embedded in the Preprocessor DSP engine thdtststalthe connection between the
ADA interface and the remaining baseband engine. To fin#fied EEE 802.11p receiver chain a
first prototype of the Preprocessor has been described inlVaiid evaluated using Modelsim.
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5.2 Functional Specification

The functional specification is split over two different {garFirst the Preprocessor is specified and
functional details to be considered for the design of the &Rprovided. Then we focus on the
specification of the SRC itself.

5.2.1 Preprocessor Specification

The Preprocessor connects the external RF module with igldbaseband processing engine.
To establish this connection, the standardized DSP sheblightly been modified by a dedicated
interface for a direct access between the processing uditrenADA interface (Fig. 5.3). The
latter handles the (de)multiplexing of the complex samptaaing from and going to the A/D and
D/A converters. In RX / TX, the signal provided by the A/D, Déanverters has a resolution of
12 bit / 14 bit. Sign extension and bit removal become necgssathe Preprocessor operates on
samples in a Q1.15 format. These tasks are handled by the AfeAace as well.

ADA Interface

i
i,‘ |

interrupts i Processing Unit
|
i

|
|
|
DMA |
|
|

% - o
1 S -
| §g| css |
i - wMmss
| uc |,
-<—IRQ

R

|
% VClInterface B "
|

Figure 5.3: Modified Standardized DSP Shell

The main Preprocessor tasks are:
o Interface to the ADA converters

¢ |/Q imbalance correction. The quadrature offset comp@nsaliminates the errors caused
by 1/Q imbalance. More specifically, these errors resulinframplitude and phase impair-
ments between the local oscillator paths as well as from watisies between | and Q branch
after the analog down conversion.

e NCO for carrier frequency adjustment
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e Basic signal processing functions like sample rate cormers

e Sample synchronous interrupt generation. An interrupteisegated for each RX channel
after a given number of samples has been stored in the MSSisTballed theacquisition
cycle of the Preprocessor. These interrupts may inform the maid @Rrigger a DMA
transfer or they could inform the local UC so that the datauimatically streamed into a
known baseband memory location.

To guarantee a high performance of these tasks, they ateospli different internal modules
which are 1/Q imbalance (1/Q), a pre-distortion unit in TXOQR NCO and SRC. Each of the two
different modes supports four different channels that magspss a different set of parameters.
In RX, the incoming samples provided by the ADA interfacespii®, NCO and SRC before the
samples are stored in FIFOs in the MSS. In TX, the outgoingpsesnare loaded from FIFOs
in the MSS and pass SRC, NCO, I/Q and PD before they are pastkd ADA interface. All
modules are supervised by a global Preprocessor Controb8illustrated in Fig. 5.4. Main tasks
of this state machine are to schedule the configured / adtierels in a Round Robin fashion, to
trigger the data write / read requires to the ADA interface tnthe MSS, to update the parameters
required to program the different modules if necessarygtwegate the interrupts at the end of an
acquisition cycle and to supervise the channel switch betvieo channels.

Preprocessor Processing Unit

ADA Interface

>

PD -~ -—— -~ =

X
interface

D/A

11Q NCO SRC MSS

] B(» i

A/D

interface

—= DMA

Preprocessor Control Unit

Css Css

Figure 5.4: Preprocessor Architecture

Possible channel states are active (channel can be sctigdinactive (channel currently not
needed) and suspended (channel shall be processed, bautsmmple passing). To avoid an
unpredictable behavior, channel parameter updates ayeposkible when a channel is not exe-
cuted. This requires a minimum configuration of two différenannels. A channel switch may
occur after a fixed number of generated output samples. Ibeahandled flexibly at runtime
depending on a CSS parameter providing the maximum numbsaroples to generate before
switching. The minimum number of samples to be processedhmainel depends on the time
necessary to perform a channel switch in the whole DSP engireimportant that the continu-
ous processing of the Preprocessor is guaranteed, meéintpé channel switch has to happen
instantaneously.
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The different internal modules communicate via a handsigakirotocol that is illustrated in
Fig. 5.5. This protocol guarantees valid data transfers stops the processing chain in case
of absence of data. When a module provides new data, the elztast signaREQ s set at the
same time. So the module requests another one to take itsTdaalata transfer was successful
once the acknowledgement sigielK is received.

CLK

REQ

ACK |

DATA

Figure 5.5: Handshake Protocol

The MSS and the memory space included in the ADA interfach bontain different FIFOs for
input and output sample storage. These FIFOs are autonarnoysonents that manage their own
memory space. To avoid sample loss, they inform the Prepsocén case they are almost full or
almost empty.

The MSS of the Preprocessor is build of

e a context memory for each of the modules. These memoriesquéed in case of a channel
switch to store the context of the previously processed méleamd to provide the context of
the next channel to process. Their size is flexible and dependhe amount of data to be
stored.

e eight 32 bit input FIFOs with a size of 4 kB. For each channgef FIFOs are provided.
This is due to the fact as the SRC sample output port has a wi@8 bit while the DMA
data bus width is set to 64 bit.

e eight 32 bit output FIFOs with a size of 4 kB.
e the filter coefficient memory of the SRC with a size of 2 kB.

e one parameter memory per module to enable parameter updithesit conflicts. For the
SRC, each channel has two parameter memories. While onededealuring processing,
the other one can handle parameter updates triggered byaimeGRU. Currently, the size
of the SRC parameter memaory has been fixed to 512 Byte.

Based on this functional specification, the following sta¢ats for the SRC design can be made:
(1) The parameter updates are handled by the Preprocesstolddnit and are therefore not in
the responsibility of the SRC.

(2) The moment in time when a channel switch has to happentésrdimed by the Preprocessor
Control Unit. The SRC has to guarantee that the channel lsWwappens instantaneously once it
is informed about this event.

(3) The communication between SRC and NCO has to follow tlesgmted handshaking algo-
rithm.

(4) The suspended mode is handled by the Preprocessor Conito The SRC works as usual.
Only difference is that no samples are passed.
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5.2.2 SRC Specification

The SRC filter design is based on the bandlimited interpmiagilgorithm presented in [137] and
[138]. Main advantages of this algorithm are (1) that noedléht architectures for up- and down-
sampling are required, (2) that the architecture can benigetd for an efficient filter design and
(3) that the combination of Whittaker-Shannon interpolatand linear interpolation results in a
high performance with a reasonable space consumption.

5.2.2.1 Derivation of the Filter Structure

In the remainder of this chapter, we will denote the sampliatg at the filter input ag; = T%

and the sampling rate at the filter outputigs= le The relation betweef®; and1; is not pre-
determined and can even express fractional ratios betviieesaimpling rates. The third sampling
rate in the system is the one of the filter itself, denoted'as- T%

The filter derived in this section is a combination of an FIRpass filter and a linear interpolation
filter. To obtain a high performance, the ideal filter resgoissmultiplied with a window function
(please refer to Chapter 5.2.2.2) to obtain the basis wavedd the lowpass filterg(t).

The analog representation of a digital sign&h7 ) is computed as

2(t) = a(nTy)g(t — nly) (5.10)

n

To getz(t) at a different sampling rate with timirify,, the equation above can be expressed as

2(kTy) =Y a(nTy)g(kTy — nT) (5.11)

n

The digital filter responsg(n) is sampled at a sampling rate with timifig where
with M as the oversampling factor. So Equation 5.11 can be rewiise

2(kTy) =Y a(nTy)g(kTy — nMT) (5.13)

n

k has to be chosen so thefls < kT» < (k' + 1)T5 or equivalentlyk’ = Lk%j. k' represents a
known filter coefficient that has to be pre-stored in the Rregssor MSS whilé represents a filter
coefficient that has to be computed with the help of the limerpolation function. Considering
this expression of, Equation 5.13 can be approximated as

z(kTy) ~ Zx(nTl) [(1 —ag)g((K' — nM)Ts) + arg((K' — nM + 1)T3)] (5.14)
with T
2 /
= k:?s —k (5.15)

For an efficient filter design, the lowpass filter can be descriin a polyphase representation. To
do so,k’ is further expressed as
K =K'M+1, (5.16)
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wherel;, = k' mod M and
g, (n) = g(nM + 1)T3),l, =0,1,--- ,M —1 (5.17)

a1, (n) is the polyphase filter representation includifdifferent filters. The two filters that are
necessary for each output sample calculation run in paeaitbare selected by the vallje Based
on these considerations, Equation 5.14 can be expressed as

2(kTy) &Y x(nTh) [(1 = ar)gy, (K" = n) + kg, +1ymodm (K" —n+ I(lx = M —1))]

! (5.18)
with 7(-) as the unit-valued indicator function.

The resulting filter structure is presented in Fig. 5.6. tludes a polyphase filter structure with
M filters a 19 filter coefficients wherg,, (n) is the time-shifted version of the first ong,(n —1).
For each output sample, two filters are selected dependingeovalue ofl;, which is computed
by the modulel nt er pol ati on Control . Per filter, the incoming samples are multiplied
with the filter coefficients before the result is summed up.cdmpute the result of the linear
interpolation, one filter output is multiplied with the impslation factora while the other one is
multiplied with 1 — o before the sum of the two results is buitldandl — « are calculated by the

I nterpol ati on Control as well.

polyphase FIR lowpass filter

go | :

e

I gl
complex output

complex input select .

E———
(]

g(m-1)

lk+1 1-alpha

e Interpolation ---
fmmmmm oo Control  f-------

Figure 5.6: Basic SRC Architecture

5.2.2.2 Lowpass Filter Design

Major challenge in filter design is the right choice of theefiltoefficients. As the best performance
is achieved for filters based on the sinc function, best wbeldo retrieve the filter coefficients
directly from the ideal impulse responégt) = sinc(Fst) = % Unfortunately, this im-
pulse response ranges froAro to oo which is not implementable in reality. To get the impulse
response causal, a common approach is the window methodcvaldeantages are robustness and
simplicity. Disadvantages on the other side comprise thk ¢ a precise control of the cutoff

frequency which depends on the window size and the filtertkeng
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The basic idea of the window method is to multiply the digidtZzmpulse responsi(n) with a
window w(n). Cutting of the impulse response may lead to undesiredtsffde Gibbs phe-
nomenon or leakage effect which can be observed in a higheriggntent. Therefore the right
choice of the window is very important. In [126] a comparisdrdifferent windows like rectan-
gular window, Hanning window, Blackman window oder Kaiseénaow is provided.

For our design, it turned out through simulation that the bekievable performance was obtained
using the Kaiser window which is defined as

B3y 15°7)
wkaiser(n) = { I3 fOT 0<n<N

0 otherwise
wherea = % Iy(e) is the zero-order Bessel function of the first kind:
=[]
Io(z) = [ 2! ] (5.19)
k=0

[ depends on the maximum tolerable approximation error andbeaxpressed qlisof At x Aw.
The latter denotes the so-called "time-bandwidth prodatthe chosen window in radians. For
the computation off (values are typically between 3 and 9) first

A= —20[0910(5 (520)

has to be computed, withas the maximum tolerable approximation error of the filtdred3 can
be obtained.

0.1102(A — 8.7) for A > 50
B =1 0.5842(A —21)** +0.07886(A4 — 21) for21 < A <50 (5.21)
0.0 for A < 21

Apart from that, the Kaiser window is sometimes further pagterized by a value which repre-
sents half of the window’s time-bandwidth produkt « A f in cycles. It is expressed as= g
To quantify the trade-off between the main-lobe width arelstide-lobe area of the window, the
valuesN + 1 and g are important. While the trade-off between side-lobe l@ared main-lobe
width is determined by the latter, decreasing the windowgtlen’V. + 1, results in decreasing the
main lobe while the side lob is not affectedy. has to be chosen so that

A-—38

= 2.985Aw (5.22)

Auw is the width of the transition region defined as the cutoffjfrency of the stopband, minus
the cutoff frequency of the passbasngt

Aw = ws —wp (5.23)

Fig. 5.7 illustrates the resulting Kaiser window fér= 5.
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Figure 5.7: Kaiser Window fof = 5

The filter coefficients retrieved after multiplying the itleinc function with the Kaiser window
are distributed over the polyphase filter bank as derivedjueiion 5.17. Taking the example of a
prototype filter with 15 filter coefficients and 3 filters a 5dilicoefficients in the polyphase filter
bank, the coefficients are distributed as follows:

- Filter 1: 1, 4,7, 10, 13

- Filter 2: 2,5, 8,11, 14

- Filter 3: 3,6, 9, 12, 15

All of these filter coefficients have to be stored in the MSS amte loaded before the filter is
started. For our design, the maximum number of filters camadycally be settd/ =2, M =4

or M = 8 filters. This quantity may differ between the different chals. The maximum energy
per filter has to be equal to one. Thus the valMefurther denotes the maximum energy of the
lowpass filter.

Without any optimization, the resulting filter coefficienemory would have a size 8f19 = 152
entries a 16 bit. This amount can further be decreased whamgtaymmetries between the filter
coefficients into account. For illustration, an example f6r= 4 and seven filter coefficients per
filter is provided in Table 5.1.

filter 1 | filter 2 | filter 3 | filter 4
filter coefficient 1 | 0.0000| 0.0689 | 0.1105 | 0.0892
filter coefficient 2 | 0.0000| -0.1201| -0.2018| -0.1739
filter coefficient 3 | 0.0000| 0.2964 | 0.6331 | 0.8991
filter coefficient 4 | 1.0000| 0.8991 | 0.6331 | 0.2964
filter coefficient5 | 0.0000| -0.1739| -0.2018| -0.1201
filter coefficient 6 | 0.0000| 0.0892 | 0.1105 | 0.0689
filter coefficient 7 | 0.0000 | -0.0544 | -0.0686 | -0.0434

Table 5.1: Filter Coefficient Exampléd{ = 4, Seven Filter Coefficients per Filter)
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There, the following observations can be made:

e Filter 1 comprises only one 1 and Os otherwise. These twaesgatan be hardcoded in the
design and do not need to be stored in the MSS.

e The first three filter coefficients of Filter 3 are equal to thiefficoefficients 6 to 4 of Filter
3. Only the last filter coefficient is unique.

e The first six filter coefficients of Filter 2 correspond to thenared first six filter coefficients
of Filter 4. Only the last filter coefficients are unique.

Extending these observations for the cas@/of 8 filters, it results that
e The filter coefficients of Filter 1 do not have to be stored m MSS.

e Filter 2 is the mirrored version of Filter 8 (only the lastdiltcoefficients are unique).

Filter 3 is the mirrored version of Filter 7 (only the lastdiltcoefficients are unique).

Filter 4 is the mirrored version of Filter 6 (only the lastdiltcoefficients are unique).

Filter 5 corresponds to Filter 3 in the example above. Thig loalf of its filter coefficients
have to be stored.

Taking advantage of these observations, the number of {ittefficients to be stored can be de-
creased to 107 entries a 16 bit.

Remains the question, why choosing an odd number of filtefficemts is preferred to a filter
with an even number of filter coefficients. It was mentionedieathat in casé,, points to the last
filter in the bank, the filter coefficients of the first filter leeto be right shifted by one entry. For an
even number of filter coefficients as illustrated in Fig. &)8¢his shift has to be implemented in
hardware which introduces a complexity that could easilga@ded by choosing an odd number
of coefficients. There (Fig. 5.8(b)), only the value of twaedilcoefficients have to be exchanged
as the second filter is a modified version of Filter 1 congistihone 1 and Os otherwise.

5.2.2.3 Computation ofl,,

The choice of the two filters required for the output samplewdation depends on the valig
For its computation, first the next known filter coefficigiithas to be determined based on the
number of filter coefficients and on thetio that can be expressed % This relation can be
obtained when replacings by % (please refer to Equation 5.12). bocan be computed as

1
k' = |k * M * ratio] (5.24)
Then the interpolation factar is expressed as
a=kx M xratio— k' (5.25)

andl; can be calculated
I, =k mod M (5.26)
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(b) Odd Number of Filter Coefficients

Figure 5.8: Filter Coefficient Distribution
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Considering floating-point values, these calculationscaiige simple, but for a fixed-point rep-
resentation, the quantization error leads to wrong valtdidg.oFor illustration, we imagine the
case when the filter has to upsample from 10 MHz to 50 MHz. Ttie b&tween these two sam-
pling rates is 0.2 . In a fixed-point representation with ak&son of 15 bit, 0.2 corresponds to
10.2 % 215 | = 6553 while the real result i$553.5. For the 10th output sample, the valuekf
is k' = 524240 which corresponds to a floating-point value of 15.9985. Tthesvalue obtained
for [;, is 7 and the last filter in the polyphase filter bank is seleclethe same is calculated with
floating-point valuesk’ obtains a value of 16 ang points to the first filter.

This quantization error can be expressed as

1
k x M x (ratio — |ratio x 21| ﬁ) (5.27)

which is equal to zero in case no error is measured. To gusgamicorrect computation of
despite quantization, a correction factor has to be intedu AsM is a constant factor, it has to
depend ork only. By solving

1 1
k:*M*Tatio—k*M*Lratio*215j*2T5—corr*k*2T5:O (5.28)

wherecorr is the correction factor we are looking fenrr is obtained as
corr = [M(ratio * 2'° — |ratio x 2'°])] (5.29)

The result is rounded up to ensure that the correct filtelésssd. This is tolerable, & mod M
finally is rounded down to obtain the valiig A drawback of this approach is that the introduced
error will again lead to wrong results, but not before thoasaof output samples have been
computed. To avoid this error, we take advantage of an obdeeriodicity ofk: For each ratio a
maximum value ok denoted a%,,.,, can be identified after which the valuesipfanda repeat.

kwrap * ratio = integerValue (5.30)

We observed that resettingonce the maximum value is reached avoids wrong filter selesti
based on the error introduced with the correction factor.

Please note: The values 8f, k.., andcorr have to be precomputed and provided to the SRC
via the parameter memory that is embedded in the MSS.

5.2.2.4 Implementation of a Notion of Time

When deriving the filter structure of the SRC, we have distisiged between three different time
domains:

e the time difference between the two input samplEs:
e the time difference between the two output samples:

e the time difference between the two filter coefficierifs:
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To handle these relationg; and7; do not need to correspond to the real timing values. Instead
it is sufficient if they just express the relation between shenpling frequencies. E.g. when
upsampling from 10 MHz to 50 MHz, it is sufficient if; is set to five andl’ is set to one

to represent the ratio of 0.2 between them. This decisiorased on the fact that the required
resolution for the frequency range ®MHz < f,4,, < 61,44 MHz is 1 Hz which corresponds

to
1 1

6144MHz ~ 61.44MHz — THz
To be sure, the usage of atto step8(*®) is recommended, resulting in a required resolution of

60 bit. Computations based on this resolution are very tintespace consuming and may result
in a performance drop of the SRC.

| =2.649 % 10165 (5.31)

In the next subsections, the underlying algorithms reguice the decision when to compute a
new output sample based on the value§pandT, are provided.

5.2.2.5 Upsampling

Upsampling implies that the sampling rate of an incomingaigs increased. Thus the number of
generated output samples is higher than the one of the iapytles as illustrated in Figure 5.9.

T3
B B B B BB B fitercoefficients

T2
X X=»=x X output samples
A

X X

X
() ) .&». input samples
A

[
[
[
|

ti tout

>

Figure 5.9: Upsampling: Relation between Input and Outpum@es

As stated in the algorithm in Fig. 5.10, an output sample iegated in each iteration. In case the
value of the input countdri n is greater or equal than the value of the output countert a new
input sample has to be shifted in (provided to) the lowpates filThe counter values are only reset
in case they are equal.

For a ratio of 0.4 we séf; = 10, 75 = 4 and initializet i n andt out with the values ofl; and
T, respectively. Then we start the execution of the algorithm:

Iteration 1) t out =4, increment out by 75

Iteration 2) t out =8, increment out by 75

Iteration 3) t out =12,t out >ti n, increment both counter values

Iteration 4) t out =16, increment out by Ty

Iteration 5) t out =20,t out =ti n, reset both counters

5.2.2.6 Downsampling

Downsampling implies that the sampling rate of an incomigga is decreased. Thus the number
of generated output samples is lower than the one of the sgmples as illustrated in Figure 5.11.
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tin =T1
tout = T2
| oop{
cal cul ate

if tout < tin then

tout += T2
el se

shift

if tout = tin then
tin =T1
tout = T2

el se
tin += T1
tout += T2

end if

end if

Figure 5.10: SRC Upsampling Algorithm

T3 . .
H B B B BB B fitercoefficients

X X T2 X output samples
A
o ® 1 .&». input samples
A |
fin tbut

Figure 5.11: Downsampling: Relation between Input and Gufamples
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As stated in the algorithm in Fig. 5.12, an input sample is/jpled to the lowpass filter in each
iteration. In case the value of the input courttémn is greater or equal than the value of the output
countert out a new output sample is generated. The counter values aregesdy in case they
are equal.

tin =T1

tout = T2

| oop{
shift

if tin < tout then
tin += T1

el se
cal cul ate

if tout = tin then

tin =T1

tout = T2
el se

tin += T1

tout += T2
end if

end if

Figure 5.12: SRC Downsampling Algorithm

5.3 System Integration

5.3.1 Preprocessor Prototype

To complete the IEEE 802.11p receiver chain, a prototypéefRreprocessor has been imple-
mented. This version is not fully optimized yet, but alredalyludes some of the major function-
alities of this DSP engine which are

e the connection to the ADA interface

the design of the MSS including the FIFOs

a first design of the processing unit embedding the SRC andstavéirsion of the main
control

a small wrapper to connect the SRC to the ADA interface

scheduling of the active channels in a Round Robin fashion
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parameter update at runtime

RX interrupt generation

channel switch state machine that signals to the SRC wheraaneh switch has to be
performed

provision of the input samples to the SRC

e storage of the SRC output samples in the MSS (RX) and theligiom to the ADA interface
(TX)

Still missing are the suspended mode and the implementaftié@, NCO and PD. The finalization
of the Preprocessor is thus part of our future work.

5.3.2 C-Models of the SRC

Before the SRC was described in VHDL, two different C-Modetsre implemented for proof of
concept and to define the dynamics of the SRC parameterse plagameters were the sampling
rates and their ratio, the number of filters embedded in tigppase filter bank and the number
of required bits for the fixed-point representation of theapaeters. The only difference between
the two models is the value representation. While one isemphted using a fixed-point repre-
sentation, the other one is based on a floating-point ones dllwws to get clear numbers about
the quantization error and about the Signal to Noise RatMR)Shecessary to evaluate the SRC
performance. The SNR can be expressed as

% 2711 Tideal (n)2

? (x(n) - xideal(n))

w2

2

with x(n) as the obtained and;..;(n) as the ideal result. In addition the fixed-point model
enables a fast validation and verification of the final VHDIside.

5.3.3 VHDL Model

The top level view of the SRC is illustrated in Fig. 5.13.

Although the input samples are complex ones where real aadiivary part have a size of 16 bit,
the processing is based on real values where real and inmagiag processes are executed in
parallel. The filter coefficients and the values computedhieyihterpolation Control (IPC) are the
same for both execution chains.Unad Coef fi ci ent s, the filter coefficients are loaded from
the MSS and stored in local registers. The connection bettresse registers and the FIR filters
is established via multiplexers that are triggered by theesa. Despite the fact that only a subset
of the filter coefficients is stored in the MSS, all 8 x 19 filteetficients have to be provided to the
two FIR filters when required. Table 5.2 illustrates how thalfilter coefficients are generated
from the filter coefficients stored in the MSS. 0/1* denotesghifted version of the second filter
value in casé; points to the last filter in the polyphase filter bank and CCanates the mirrored
version of CCx where only the last filter coefficients are ueiq

i, a and1l — « are provided by the modulePC. To save one multipliet)! * ratio is a parameter
given to the SRC. The other parameters/asg,, and the correction factewrr. The architecture
of this module is shown in Fig. 5.14.
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Processing Real Part B OUT_REAL

IN_REAL

Select
Interface MSS | = *'-( Load Coefficients ’-’ Coefficients *E’E

VCI Interface

Sample.
Computation

Processing Imaginary Part B OUT_IMG

IN_IMG

Connection
g "j: Context Memory<—% context Memo&

Output Sample
Calculation B OUT Samples

Coefficients

Figure 5.13: SRC Top Level View
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Figure 5.14: Module InterpolationControl
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M=2  M=4 M =28
k=0 Cl=0/1 Cl=01 Cl=0/1
CllI=CM Cll=CCl1 Cll=CC1
k=1 CI=CM CI=CCl CI=CC1
Cll=0/1* CIl=CM  Cll=CC2
Iy = 2 CI=CM  CI=CC2
Cll=CC1* Cll=CC3
Ir = 3 CI=CC1* CI=CC3
Cll=0/1* Cll=CM
Iy = 4 CI=CM
Cll = CC3*
Ik =5 Cl=CC3*
Cll = CC2*
Iy = 6 Cl=CC2*
Cll = CC1*
e =7 Cl=CC1*
Cll = 0/1*

Table 5.2: Generation of the Missing Filter Coefficients

a andl — « are delayed by six cycles &sis needed before the FIR filter processing and the two
interpolation factors afterwards for the calculation af tutput samples.

The modulo operation in the design is realized by forwarding
e the LSB ofl, in caseM = 2
e the two LSB ofi;. in caseM = 4
e the three LSB of;, in caseM = 8

The FIR filter is split over the moduleRegi st er bank and FI R. For illustration, Fig. 5.15
provides a simple architecture for an FIR filter with fourdiltoefficients.

The input samples are first shifted via registers and theniptied with the filter coefficients cO
to c3. For thenth filter coefficient, the samples are delayedrby 1 cycles. Finally, the multipli-
cation results are summed up.

In case of our prototype, the registerbank consists of 8 »efysters a 16 bit. The output of the
registerbank is the same for both filters in the polyphaserfilank. At a first glance, such an
architecture does not seem to be very critical. But one hag @ware of the fact that each filter
in the polyphase filterbank consists of 19 multipliers ancadlflers that are distributed over a 5
stage adder pipeline. An alternative could be a sequeritafiker solution, but this would result
in 18 cycles necessary to build the sum of the multiplier otg@nd would thus result in a sig-
nificant performance drop. Another issue are the invoked48&Rslices when mapping the filter
on the FPGA target. Per filter, 19 of these elements are mjuiesulting in a total number of 76
DSPA48E slices out of the available 172 ones.

For the generation of each output sample, the two invokedfiltdRs are executed in parallel. In
the moduleQut put Sanpl e Cal cul ati on, the two filter results are finally multiplied with
« andl — « before their sum is build to generate the output samplestieatither provided to the
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co
Input Samples ’é ; Output samples

cl

s +

\ 4
c2

] +

A 4
c3

Figure 5.15: Example FIR Filter with 4 Filter Coefficients

ADA interface (TX) or that are stored in the MSS (RX).

The decision about when to shift a new sample inRegi st er bank and when to compute

a new output sample are made by the modsderpl e Conput at i on where the difference

between the two different sampling rates is handled. Intfeidul6 the signal settings for the

upsampling mode are illustrated. In case a new sample hasltabded from the MSS, the filter
execution continues once it is available.

« oy
e |

get_sample ]

shift 4,—‘ ’—L

Figure 5.16: Example: Upsampling by a factor of 3

Figure 5.17 illustrates the downsampling process by a fadttwo whereT; is set to 2 and, is
set to 1. The whole process is triggerechimo_r eq, allowing to read one sample per cycle as
long as samples are available. Each new sample is thendshiftetheRegi st er bank. To do
soshi ft is setto one. Depending on the internal counter values, 2and value is computed
by the SRC ¢al c is set to one each second cycle).

To realize an instantaneous channel switch, all registetisel design are duplicated. In Fig. 5.18
an example for the processing of four different channelsasiged. Whether these channels are
RX or TX ones is not important as the scheduling does not deperthe execution mode. The
four channels are invoked in a Round Robin fashion. Whilejrstance, CH2 is executed, the
values of CH1 are stored in the context memory, and the valu€$i3 are loaded.
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clk

nco_req —,—‘
ack ‘
shift ‘

calc

Figure 5.17: Example: Downsampling by a factor of 2.5

Jdd]

processed channel >—< CH2 >< CH3 >< CH4 ><

stored channel CH4 CH2 CH3

Figure 5.18: Channel Scheduling

The first time a channel is executed, the modules of the SRE tealve synchronized, including
the load procedure of the first filter coefficients. For thispmse, a parameter in the CSS control
registers can be set.

The control of the SRC is split over two different state maekithat are executed in parallel. One
is responsible for the handling of the context switch, theeobne takes care of the normal SRC
processing, including the synchronization of the différ@odules once a channel is executed for
the first time.

5.4 Performance Analysis

5.4.1 C-Model Performance Results

The maximum achievable SNR value is determined by the ADA/exar performance. After
[140], it can be estimated as
SNR= (6.02 % + 1.76)dB (5.33)

with r as the signal resolution in bits. In RX / TXis equal to 12 / 14 bit which results in a
maximum SNR of 74 dB / 86.04 dB.

Taking the C-models, the SNR values of different known irgighals like sinusoidals or sweeps
are computed automatically when executing the code. To dthedncoming floating-point sig-

nal is A/D converted, quantized to 16 bit, resampled and Averted to obtain a floating-point
representation. Then the ideal result without ADA conarsind finally the SNR are computed.

In case no interpolation is required, the SRC easily obttiesmaximum SNR values for si-
nusoidal and sweep test signal. When interpolation becamesssary, the SNR depends on
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the ratio between the sampling frequencies, on the ovelganfactor and on the input sig-
nal type. Table 5.3 lists some results obtained for an examyinusoidal signal defined as
y(z) = Lsin(2’) + sm(%) + sm(%’) + cos(z") with 2’ = 2r fx

mode ratio | SNR
upsampling 1.45 | 80.12 dB
upsampling 2 86 dB
downsampling| 4.3 73.8dB
downsampling| 5 74 dB

Table 5.3: SRC Results for a Sinusoidal Test Signal

In case white Gaussian noise test signals are used, the SiNBecabtained by evaluating the
Power Spectral Density (PDS) which describes how the sjgmakr in time domain is distributed
over the frequencies. Before starting the SRC, the tesakigtowpass filtered and oversampled.
Upsampling by a factor of 2.5 results in an SNR of around 82 dilenthe SNR is very close to
the maximum possible one in case no interpolation is needed.

Different results are obtained when modifying the adjustditter parameters or when changing
the resolution of internal signals in the architecture. &@imple sinusoidal signal defined as
y(x) = sin(2 = m * 1000000 * =) we observed that

e The resolution of the filter coefficients can be at maximum &5 ®therwise, the number
of DSPA48E slices increases which is not acceptable as thiediteady uses almost 43 % of
the available ones.

e In case of realizing a filter structure wittf = 16 or M = 32, the higher resource consump-
tion does not justify the gained performance. Not only thatermemory space is required
for the filter coefficient storage, also the time to load tharthe SRC increases significantly
(Fig 5.19).

e Changing the3 parameter of the Kaiser window also leads to different SNfilts. This
parameter controls the width of the main lobe of the filter prmkvides information about
its 3 dB cutoff frequency. Therefore the obtained resultg 8-20) do not only depend on
the test signal but also on the filter characteristics.

Finally we compare the two different C-models to get an idesuathe quantization noise. For
the sinusoidal test signal, results are provided in Talgdle 5.

ratio | floating-point SNR | fixed-point SNR
0.2 68.120699 67.061089

0.5 82.138105 68.991791

0.69 | 68.130715 67.037849

1.7 68.147434 65.075775
1.875| 94.336565 67.939613

2.0 inf 76.64704

Table 5.4: SRC Results for a Sinusoidal Test Signal for Quatidn Noise Measurements
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Figure 5.19: SNR Performance for Changing M
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Figure 5.20: SNR Performance for Changing Beta
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5.4.2 Synthesis Results

When synthesizing the SRC for the baseband FPGA target, mmaxfrequency of 130.005 MHz
is obtained after place and route. Required resources are

- 32899 function generators (15.87 %)

- 8225 CLB slices (15.87 %)

- 20013 DFFs or latches (9.54 %)

- 30 Block RAMSs (10.42 %)

- 82 DSP48E slices (42.71 %)

For the first Preprocessor prototype, a maximum frequen®@ @61 MHz has been obtained after
place and route. Required resources in this case are

- 41007 function generators (19.78 %)

- 10252 CLB slices (19.78 %)

- 26206 DFFs or latches (12.49 %)

- 55 Block RAMs (19.10 %)

- 82 DSP48E slices (42.71 %)

5.5 Conclusions

In this chapter, we focused on the Preprocessor DSP engiceniplete the design of the IEEE
802.11p receiver. Most critical part in terms of performamnd space consumption is the SRC
embedded in the processing unit of the Preprocessor. Tkeriesl design is a flexible high per-
formance filter based on bandlimited interpolation. It suppfractional ratios between the fixed
sampling rate of the ADA converters and the sampling rateeddy’s wireless communication
standards with a resolution of 1 Hz. Up to four channels imlttections, RX and TX, are sup-
ported that may possess a different set of parameters {ingsul dynamic system changes at
runtime. To guarantee an continuous processing of the SRanel switches happen instanta-
neously.

To complete the IEEE 802.11p receiver chain we further piteska first prototype of the Prepro-
cessor that includes already the main features of this D§Ren

The performance evaluation has shown that the SRC perfaemaainly depends on two different

factors: (1) the sampling rate of the wireless communicasiandards in process and (2) the ratio
between the sampling rates. It is obvious that the lesspialation is required and the lower the

ratio, the higher the measured performance is. Possibigrdestensions to obtain an excellent
performance even for high upsampling ratios could be

e splitting the ratio in two parts: an integer and a fractiooa¢. Integer resampling could be
performed by CIC filters while our SRC solution could be usadtfie fractional part.

e processing the SRC several times. This approach is nobfiia a continuous processing
of the SRC would no longer be guaranteed in this case.

Besides, the performance of the current design could beased by the implementation of an
addressable registerbank or by the realization of highéerdiilters. The latter comes with the
drawback of a longer filter initialization time and more megncequired for the filter coefficient

storage. Apart from that it is also imaginable to increageRheprocessor frequency by adding
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more registers between the MSS control part and the actuBRAs it is already done for the
other DSP engines on the ExpressMIMO platform.
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Chapter 6

Conclusions and Future Work

The work presented in this thesis is strongly connectedtéstidarends in the automotive industry
that demand for a combination of C2X and TPEG informationan8éards of interest are IEEE
802.11p and ETSI DAB. To combine these two we have chosenpach of a flexible SDR
platform that is not limited to the automotive context butatioeless communication standards in
general. The thesis focused on an efficient physical layggdef the IEEE 802.11p receiver for
the OpenAirinterface ExpressMIMO platform by followingetivasic development methodology
described in Chapter 2.3. This included (1) the developragptrrely functional models using the
emulation library of the platform, (2) the cycle accurate H\WWW co-simulation via Modelsim
and (3) the receiver validation on the hardware platforme @issing component was the Prepro-
cessor where a first solution including a fractional SRC heentprovided. Based on the obtained
results we identified design bottlenecks and presentedipp@s®lutions to overcome these draw-
backs. Apart from that we had a look at a multimodal proceggssirthe two standards of interest,
IEEE 802.11p and ETSI DAB.

In the introduction, all these objectives have been expressa list of different tasks that had to
be accomplished throughout this thesis:

1. Emulation of the IEEE 802.11p receiver with the help of thigrary for ExpressMIMO
baseband callelibembb

2. Implementation of the IEEE 802.11p receiver and its parémce evaluation on the Ex-
pressMIMO platform

3. Focusing on the question how DAB and IEEE 802.11p can beugx@ simultaneously on
the ExpressMIMO platform

4. Identification of design bottlenecks and the provisiopasgsible solutions

5. Implementation of a Preprocessor DSP engine prototypertiplete the IEEE 802.11p re-
ceiver chain

In the following we recall these tasks to summarize the aehieontributions as well as design
limitations and possible future enhancements.
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6.1 Receiver Emulation

Thanks to the emulation library of the ExpressMIMO platforiibembb, easy receiver valida-
tion and verification in a pure software environment becaossible. The functions included in
this bit-accurate C++ library represent all functions @& thal hardware platform, including basic
commands for the main CPU and the local microcontrollerse d&sign of the emulation pro-
totype of the IEEE 802.11p receiver has been implementeld avifequential execution in mind
where no concurrency of the DSPs was exploited. Advantafjggsoapproach were (1) the fast
improvement of algorithms and (2) the creation of first parfance figures based on the pure pro-
cessing time of the DSPs. The latter has been facilitatechtanaotation with cycle counters and
by an automatic generation of trace files that can be intexgtey software programs like Matlab
or Octave. To enable a simplified integration of standardsage of multimodal processing and to
simplify updates due to changes in the baseband, we furkteneed our design by an additional
layer, calledexpr essm no_enmnu.

The presented receiver code supports all modulation scham code rates of the standard and
could theoretically be executed on the hardware platfoslfitwithout any modifications. Un-
fortunately, this approach still results in a significantfpenance drop for standards operating on
short data sets, so that a redesign of the receiver code batarassary.

Limitations:

e Currently, no parallelism of the DSP engines is exploite@mbaxecuting the receiver code
on the hardware platform. Therefore the code has been aebigith a sequential execution
in mind and has not been optimized for its execution on thaé&sgMIMO platform.

e The emulation model can only serve as an input for a runtinadyais based on the pure
processing times of the DSPs and the data transfer timeg @MAs. Not supported is an
estimation of the resulting communication overhead.

Possible future enhancements:

e In the future, libembb will be extended to exploit hardwaegghelism on the platform.
Once this is finished, it would be an interesting task to rigghethe current emulation re-
ceiver prototype and to carry out a detailed performancéysisaon the ExpressMIMO plat-
form. This would give an idea about the efficiency of the ndveinbb design, especially
when executing standards with short data sets.

e The obtained performance figures could be compared to thmiaptl receiver prototype
presented in Chapter 3 to identify possible design bottlesnén either of the two design
approaches.

6.2 Receiver Implementation for Prototyping

In the future design flow, the code written for emulation caaatly be compiled for the hardware

platform even for standards with short data sets. We havershihat this approach is currently

too time consuming for this kind of standards as the programgrof the DSP engines at runtime

is still too time consuming. Therefore, code optimizatignHand was unavoidable. The identi-
fied design bottlenecks and the provided solutions to impthe receiver performance are further
detailed in Section 6.4.

Besides, the performance has further been improved bygaddwantage of the CSS command
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preparation and by implementing a simple scheduler beimhg execute different DSP engines
in parallel. Throughout different performance evaluasiam Modelsim and on the real hardware
platform we observed, that the IEEE 802.11p receiver canrbeepsed in real-time for BPSK,
QPSK and 16-QAM. For a slightly higher target frequency & thhole baseband engine (e.g.
ASIC target), this is also the case the 64-QAM. Apart front thia recognized that a further re-
duction of the communication overhead can only be achieyeal distributed control flow based
on the local CSS UCs or by a microprocessor or sequencer draieband side.

Limitations:

e Executing the hardware version of libembb on the Express®lpatform results in a sig-
nificant performance drop, due to the huge communicationheaal that occurs when pro-
gramming the DSP engines. Currently a manual code optiroizét still unavoidable when
executing standards operating on short data sets.

Possible future enhancements:

e A possible enhancement could be the implementation of arieaffiAPI for standards with
short data sets which already includes the design optimoizadentified in Section 6.4.

e Currently, scheduling the different DSP engines is based Round Robin policy. It could
be interesting to experiment with different schedulingigges to analyze the resulting per-
formance changes.

e Another improvement would be the realization of a distsLicontrol flow on the platform
and the comparison to the presented design. This could lwer eééalized by the local UC
inside the standardized DSP shells or by a sequencer or pnic®ssor on the baseband
side. In case of the FEP, more complex algorithms like chiagstamation or data detection
could be delegated to this DSP while the main schedulingillsrsthe responsibility of
LEONS3.

e Furthermore, performance figures based on the power corigumitave to be obtained for
the whole receiver chain.

6.3 Multimodal Standard Execution

The execution of IEEE 802.11p and ETSI DAB was still an opexeaech topic at the beginning
of this thesis. Therefore we were interested in obtainirg fierformance figures to design an
efficient scheduler for the ExpressMIMO platform. Due to onajifferences between these two
standards this task became very challenging. IEEE 8024 Fppacket based standard whose
packet interarrival time is not known in advance. Operatinghort vectors, this standard further
requires a very fast baseband engine. DAB, instead, is aftmsed standard whose future exe-
cution is known once the beginning of a frame is detectedontrast to IEEE 802.11p it operates
on larger vectors so that the communication overhead canbed programming the DSPs can
almost be neglected.

To get first key figures for the scheduler design, a detailattme performance analysis based on
the emulation prototypes of both receivers has been castiedr hroughout this analysis it turned
out, that most of the tasks were running on the FEP. AlthohgH-EP is not the computationally
most intensive DSP engine, it has to execute most of the,tamiading the latency critical ones.
Based on these results, scheduling guidelines have bemedlend a simple first scheduler has
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been presented.

Limitations:

e Throughout the runtime performance analysis, the FEP duoné to be a bottleneck of the
design. A possible solution to overcome this drawback ialled in Section 6.4.

Possible future enhancements:

e The scheduling algorithm has to be finalized and tested orExpressMIMO platform
together with the IEEE 802.11p and the DAB receiver.

e Improvement of the DAB code by applying the same hardwaranigeations than for the
IEEE 802.11p receiver code.

6.4 Identification of Design Bottlenecks

6.4.1 Receiver Optimizations

When testing the receiver code on the real hardware platfming FPGASs, different design bot-
tlenecks have been identified and solved. First the C codeinrgron the main CPU has been
optimized to decrease the overhead due to function calls eftmpilation. Modifications com-
prised a higher number of inline functions and macros as age# limited number of parameters
to be set dynamically at runtime. Apart from that we obserteat the interrupt handler provided
by MutekH still decreases the IEEE 802.11p receiver peréore significantly so that we had to
poll the status registers instead. Another identified ogtiion in the design flow was grouping
the OFDM symbols included in the IEEE 802.11p DATA field. Wedahown, that the commu-
nication overhead can be decreased as this approach etfabESP to operate on larger vectors.
Besides, programming the DSP engines at runtime turnecbdué very time consuming and re-
sulted in a huge performance drop. To overcome this drawhaekhave proposed an efficient
alternative by preparing the commands in advance and te #tem in a local memory before
starting the receiver.

Limitations:

e Although the interrupt handler provided by MutekH is veryi@ént when compared to
others, the introduced communication overhead resultshage performance drop when
executing the IEEE 802.11p standard.

e Programming the DSP engines at runtime may be very time conguand may result
in a lower performance. Command preparation as an alteenationly suitable in case
the commands are almost static and require only few modditaitin case of dynamic
parameter changes at runtime.

Possible future enhancements:

e One possible enhancement could be the implementation ster filmterrupt handler or the
provision of libembb functions based on the polling of thetis$ registers.

e The way how the DSP engines are currently programmed lowerpdrformance for stan-
dards operating on short data sets. It is therefore straeglynmended to reimplement the
invoked libembb interface to make it suitable for all kindstandards.
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6.4.2 ASIP Design for Front-End Processing

When executing operations on short vectors on the FEP sindtk for the FPGA target, the
programming communication overhead is huge when compardidet pure processing time of
this DSP. To overcome this limitation, the FEP vector pret®s unit has been replaced by an
ASIP solution, called A-FEP. For development, the LISA laage that has gained commercial
acceptance over the past years has been chosen. In contitzsprogrammable FEP DSP engine
(C-FEP), the A-FEP version embeds general purpose ingtngcand comes with reduced internal
latencies. We have shown, that this makes the A-FEP the jppai® solution when processing
standards with short data sets while the performance is ordess equal for standards like DAB.
We therefore recommended to include the A-FEP solution aslditional block in the baseband
engine. The main advantage would be that the A-FEP coulduexéatency critical tasks while
DFT / IDFT and latency non-critical tasks can be processethe!C-FEP in parallel.

Apart from that, the execution time of the A-FEP has furtheerocompared to two different so-
lutions from academia. For a packet detection algorithm aithieved performance was similar to
an ASPE ASIP presented by ETH Zirich but was still worse thapeialized ASIP solution for
synchronization and acquisition.

Limitations:

e For the packet detection algorithm the performance of tHeE/® was worse than the one
of a specialized ASIP solution. Although this phenomenowitgely known, it would be
interesting to analyze if the A-FEP performance can stilifbperoved.

Possible future enhancements:

e Up to now, the A-FEP has only been validated in Modelsim anthkeySynopsis develop-
ment tools. Still missing is the integration and validatanthe ExpressMIMO platform.

e Furthermore, performance figures based on the power cornigumitave to be obtained for
the A-FEP.

6.5 Implementation of a Preprocessor Prototype

This tasks comprised the finalization of the IEEE 802.11gixes chain by the implementation
of the Preprocessor. The Preprocessor connects the dxédand D/A converters with the
remaining baseband processing engine and embeds amongantH@RC, an NCO and an I/Q im-
balance module. We mainly focused on the implementatioh@&RC, which is most critical in
terms of performance and space consumption. The presessgaghds a flexible high performance
filter based on the bandlimited interpolation algorithmanting a fractional ratio between the
sampling rates. Up to four channels in both directions, RH @K, are supported and channel
switches happen instantaneously. For the proof of congeptafinalize the IEEE 802.11p re-
ceiver chain, a first Preprocessor prototype has been ingoltrd.

Limitations:

e Due to the fixed number of filter coefficients, the performagoes down for high upsam-
pling ratios where a lot of samples have to be obtained vealiinterpolation.

e The presented Preprocessor design is a first version andhdogst fully exhibit the whole
required functionality.
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Possible future enhancements:

e To obtain a high performance even for high upsampling ratites SRC could be combined
with CIC filters. While the latter could perform resampling & high integer factor, the
fractional upsampling can still be performed by the presgéi8RC solution.

e The presented Preprocessor architecture has to be opdimimethe missing functionality
has to be included before the final version of this DSP can tegiiated and validated on
the ExpressMIMO platform.

6.6 Guidelines for a Future Standard Deployment

To sum up, we can state, that the implementation of standgreisating on large vectors can be
already performed in a very efficient way on the ExpressMIM&ifprm when FPGAs are con-
sidered as target technology. When executing a vector tperaver a size of 4096 samples, for
instance, the required processing time would be about2@hile the programming time of the
DSP stays at a maximum of 360 ns. The resulting communicatierhead can thus be neglected.
When processing standards with short data sets insteadotteehas currently to be manually
optimized by command preparation, symbol grouping, pglimstead of interrupts, etc. The re-
sulting receiver design is thus more complicated but falhgathese recommendations, a high
performance can be achieved even for this type of standard.

Remains the question about possible future projects. htiersecret that LTE stands for the new
generation of wireless communications standards. CordpgarelSPA and HSPA+, LTE comes
with an improved performance in terms of throughput andigyeas well as with lower costs. This
makes this standard the preferable solution for futurelessebroadband internet systems. Even in
the automotive industry there are already projects thatfon a possible multimodal execution of
IEEE 802.11p and LTE. So the question is if LTE can be execoteithe ExpressMIMO platform
and if yes, may the work presented in this thesis help for gq@ayment of this standard. To
answer this question, let us have a look at the different D®jhes required for the LTE receiver
design:

e Preprocessor:
Currently the Preprocessor only supports TDD, but will sarppDD in the future version.
The required resampling can already be performed by thepted SRC solution.

o FEP:

Air-interfaces of interest are OFDMA and SC-FDMA that aretbsupported by the FEP.

Related air-interface operations are among others prisyarghronization to detect the be-
ginning of the frame, secondary synchronization to deteenthe frame type or channel
estimation where the component-wise product is only peréat at the pilot positions while

all missing values are computed via linear interpolatione Tesulting set of FEP operations
include radix 2/4 DFT / IDFT (between 128 and 2048) and d#feérvector operations that
are all provided by the current version of the FEP.

e Deinterleaver:
The required deinterleaving operations can be performdtidipeinterleaver integrated on
the platform.
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e Channel Decoder:
LTE requires a 3GPP LTE Turbo decoder with rate 1/3 and a Miecoder with rate 1/3
and with a tail-biting option. Both will be included in thextesersion of this DSP engine.

So the answer to the question whether the LTE receiver camjbleinented on the ExpressMIMO
platform is: currently it cannot but soon it can, once the IglexpressMIMO design is finalized.

Remains the question if the work presented in this thesishmelyfor the deployment of this stan-
dard. The answer in this case is yes again. As the IEEE 802ekhiver was the first prototype
developed for the ExpressMIMO platform it paved the way fbfuaure standard deployment by

(2) providing a simple scheduler to execute the DSP engmpariallel.

(2) providing a complex libembb example.

(3) identifying possible design optimizations.

(4) providing performance evaluation frameworks.

(5) proving that the ExpressMIMO platform is functional atepable to meet the real-time con-
straints of latency critical designs.




128




129

Appendix A

Résume Francais

A.1 Introduction

Aujourd’hui, les applications de communication sans filtstevenus une partie importante de
notre vie. Presque tous les jours nous vérifions nos casig@t sur les smartphones ou les ordi-
nateurs personnels via le réseau local sans fil (Wirelesall&oyea Network - WLAN). En outre,
nous communiquons via nos téléphones mobiles ou nous tonswles systémes de navigation
ou des cartes en ligne en cas nous nous sommes trompés de ckenmiarticulier pour la jeune
génération, il est impossible d'imaginer vivre dans un nead ils ne peuvent pas étre connectés
a leurs amis en tout lieu et a tout moment. Des entrepriseplds®n plus ont reconnues cette
tendance et cherchent a introduire des nouveaux produite snmarché. Ces produits intégrent
plusieurs d’applications dans un seul appareil, qui est pétit et plus Iéger, qui colte moins cher
et qui a un rendement plus élevé que les autres produits ¢@ove dans les magasins.

Un autre marché intéressant pour les appareils de comntianiczans fil peut étre trouvé dans
l'industrie automobile. C’est un fait bien connu que I'éwiabn démographique conduit a un pour-
centage croissant de personnes agées, en particulier gpeElans des pays comme I'Allemagne,
ou il n'existe pas de limite d’age pour la conduite autommhily a un grand besoin de nouvelles
applications de sécurité comme les mesures de vitesseyeltissements quand il y a des obsta-
cles sur la route ou la mesure de la distance entre des \&itDeux termes clés qui sont utilisés
souvent dans ce contexte sont Car-to-Car communicatioB ) &2Car-to-Infrastructure communi-
cation (C2l) qui comportent également la mise a disposiiies applications non-sécurité comme
des péages, des informations touristiques ou internetledtormes d’intérét sont IEEE 802.11p
et DAB (Digital Audio Broadcasting). La premiére est une aanétion de la norme IEEE 802.11a
qui est utilisée pour les connexions wifi. Pour combiner aasxchormes, deux approches sont
envisageables. Soit ils sont mis en ceuvre individuelleraemtennent avec leurs propres récep-
teurs et émetteurs qui doivent étre intégrés dans la voiturdes deux sont combinées en un
seul dispositif. Comme c'est le cas pour le marché de lahélée mobile, il est important que
les appareils sont petites, pas chéres et de haute perfcem&m plus elles doivent étre facile-
ment adaptable & des futures normes. Surtout l'intégrafiome nouvelle norme dans une voiture
prend beaucoup de temps et colite beaucoup d’argent (papkexEimégration du LTE - Long
Term Evolution). Par conséquent, une architecture uniquieest capable de traiter n'importe
guelle norme de communication sans fil est la solution paéfér

Faire face a ces exigences croissantes pour les archidsataradio reconfigurables est une tache
trés difficile. Une solution peut étre trouvée dans le cadreésSdftware Defined Radio (SDR).
Un objectif majeur du SDR est de fournir des solutions deteglarmes flexibles qui support-
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ent un large éventail de différentes normes de communica@ms fil de maniére multimodale.
Cette approche ne vient pas seulement avec I'avantage éwlappement plus rapide et d’'un
déploiement plus rapide des nouvelles normes, mais aussiladoption automatique dans les
environs.

Notre intérét particulier est I'analyse des normes de amitiques sur la plate-forme Express-
MIMO au moyen de la norme IEEE 802.11p. En plus nous avonsé&éda combinaison d'un
récepteur IEEE 802.11p avec un récepteur DAB. Comme lafsgsdn du premier a été publié
en Juillet 2010, des implémentations efficaces des réasgbeur la couche physique sont encore
un sujet de recherche ouvert. Et a notre connaissance, arcpgo d’efforts ont été consacrés a
la description d'une plate-forme SDR qui peut traiter casxdsormes d’intérét en paralléle.
Comme cible nous avons choisi la plate-forme OpenAirlaefExpressMIMO qui est dévelop-
pée par Eurecom et Télécom ParisTech. Contrairement aukelsplates-formes SDR, les fonc-
tions de traitement en bande de base sont réparties sueynisifdigital Signal Processors (DSPSs)
comme le décodeur canal, I'interleaver ou le Front-End &sar (FEP) qui peuvent étre exé-
cutées en paralléle. Cela permet non seulement une meilf@rformance de tout le systéme,
mais permet aussi de remplacer facilement un DSP en cagd$uitises a jour deviennent néces-
saires. La plate-forme est capable de traiter jusqu’a lamaox différents en méme temps (quatre
canaux en transmission, quatre en réception) en réutilisarressources programmables sur la
plate-forme. Défi de conception principale est la syncheation de ces ressources en fournissant
un maximum de précision et en répondant a toutes les exigancéemps réel. La plate-forme
peut en outre étre émulé avec la library for ExpressMIMO baséd appeldibembh qui permet
une validation et une vérification du récepteur dans un enagment purement logicielle.

Au tout début de cette thése, le travail sur cette plate-€oétait toujours en cours. Pour ¢a, le
récepteur présenté est la toute premiére création compiet été élaborée et évaluée sur cette
plate-forme cible et qui a été émulé a I'aide de libembb. Elonc été servie comme une pre-
miére preuve de concept de la conception tout entiére. Nodiexécution qui opérent sur des
vecteur de petite taille, comme IEEE 802.11p, besoin d'aiteiment trés rapide. Donc, choisir
cette norme comme un premier cas d'utilisation nous a pettté@isluer la conception actuelle de
la plate-forme pour trouver les goulots d’étranglementogirprouver des solutions possibles pour
les surmonter.

Finalement nous proposons un prototype d'un Préprocessgalui-ci relie le convertisseurs
A/D et D/A avec la plate-forme compléte et integre entre emitin convertisseur de fréquence
d’échantillonnage (Sample Rate Converter - SRC).

Pour atteindre tous ces contributions, les objectifs d&dgront été regroupés en cing taches
différentes:

e Emulation du récepteur I'lEEE 802.11p avec l'aide de libbmb

L'implémentation du récepteur IEEE 802.11p et I'évaluatite la performance sur la plate-
forme ExpressMIMO

L'analyse d’'une exécution multimodal des récepteurs DABE&E 802.11p sur la plate-
forme ExpressMIMO

Identification des goulots d’étranglement et la concepties solutions possibles

L'implémentation d'un prototype Préprocessor
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A.2 Intégration du Systeme

A.2.1 La Plate-Forme OpenAirinterface ExpressMIMO

La plate-forme OpenAirinterface ExpressMIMO ([30], [3&Pt développée par Eurecom et Télé-
com ParisTech. Elle potentiellement prend en charge ur lavgntail des normes différentes
comme GSM, UMTS, WLAN, DAB ou LTE ainsi que leur traitementltimodal. La plate-forme
est capable de traiter jusqu’a huit canaux différents en etémps (quatre en réception, quatre en
transmission) en réutilisant les mémes ressources nigri€omme chaque canal peut prendre
en charge d'un standard de communication sans fil difféterdéfi principal de conception est
la synchronisation de ces ressources en fournissant ummaxide précision et en répondant a
toutes les exigences en temps réel. ExpressMIMO est senlartiksée pour des analyses ex-
périmentales. Pour ¢a, la technologie cible qui a été ahasnt des FPGAs. Des avantages
contiennent un temps de conception réduit, flexibilité pendexécution, une utilisation simpli-
fiée et des colts réduits pour les petites quantités par magpe autres solutions. Néanmoins
ASICs sont pris en compte dans une future version une foisfagption de bande de base a été
validée.

Contrairement aux solutions présentées précédemmerantegption actuelle de la plate-forme
ExpressMIMO est répartie sur deux FPGAs de Xilinx difféesnt(1) un Virtex 5 LX330 pour le
traitement de bande de base et (2) un Virtex 5 LX110T poutelffacage et le contréle (Fig. A.1).
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Figure A.1: L'Architecture de la Bande de Base de la PlatavfeoExpressMIMO

La conception de bande de base est répartie sur plusieurs iD&pendants qui sont contrdlées
par un processeur SPARC LEONS3 de Gaisler Aeroflex. La connesst établie via une Advanced
Virtual Component Interface (AVCI) crossbare. L'architee des DSPs est basé sur une design
standardisée qui est montrée dans Fig. A.2. Cette aralnieese compose d’'un Control Sub-
System (CSS), d’'une unité de traitement (Processing Unlil)-e® d’un sous-systéme mémoire
(Memory Sub-System - MSS). L'architecture des deux desni@pendes de ['utilisation du DSP.
Le CSS est commun a tous les blocks et est spécialisée pangtaea. Il contient entre autres
un microcontréleur 8 bits (UC), un DMA, un ensemble de registde contrble et d'état ainsi
gue plusieurs arbitres et FIFOs. En outre, il agit comme wEsgrelle avec le systeme hote
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en utilisant deux interfaces de 64 bits qui sont conformesx && norme AVCI. En outre, des
interruption sont utilisées pour la signalisation et lacymonisation avec le systeme héte. Pour
le moment, I'UC n'a pas encore été intégrée dans le CSS. Lsioveactuelle du récepteur est
ainsi orchestrée par un flux de contréle centralisé ou lerprome du récepteur entier est exécuté
sur le processeur principal. Pour obtenir un premier apsucle comportement fonctionnel d’'un
émetteur-récepteur sur la plate-forme, une bibliothégtre &t fournie qui permet d’émuler toutes
les fonctions de traitement de base dans un environnement SW

DSP unit-- >
Processing Unit
Arbiter - {--------- A @ @ @
V < 8

Interrupts<H1—"| cTRL UCA ﬁL‘ Micro—
—>{ UC memory |<-{-| - controller

memory

e UC =i
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Figure A.2: OpenAirinterface Standardized DSP Shell

A.2.1.1 Méthodologie de Développement

La méthodologie de conception pour chague design dévelomupéa plate-forme ExpressMIMO
peut étre divisée en plusieurs étapes. La premiére étapélalsoration d’'un modéle purement
fonctionnelle qui est le point de départ commun pour tous les modéles dtéorstrécepteurs. Les
buts de cette étape sont d’analyser la partie algorithmitguéémetteur, identifier les ressources
nécessaires aussi que le flux et les dépendances de doninéssil Ast déja possible d’identifier
les goulots d’étranglement quand plusieurs émetteurseptéurs sont exécutées dans une maniéere
multimodale sur la plate-forme. Les modéles considérésggnréralement séquentielle et n’exploite
pas encore le parallélisme de la plate-forme. Pour la caioceg ExpressMIMO, libembb est util-

isé pour la conception du modeéle fonctionnel. La deuxiérapedest laHW / SW co-simulation

qui est cycle précis. Cette étape permet d’exploiter ptaem le parallélisme sur la plate-forme.
Une approche commune est le HW / SW co-simulation avec l'dégesimulateurs comme par ex-
emple Modelsim. Le parallélisme de la plate-forme compiertdaitement simultané des DSPs,
les transferts de données a I'aide des DMA ainsi que la paéiparde commandes pour activer les
DSPs. Les résultats de cette étape sont les chiffres préetemant la performances de la con-
ception. La derniére étape estMalidation émetteur-récepteur sur la plate-forme matéridle

ou la conception a été testée et validée sur ExpressMIM@éaie.
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A.3 |EEE 802.11p Récepteur pour la plate-forme ExpressMIMO

A.3.1 Motivation

Actuellement, les experts se concentrent sur la concegdd@2C et de C2| également connu sous
le nom de Vehicle-to-Vehicle et Vehicle-to-Infrastuctw@mmunication. Le concept de base de
la communication C2C est la suivante: une fois une voitumiendes messages a d’autres via
un canal de communication sans fil, les voitures formenttsp@ment un réseau ad hoc qui est
connu comme Vehicular Ad Hoc Network (VANET). VANETSs éteada vision du conducteur
de la route qui peut étre limitée en raison de I'obscurité esi abstacles et prennent en compte
le fait que le conducteur peut avoir besoin de temps pouiirréagn événement inattendu. Des
cas d'utilisation possibles se concentrent sur la rédaali&s embouteillages et des accidents, et
notamment sur la prévention des collisions, la surveikbaghies véhicules dangereux, les avertisse-
ments d’accidents, etc.

La communication C2X (X = Car, Infrastructure) s’inscritndale cadre des futurs systémes de
transport intelligents (Intelligent Transport Systenis$). Un excellent apercu de ITS est donné
dans [41]. Dans ce document, non seulement différents Soéreont présentés, mais aussi les
différences d’attribution des fréquences entre plusig@angs sont renforcées. Les applications
possibles dans ITS ne sont pas seulement les applicatiosécdaté, mais aussi d’éviter les em-
bouteillages, la perception des péages, des informatmmsstiques, Internet mobile, etc. En
général, ils peuvent étre divisés dans deux domains: ddisamms non sécurisées et des appli-
cations sécurisée. Pour faire la distinction entre legudifites applications ITS, [42] a proposé un
ensemble de critéres importants pour la communication Q@sant la convivialité, robustesse,
co(t, I'efficacité, I'évolutivité et I'effort de développeent.

En Ao(t 2008, la Commission des Communautés Européennesds dgie le 5,875 a4 5,905 GHz
bande est dédié pour les applications liées a la sécurit¢43]S La division de cette bande de
fréquence est définie par I'European Telecommunicatioasdairds Institute (ETSI) dans [44]. Il
est divisé en plusieurs canaux d’'une largeur de 10 MHz quigreuétre combinés pour obtenir
des débits de données plus élevés. Une norme d'intérétigmindans ce contexte est WLAN
IEEE 802.11p ([45], [46]) qui est une amélioration de la nerlBEE 802.11a [47]. Contraire-
ment a cette derniére la bande passante de I'lEEE 802.1¥praréenée de 20 MHz a 10 MHz.
Il en résulte des symboles OFDM qui sont plus longs dans leaffamtemporel, et donc dans
des systémes avec un délai de grande propage pour évitdnt& $ymbol Interference). ISl
est d’'une importance majeure pour les cas d'utilisatiorioudhires ol les canaux sont fortement
variant dans le temps. Ainsi, une réception fiable du sigaalkmis peut toujours étre garanti. La
norme |IEEE 802.11p est également connue sous le nom Wirktesss in Vehicular Environ-
ments (WAVE) qui a son origine en 1999 lorsque la Federal Caonication Commission a alloué
75 MHz du spectrum de la Dedicated Short Range Communicé@&RC) exclusivement pour
la communication C2X. Un bon apergu de DSRC est fourni dais fdJomme la norme a été sous
forme de projet jusqu’a Juillet 2010, une efficace conceptioine émetteur-récepteur est encore
un sujet de recherche ouvert. Cette tache est assez diffaileapport a d’autres normes. Des
émetteurs-récepteurs pour la norme IEEE 802.11p venir lageexigences de latence tres fortes
et nécessitent donc un moteur de bande de base trés rapide.

Un projet trés important dans le contexte de ITS est un padiginand qui s’appelle SimTD [49],
ol C2X est mis en ceuvre sur la couche physique et sur la couglaz Dlans le cadre de SImTD,
des expériences réelles sont effectuées dans la régioradeféit en Allemagne.
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A.3.2 LaNorme IEEE 802.11p

Avoir un regard sur les différentes normes de communicatems fil, on peut distinguer deux
types différents: (1) les normes basées sur des tramesxgapte LTE, DAB) et (2) des normes
basées sur des paquets (2) (par exemple WLAN). IEEE 802altlpeftie de la seconde catégorie.
Lors de I'élaboration d’'un émetteur-récepteur a base dagiagour un systeme multimodal, un
inconvénient majeur est que I'heure d’arrivée du prochaiuet n'est pas connue a I'avance. Cela
introduit un indéterminisme qui demande d'un schedules fi€xible dans le cas ou des normes
multiples sont traitées simultanément.

IEEE 802.11p est une norme OFDM ce qui signifie que son signalathnées a débit élevé est
réparti sur plusieurs signaux indépendants avec des daibdsnnées plus faibles. Les symboles
OFDM sont composés de 80 sous-porteuses. Dans le reste dewreeht, une sous-porteuse peut
également étre notée comme un complexe échantillon avetailieede 32 bits (la partie réelle
et la partie imaginaire ont une taille de 16 bits chagunej.sipabole OFDM, 16 sous-porteuses
représentent un intervalle de garde qui sépare deux symB@&®M voisins pour éviter leur intér-
ference. Ces intervalles de garde sont construites esautilune technique de préfixe cyclique qui
signifie que l'intervalle de garde est identique a la demartie du symbole OFDM. Les 64 autres
sous-porteuses pilotes contiennent 4 comb pilotes néoessgal’estimation et compensation de
canal, 12 transporteurs null et les informations transsnise

La structure de paquet représenté sur Fig. A.3 est simidalrene de la norme IEEE 802.11a.
Chaque paquet est constitué d'une partie constante et ¢harie variable. Pour un channel
spacing de 10 MHz, la partie constante a une durée gs.4Blle est composée du préambule et
du SIGNAL Field:

e Short Training Symbol (STS): Le STS fait partie du préambule et est formé de 10 répéti-
tions de la méme séquence avec une taille de 16 échantillast. utilisé pour la synchro-
nisation des paquets.

e Long Training Symbol (LTS): Le LTS est constitué d’un intervalle de garde de 32 échan-
tillons et deux symboles OFDM contenant des séquence&gitpti sont nécessaires pour
I'estimation de canal.

e SIGNAL field: Le SIGNAL field indique comment décoder le message transmhigst
BPSK modulé avec un taux de codage de 1/2 et contient tousatesngtres nécessaires
pour la détection des champs de données suivants (DATA field)

160 samples 160 samples 80 samples 80 samples 80 samples
16us 16us 8us 8us 8us
- - - -
STS LTS SIGNAL | DATA 1| - | DATA_N
Synchronization Channel Estimation Decoding Message
of DATA Decoding
Field
Parameters

Figure A.3: IEEE 802.11p Paquet (channel spacing 10 MHz)

Contrairement a la partie constante du paqudDA€A field se compose d’un nombre variable de
symboles OFDM. Sa taille n’est pas connue avant la procédrid®codage du SIGNAL field est
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terminée. Le nombre des symboles OFDM dans le DATA field patiewde 1 a 1366. Tous les
parameétres obtenues du SIGNAL field appliquent sur le chaengiodnées entiére et ne peut pas
changer avant le prochain paquet est recu. Le temps entredaifi paquet et la réception d'une
suivante est au moins 16. Schémas de modulation possibles pour le DATA field sontkBPS
QPSK, 16-QAM et 64-QAM. Des taux de codage possibles son132et 3/4.

A.3.3 Développement du Récepteur

Pour I'implementation du récepteur, seulement VCI RAM, ABé¢interleaver et le décodeur canal

sont utilisés pour décoder les paquets du récepteur IEEEB02Fig. A.4). Le Préprocesseur sera
inclus dans une future version. Aprés chaque interruptsmi®réprocesseur va copier 640 com-
plexes échantillons dans la mémoire circulaire qui estmdans le MSS du FEP. Cela correspond
a une memcopy de huit symboles OFDM.
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Figure A.4: Architecture de Bande de Base de la Plate-ForpeeSsMIMO

A.3.3.1 Prototype Matlab du Récepteur IEEE 802.11p

Une premiére version du récepteur IEEE 802.11p a été mis enecdans Matlab pour la val-

idation algorithmique rapide. Pour générer les signauxedg un code Matlab d'un émetteur
fournie par le Telecommunications Research Center Viendpd été utilisé. En outre, différents
snapshots réels fournis par BMW ont également été testés/plider les algorithmes qui ont été
choisies.

A.3.3.2 Emulation du Récepteur IEEE 802.11p

Le prototype d’émulation du récepteur IEEE 802.11p est$asé une exécution séquentielle.
Ainsi, il n’exploite pas complétement la simultanéité deSH3 qui est possible sur la plate-forme.
A I'heure actuelle, I'émulation du récepteur est considétémme untimed. C’est pourquoi la
concurrence n'est pas encore significative. Au lieu de ¢élamulation est important pour identi-

fier les fonctions DSP qui sont nécessaire pour la réalisatiorécepteur dans un environnement
purement logicielle. Le prototype d’émulation du réceptfEE 802.11p prend en charge tous




136 A. RESUME FRANCAIS

les différents schémas de modulation et taux de codage. t# ardoté par des compteurs de
cycle et étendu par la génération de fichiers de trace pougualeation efficace du récepteur.
En dehors de cela il génére automatiquement des fichierseywiept étre utilisés pour tracer
les résultats dans Matlab ou Octave. Toutes ces amélinsaiermettent une validation simple
et l'identification des nécessaires améliorations algorigues dans un environnement purement
logicielle.

A.3.3.3 Prototype Matériel du Récepteur IEEE 802.11p

Dans le flot de la future conception, le code écrit pour I'étiah peut étre directement compilé
pour la plate-forme matérielle, méme pour les normes avewelgteurs de petite taille. Actuelle-
ment, chaque fonction qui peut modifier un DSP paramétra halleur du parametre, effectue les
modifications dans le processeur principal et écrit la vadieuregistre de retour. Comme cela se
fait pour chacun des paramétres, cette procédure prenddgade temps (d’environ 425 ns par
parameétre). Si on imagine qu’'une opération de FEP exige amsnd parameétres, il est évident
gue cette procédure n'est pas efficace dans le cas de forgeness de latence. Pour répondre a
ces fortes contraintes temps-réel, le code de I'émulatidona été révisé et optimisé a plusieurs
reprises avant d’'étre porté sur la plate-forme ExpressMINEs améliorations inclus le choix
d’'un systéme d’exploitation approprié pour le processeincpal (plus précisément LEON3),
un programmateur flexible pour exécuter les différents D8RIlEanément, le regroupement de
symboles OFDM et la génération de mots de commande hors digaet que le récepteur est
démarré.

A.3.4 Résultats

Les résultats présentés ont été obtenus avec le prototgpautiition du récepteur IEEE 802.11p
et par un cycle précis HW / SW co-simulation. Auparavanthiaice de réception a été validé sur
la plate-forme matérielle elle-méme pour une fréquenceétizence de 100 MHz. Les résultats
ont été récupérées en utilisant JTAG et la connexion PCHsgprPour atteindre une meilleure
performance cette frégquence sera augmentée dans un prattie aa fréquence maximale pos-

sible est déterminée par le processeur principal qui peitigité a 133 MHz.

Pour obtenir des chiffres exacts sur les performances éptéar, différents signaux de test ont été
générés pour validation. En premier, les signaux de testrgérpar le modele de référence Mat-
lab ont été utilisés. Ces signaux sont basés sur I'exemplaifdans I'annexe de la spécification

standard et peuvent étre générés pour n'importe qu’ellégroation du paquet. Deuxiémement,

le récepteur a été vérifié en testant des shapshots diéi@mnis par notre partenaire de projet,
BMW. Celles-ci ont été générés avec le Densobox, NEC Linkéirune moto SimTD.

A.3.4.1 Résultats obtenus avec libembb

Le prototype d’émulation du récepteur IEEE 802.11p donnpremier apergu de la consomma-
tion des ressources des DSPs différents avec le but de m&panxl questions suivantes:

1. Quelle DSP est utilisé la plupart du temps?
2. Combien de temps est nécessaire pour le traitement dderenDMA?

3. Considérant que le temps de traitement, le récepteuwilgte exécuté en temps réel sur la
plate-forme? Si non, ol sont les goulots d’étranglement?
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4. Serait-il possible d’exécuter le récepteur avec d'autraetteurs-récepteurs en paralléle? Si
non, ou sont les goulots d’'étranglement

Grace a I'libembb, ces résultats peuvent déja étre obtenusséade de la conception. Ca permet
une amélioration de I'implémentation dans un environndrperement logicielle.
Fondamentalement, le temps de traitement du récepteutasamcharge de communication peut
étre divisée en deux parties: (1) le temps quand les DSP®sonpés et (2) le temps quand au-
cune ressource est utilisée. Ce dernier est le moment ouln anotiveau tache peut étre planifiée
comme la fin du cycle d’acquisition du Préprocesseur n'esepaore atteint.

Nos résultats montrent que, considérant que le temps tent@mt pur des DSPs, les exigences de
latence du récepteur IEEE 802.11p sont remplies. En pluss aons identifié le FEP en tant que
moteur DSP critique comme la plupart des taches sont a progea sur cet accélérateur matériel.
Compte tenu d’'une exécution multimodal de IEEE 802.11p eéDAB, nous montrons que les
exigences de latence de ces deux normes sont satisfaitesssiull des deux est exéutée. En
outre, nous étudions le choix d’un flux de contrble approgtridontrons comment un algorithme
d’ordonnancement sophistiqué peut étre réalisé.

A.3.4.2 Analyse de la performance d’éxécution - Résultats atériel

Les résultats matériels ont été obtenus par un cycle préals IBW co-simulation a 'aide de
Modelsim. Sauf le temps de traitement les résultats présentluent maintenant la surcharge
de communication quand un flux de contréle centralisé edicagp En plus ils exploitent un
traitement parallele des différentes moteurs DSP sur ta{iteme ExpressMIMO. La surcharge
de communication peut étre observé lorsque aucun des DSfe®gié. En évaluant la relation
entre ce facteur et le temps de traitement des DSP, desatémtarclaires sur les performances du
récepteur peut étre faite.

Sur la base des résultats obtenus, nous pouvons affirmer

e que le récepteur IEEE 802.11p peut étre exécuté en temppaeeBPSK, QPSK et 16-
QAM. En supposant une fréquence plus élevée comme il esnatitpuement le cas lorsque
ASICs sont considérées, 64-QAM peut exécuter en tempsuési.a

e qu’une réduction supplémentaire de la surcharge de conuation ne peut pas étre atteint
par un flux de contréle distribué en utilisant les microcoletars locaux ou par un micro-
processeur ou un séquenceur sur la coté bande de base.

e que polling est la solution préférable pour déterminer lafiriraitement du DSP

e que les commandes doivent étre préparées en avance pouartessnde latence critiques.
Pour les normes comme DAB ou LTE, le comportement en tempssé®ujours garantie,
méme si cette recommandation n’est pas pris en compte. udraitement d’une opération
de vecteur sur une taille de 4096 échantillons, par exergdiemps de traitement nécessaire
serait de I'ordre de 2@s tandis que le temps de programmation du DSP reste & un maximu
de 360 ns.
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A.4 Conception ASIP pour le FEP

Dans le contexte des travaux sur le récepteur IEEE 802.@ FEP a été concu comme un front-
end générigue pour OFDM / A (Orthogonal Frequency Divisiomtidlexing / Multiple Access),
SC-FDMA (Single Carrier FDMA), W-CDMA (Wideband Code Dius Multiple Access) et
SDMA (Space Division Multiple Access). Pour I'évaluatioe th norme IEEE 802.11p, nous
avons considéré une solution qui est basée sur une DSP pnogitale C-FEP). Cette version
du FEP est composée d’'une unité de traitement vectorielsjuicanbinée avec une unité DFT /
IDFT. Dans le chapitre précédent, nous avons identifié leibesun FEP secondaire ou d’un sup-
plément de DFT / IDFT pour augmenter la performance en paigiclorsque les normes basées
sur des vecteurs de petite taille sont considerées. Unveo@mt principal de cette conception
était la surcharge de communication qui a résulté dans uassebsignificative de la performance.
Il est intéressant de noter que ces limites sont liées semeaux FPGASs et n'est pas aux ASICs.
Pour le nouveau design du FEP nous avons pris la chance dba@f avec I'Université RWTH
Aachen (Allemagne) pour évaluer la méthodologie de commeptes ASIPs pour la conception
de la plate-forme ExpressMIMO. Un autre but de notre coliation était de surmonter les incon-
vénients du C-FEP en enlevant I'unité DFT / IDFT du DSP et emplacant I'unité de traitement
vectoriel par une solution ASIP qui est appelée A- FEP. Sedtie approche, I'A-FEP peut facile-
ment étre intégré dans le moteur de traitement de bande dalbda plate-forme ExpressMIMO.
Comme ¢a, les taches du FEP peut étre facilement diviséeesurEEP simultanément, par ex-
emple. Pour I'évaluation de la conception, 'A-FEP n’est paulement comparée au C-FEP mais
aussi a des solutions ASIP du milieu universitaire en tergshitectures et en terme du temps
de traitement.

Mais ou est I'avantage principal d’ASIP par rapport a d'asttechnologies? Parmi les facteurs
importants a prendre en compte pour la conception des fuatees SDR sont la consommation

d’espace et de puissance ainsi que les colts de productibjectt® majeur est de réduire la

surface et de minimiser la puissance autant que possiblea@mtenant la performance. Dans
[75], un apercu détaillé des implémentations différentes 8ystem on Chip (SoC) est prévue.
Technologies d'intérét sont

e General Purpose Processorgui peuvent étre divisés en deux catégories: GPP proper ap-
propriés pour les applications générales et microcontrélpour applications industrielles.

e Digital Signal Processorqui sont une sous-catégorie d’Application Specific Promess
(ASP). lIs sont par exemple utilisés pour les microproaassprogrammables qui sont spé-
cialisées pour le domaine de traitement de signal numérique

e Application Specific Integrated Circuits qui sont aussi une sous-catégorie des ASPs. lls
sont mis en ceuvre dans le matériel, le plus souvent en uatilisa Hardware Description
Language (HDL) comme VHDL ou Verilog.

e Application Specific Instruction-set Processorsqui sont une sous-catégorie des ASPs,
aussi. lls peuvent étre vus comme une classe de micropeagesavec une Instruction-Set
Architecture (ISA) spécialisée.

Les auteurs concluent que ASIPs ont une tendance a étre deaodidats car ils sont destinés a
combler une lacune entre GPPs et ASICs. Etant adapté a uleatipp spécifique, ASIPs offrent
une plus grande souplesse que les ASICs en présentant ils@oation énergétique plus faible
gue GPPs ou DSPs en méme temps. Comme ca, ASIPs permettemgi®mis la performance
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des ASICs contre la flexibilité du GPPs. Le prototypage edsfitte en utilisant des outils de
haut niveau alors que la conception générée n'est pas egenme temps du matériel et ne peut
pas s’adapter a la ressource dédiée (par exemple FPGA)altesl'c6té, VHDL permet une util-
isation efficace des ressources du FPGA, bien que la mise e agicessite beaucoup de temps
et beaucoup de ressources. Cetinconvénient est surmartépautils comme System Generator
de Synopsis qui accélérent le processus de conception VHDLUme conception de haut niveau
et par le soutien des modifications rapides.

Tous les résultats ont été obtenus en collaboration aveivésité RWTH Aachen (Allemagne).
Pour la conception LISA, nous avons utilisé le Processoirgbes de Synopsis (ex Coware). Tout
au long de la collaboration, deux versions différentes A8IP ont été développées:

1. La premiére version de I'A-FEP, appelé A-FEP-V1, a étézuoen collaboration avec un
collegue et était basé sur la spécification du FEP qu'ilttaaicours de sa thése de doctorat.
Nous noterons cette premiere conception C-FEP-V1. Peundestaprées les résultats de
nos travaux ont été présentés dans son rapport de thesda[3pEcification du FEP a été
retravaillé pour améliorer la performance. En plus, cegsifonctionnalités du A-FEP-V1
ont été intégrées dans la conception actuelle du C-FEPdeterraison et aussi pour pallier
les inconvénients de la premiére conception (principatgragaible fréquence), nous avons
opté pour une seconde version du ASIP - bien que la premiesmrestait déja trés flexible.

2. La deuxiéme contribution est une conception nouvelle 8lPAbasée sur la nouvelle spé-
cification du FEP. Contrairement a la premiére version, FBP comporte également des
instructions d’usage général. L'UC est maintenu dans le P&R le traitement des trans-
ferts DMA mais pas pour le traitement algorithmique. Papoapa la premiere version
de I'A-FEP la deuxieme version est livré avec un jeu d’instians élargi et obtient une
fréquence plus élevée.

A.4.1 Exigences du Moteur de Traitement

Les exigences de traitement front-end pour le soutien dEDE / A, SC-FDMA, CDMA et
W-SDMA a déja été détaillés dans [23], entre autres. Ce deatiindique que les opérations
a exécuter par le processeur comprennent entre autrambgisin de canal et synchronisation.
Cettes opérations peuvent étre construite en utilisanbpésations vectorielles et une unité DFT
/ IDFT. Celui-ci est négligée pour I'A-FEP et conservée caerum moteur de traitement distinct
dans la conception de bande de base de la plate-forme Ekji¢Es

L'ensemble des opérations vectorielles étre pris en chpagd'A-FEP est répertoriée dans le
tableau Tab. A.1. Par ailleurs, les opérations shift, maxvehargmax / argmin sont inclus qui
peuvent fonctionner de maniére indépendante sur les paé@les et imaginaires des éléments
des vecteurs traitées. En outre, les valeurs peuvent éuldiésoavant et aprés 'opération vec-
torielle, comprenant valeur absolue, la négation, miser@, z8ise a I'échelle et de saturations.
Les éléments du vecteur d’entrée et du vecteur du sortieepe@re de quatre types de données
différentes: 8 ou 16 bits entiers signés et les nombres @mplayant une taille de 16 ou 32
bits. Les conversions de type entre eux sont spécifiées paralmmeétres faisant partie du mot
d’instruction.

Un défi majeur quand un large éventail de normes différergesupportée est de s’assurer que
chacun d’entre eux répond aux contraintes de temps réetoRaéquent, 'A-FEP est livré avec
une unité de génération d'adresses programmable (AGU)eaquaigt de construire des vecteurs
d’entrée a partir d’'ensembles de données non contiguedeldSS connecté. Symétriquement,
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’AGU peut également étre utilisée pour stocker des vestdarrésultat en adresses non contigus,
ce qui permet la répétition des valeurs par exemple. De ptugp-programmables mécanismes
permettent de transformer sections du MSS en zones de gockaulaires (Fig. A.5).

wrap =3 wrap = 2 wrap =1 wrap =0

0 0
2047
4095

8191

16383

1/4 1/8

8 bit

Figure A.5: Zones de Stockage Circulaires FEP MiSi& @)

Le MSS contient le Program Memaory avec une taille de 4 kB spee d'entrée-sortie de données
qui a été congu pour le support des normes qui opérent suodeats vectoriels volumineux tels
gue LTE ou DAB. Il est divisé en quatre blocs de mémoire dififés, chacun avec une taille de
4096 entrées de 32 bit. La longueur du vecteur maximal qui @eee traitée dépends du type de
données. Pour les éléments de vecteur avec une taille des3a lkbngueur maximale est 4096
lorsqu’il est 16384 pour une taille de 8 bits.

Component-Wise Addition Zi) = XT[i] + Yi]
Component-Wise Product Z[i] = X[i] x Y[i]
Component-Wise Square AbsoluteZ[i] = | X[i]|?
Move Z[i] = X[i]
Component-Wise Division Zi) = X[i]/Yi]
Vector Sum Z => X|i]

Table A.1: A-FEP - Opérations Vectorielles

A.4.2 Architecture HW et Instruction-Set

Le jeu d’instructions de I'A-FEP comprend trois types dimstions différentes:

1. AGU configuration instructions: Ces instructions portent les parametres nécessaires a
la programmation de 'AGU. Six instructions différentest @é mises en ceuvre dont la
quantité dans le code du programme peut varier en fonctida geantité de paramétres a
modifier pour I'instruction de traitement arithmétique w@lle qui suivre.

2. Arithmetic Vector Processing (AVO) instructions: Pour répondre aux exigences des mo-
teurs de traitement, I'A-FEP prend en charge neuf instoustidifférentes: multiplication,
addition, square, square modulus, sum, shift, move, divist max, min. Longueur maxi-
male du vecteur supporté est de 16384 entrées pour un vect@yposé des éléments vec-
toriels de 8 bits.
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3. General Purpose (GP) instructions:Ces instructions sont basées sur une architecture load-
store et prennent en charge les instructions comme compare;h ou IRQ qui est utilisé
pour signaler le processeur principal la fin d’'une tacheifian Cettes tdches peuvent
représenter une seule instruction ou des algorithmes phaplexes comme la synchronisa-
tion des paquets.

La structure de la pipeline est illustrée dans Fig. A.6. BEleompose de onze étapes et traite deux
éléments vectoriels par cycle. Habituellement, une iottyn par cycle est extraité de la mémoire
de programme. Une exception sont les instructions AVO quiget travailler avec des vecteurs
de longueur variable.

Quand I'A-FEP est synthétisé pour la cible FPGA, il obtiene dréquence de 105 MHz en ex-
igeant 3122 function generators, 3281 CLB slices, 6433 DEFsblock RAMs et 8 DSP48E
slices. Pour la cible ASIC, seul le moteur de traitement asgtéhétisé comme la nouvelle con-
ception du MSS fait partie de notre travail en cours. La fedgpe maximale pouvant étre atteinte
est d’environ 550 MHz, la surface est de 0,18 fom

A.4.3 Comparaison des Performances d’Exécution

La performance d’exécution dépend de deux facteurs: le seteptraitement nécessaire pour
la communication entre le processeur principal et les nistda bande de base et le temps de
traitement des données pures des DSP. Pour une norme geisypdes vecteurs de petite taille
comme IEEE 802.11p, le premier facteur est d'une importanagure alors qu'il est plus ou
moins négligeable pour les normes comme LTE qui opérentesgrands vecteurs. Le tableau
Tab A.4.3 liste les temps d’exécution du A-FEP pour les dhiffiés algorithmes de traitement
front-end d'un récepteur IEEE 802.11p pour une fréquencE@eMHz. Structure de paquet et la
procédure de la décodage ont été présenté dans [3].

Pour la démonstration et pour comparer les performancedifiéentes solutions présentées le
A-FEP et comparée avec le C-FEP et deux autres solutionsldwuraniversitaire ([77], [76]).

algorithm cycles | execution time
energy detection 302 3.06us
channel estimation 45 0.45us

data detection (16-QAM, init) 172 1.72us
data detection (16-QAM) 114 1.14us
data detection (64-QAM, init) 219 2.19us
data detection (64-QAM) 342 3.42us

Table A.2: A-FEP Performances d’Exécution
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A.5 Conception flexible d'un Sample Rate Converter

A.5.1 Motivation

Le Préprocesseur établit la connexion entre les conveutis#\/D et D/A (ADA) a travers l'interface
de I'ADA et le moteur de bande de base restant. Cette tachessst difficile car la fréquence
d’horloge sur le coté convertisseur est 32,768 MHz alorsagle dépend de la norme de com-
munication sans fil exécuté sur le c6té bande de base. Pour Pé&Bexemple, la fréquence
d’échantillonnage en bande de base est 2,048 MHz, tandipaqwrd EEE 802.11p il est fixé a 10
MHz (Fig. A.7). Il en résulte un facteur de ré-échantillogeale 15 pour DAB et de 3,2768 pour
|IEEE 802.11p.

La relation entre ces différents taux d’échantillonnagegéséralement assurée par des SRC qui
sont des architectures bien connus et qui sont non seulespeliuées dans les systemes de
communication sans fil, mais aussi dans les processus dipagexemple. Pour les systéemes de
SDR, ils sont I'un des éléments les plus critiques et les @kigeants [104].

Les défis lors de la conception d’une solution SRC approwi¢ fa plate-forme ExpressMIMO
sont les suivants:

ADA Interface

. )
DIA interface i :
i | Baseband
A/D 9862 ! Preprocessor } Processing
i |
RX ! i
AID interface i —
: j
downsampling
clk =32.768 MS/s = 30.72 MS/s LTE
T 10  MS/s IEEE 802.11p
upsampling 20 MS/s IEEE 802.11a

2.048 MS/s DAB

Figure A.7: Le Préprocesseur relie les Convertisseurs Al#c de Moteur de Bande de Base
restant

e Une analyse détaillée des normes de communication sansridgi@urs a montré que le
SRC doit prendre en charge une gamme de fréequencasviléz < f,,,, < 61,44 MHz
avec une résolution de 1 Hz.

e Dans le passé, généralement un SRC a été utilisé par nornue.c€tte large gamme de
fréquences, cette approche n’est pas applicable car lssuregs nécessaires sont bien au-
dela ce qui est disponible sur la cible FPGA. Le SRC doit dappsrter tous les rapports
possibles de fréquence d’échantillonnage (les entierssefractionnaires) avec une seule
architecture.

e Endehors de cela la plate-forme ExpressMIMO peut traitggyla quatre canaux différents
en RX et jusqu’a quatre canaux différents en TX. Chaque astadéfinie par son propre
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ensemble de parameétres. Ainsi, lors de la commutation &#rdeux canaux, le systeme
peut changer son comportement dynamiguement a I'exécution

Ces défis de conception conduisent a des exigences de taitefifférentes qui peuvent étre

regroupées dans exigences fonctionnels et exigencesonctiehnels. Du point de vue de la

plate-forme, il est trés important que la quantité des D&li8es est réduite autant que possible.
Cette tache n’est pas si simple que en raison de la grandautallg bande du signal provenant du
convertisseur A/ D, le débit de données est tres élevé. ©@alduit a une plus grande complexité

du matériel et une plus grande consommation d’énergie etiaetune augmentation du nombre
de DSP48E slices et donc une application tres colteux. Ea,datconception du Préprocesseur
doit suivre la démarche de conception comme tous les auB&sdDr la plate-forme.

En outre, les exigences fonctionnelles comprennent

e la préférence d'une conception générique qui peut effetdigir- et le sous-échantillonnage
fractionnel en utilisant la méme architecture. Sur-édlanbhage (upsampling) / Sous-
échantillonnage (downsampling) correspond a augmenteirider le taux d’échantillonnage.
Pour émetteurs-récepteurs lorsque le débit de donnéesemurdu c6té convertisseur ADA
est plus élevée que celle du moteur de la bande de base hauttifonnage est effectué en
TX, tandis que le sous-échantillonnage est effectué en RX.

e 'appui de trois modes différents: (1) seulement récepti@hseulement transmission et (3)
réception et transmission simultanément. A partir de |spastive de la plate-forme, les
canaux de RX et TX sont exécutés en paralléle. lls sont tpaitde SRC en facon Round
Robin. Par conséquent, le commutateur de canal doit sedaie un cycle (Fig. A.8).

processed channel >—< CH2 >< CH3 >< CH4 ><

stored channel CH4

loaded channel CH2

Figure A.8: Channel Scheduling

e d'éviter I'aliasing pendant la ré-échantillonnage. Daegaontexte, il est important de trou-
ver une bonne longueur du filtre et donc le nombre de muléi#iars

e le calcul des valeurs intermédiaires d’un signal tempsrélisie telle sorte qu’une certaine
bande de fréquence du signal ne soit pas faussée [105].

e ce qu’une performance élevée doit étre garantie pour répantk exigences de débit et de
temps de latence des différentes normes de la communicaimfil.

e que le SRC prend soin de la différence entre les fréquenéehahtillonnage. Cette ap-
proche permet de fixer I'norloge maitre des convertisseldé pour diminuer le phase
noise [105]

La contribution principale présentée dans cette thésa esniception d'un SRC fractionnaire pour
la plate-forme ExpressMIMO qui est basée sur I'algorithrieterpolation a bande limitée. Son
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architecture peut traiter jusqu’a quatre canaux différem RX (sous-échantillonnage) et jusqu’a
guatre canaux différents en TX (sur-échantillonnage).sTes canaux sont exécutés sur la méme
architecture matérielle qui est paramétrable. Afin de daran traitement continu du filtre, les
changements de contexte entre des canaux différent seiggatiinstantanément pendant un seul
cycle.

Les modéles qui sont fournis comprennent des modéles eniGgsomesures de quantification et
I'analyse des caractéristiques du filtre, ainsi que un pyp@oVHDL.

Le SRC est intégré dans le Préprocesseur. Pour finalisealaecku récepteur IEEE 802.11p un
premier prototype du Préprocesseur a été décrit en VHDLadués en utilisant Modelsim.

A.5.2 Design du Préprocessor et du SRC

Comme déja dit, le Préprocesseur relie le module RF exteree la moteur de traitement en
bande de base numérique. Pour établir cette connexion, Realé$é Iégerement modifié par une
interface dédiée pour un acces direct entre I'unité deetragnt et 'interface ADA (Fig. A.9).

Le dernier gere le (de)multiplexage des échantillons cergd provenant de et allant vers les
convertisseurs A/ D et D/ A. Dans RX / TX, le signal fourni pas kconvertisseur A/D,D/Aa
une résolution de 12 bits / 14 bits. Sign extension et bit rahdevient nécessaire parce que le
Préprocesseur opére sur des échantillons dans un formts.(es taches sont aussi assurées par
l'interface ADA.

ADA Interface

i
i,‘ |

interrupts i Processing Unit
|
i

ler [omL
| §g| css |
i - wMmss
| uc |,
-<—IRQ

R

|
% VClInterface B "
|

Figure A.9: DSP Modifications

Les taches principales du Préprocessor sont: Interfacd@veonvertisseurs ADA, I/Q imbalance
correction, NCO pour le carrier frequency adjustment effdestions de base de traitement du
signal telles que la conversion de fréquence d’échantiige

Afin de garantir une performance élevée de ces taches, itsrépartis sur différents modules
internes qui sont 1/Q imbalance (I/Q), une unité de préedssvbn dans TX (PD), NCO et SRC.
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Chacun des deux modes différents supporte quatre candéredifs qui peuvent posséder un en-
semble de différent parameétres. Tous les modules sontibésyear une unité de commande glob-
ale du Préprocesseur comme illustré dans Fig. A.10. Lestguiincipales de cette machine d’état
sont (1) programmer les canaux configurés / actif dans umfRgund Robin, (2) déclencher les
transferts de données en lecture / écriture a traversrfate ADA et MSS, (3) mettre a jour les
parameétres nécessaires pour programmer les différentslespd4) générer des interruptions a la
fin d’'un cycle d’acquisition et (5) superviser la commutatentre les canaux.

Preprocessor Processing Unit

I 2
ADA Interface
X TX
11Q NCO SRC MSS
b RX . | RX | L,
interface
Preprocessor Control Unit - DMA
N )
CSss CSs

Figure A.10: Architecture du Préprocesseur

Les différents modules internes communiquent via un pod¢ode handshaking. Ce protocole
garantit des transferts de données valides et arréte laeclial traitement en cas d’absence de
données. Quand un module fournit de nouvelles donnéegrialsie demande de donnéRiEQ

est réglé en méme temps. Le transfert de données a réussisite $ignal d’acquittemerniCK

est regu.

Le MSS et I'espace de mémoire qui sont inclus dans l'interfzantiennent des FIFOs différents
pour le stockage des échantillons de sortie et d’entréeF{E€3s sont des composants autonomes
qui gérent leur propre espace mémoire. Pour éviter la p&rthantillons, ils informent le Prépro-
cesseur dans le cas ou ils sont presque pleine ou presque vide

Sur la base de cette spécification fonctionnelle, les ioBtmis suivantes pour la conception du
SRC peuvent étre faites:

(1) Les mises a jour de parameétres sont gérés par I'unitérdenemde du Préprocesseur et ne sont
donc pas du ressort du SRC.

(2) Le moment dans le temps ou un commutateur de canal doitoskiipe est déterminée par
I'unité de commande du Préprocesseur. Le SRC doit garamifagcommutation se passe instan-
tanément une fois qu'il est informé de cet événement.

(3) La communication entre le SRC et le NCO doit suivre I'aidione du handshaking.

(4) Le mode de suspension est assurée par I'unité de comndariéieéprocesseur. Le SRC fonc-
tionne comme d’habitude. La seule différence est qu'auchamdillon est passé.
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La conception du filtre inclue dans le SRC est basé sur I'dlgoe d’interpolation a bande limitée
présentée dans [137] et [138]. Les avantages principaurtd@gorithme sont (1) que les archi-
tectures pour le sur- et le sous-échantillonnage sont lesané(2) que I'architecture peut étre
optimisé pour une conception efficace du filtre et (3) que lalmoaison de Shannon-Whittaker
interpolation et d'interpolation linéaire résulte dan® yerformance élevé avec une consomma-
tion d’espace raisonnable.

A.5.3 Résultats

Lors de la synthése du SRC pour la cible FPGA bande de basefrémesnce maximale de
130,005 MHz est obtenu aprés placement-routage. Ressaugcessaires sont

- 32899 function generators (15.87 %)

- 8225 CLB slices (15.87 %)

- 20013 DFFs or latches (9.54 %)

- 30 Block RAMSs (10.42 %)

- 82 DSP48E slices (42.71 %)

Pour le premier prototype du Préprocessor, une fréquengenake de 98,261 MHz a été obtenue
apres placement-routage. Les ressources nécessairesedaassont

- 41007 function generators (19.78 %)

- 10252 CLB slices (19.78 %)

- 26206 DFFs or latches (12.49 %)

- 55 Block RAMSs (19.10 %)

- 82 DSP48E slices (42.71 %)

L'évaluation de la performance montre que la performanc8RIG dépend principalement de deux
facteurs: (1) le taux d’échantillonnage entre des norme®danunication sans fil en cours et (2)

le rapport entre les taux d’échantillonnage. |l est évidgmnd la performance augmente quand
moins d’interpolation est nécessaire et quand le rappdre ées fréquences d’échantillonnage

diminue. Extensions de conception possible pour obterixa#llentes performances, méme pour
des ratios élevés de sur-échantillonnage pourrait étre

e diviser le rapport en deux parties: un nombre entier et d'nombre fractionnel. Ré-
échantillonnage entier pourrait étre effectuée par desdilCIC, tandis que notre solution
SRC pourrait étre utilisé pour la partie fractionnel.

e le traitement du SRC en plusieurs fois. Cette approche ngarttrpas comme un traitement
en continu du SRC ne serait plus garantie dans ce cas.

Par ailleurs, la performance de la conception actuellerpdlétre augmentée par la mise en ceu-
vre d’'un registerbank adressable ou par la réalisation tiesfid’'ordre supérieur. Celui-ci est livré
avec I'inconvénient d'un temps d'initialisation plus loegavec plus de mémoire nécessaire pour
le stockage de coefficients de filtrage. En dehors de celaf #galement possible d’envisager
d’augmenter la fréquence du Préprocesseur en ajoutanteltegistres entre le MSS et le RAM
réelle.
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A.6 Conclusion

Le travail présenté dans cette thése est fortement liée emdainces dans l'industrie automo-
bile qui demande une combinaison de C2X et de TPEG. Norme&tkit sont IEEE 802.11p et
ETSI DAB. Pour combiner ces deux, nous avons choisi 'agpeatune plate-forme SDR flexi-
ble qui ne se limite pas au contexte de I'automobile mais auwres de communication sans fil
en général. La thése est basée sur une conception de la qolugsique efficace du récepteur
IEEE 802.11p pour la plate-forme OpenAirinterface Expl$40 en suivant la méthodologie
de développement de base comme décrit dans le Chapitre @@ c@mprenait (1) le développe-
ment de modéles purement fonctionnels en utilisant laditidique d’émulation de la plate-forme,
libembb, (2) le cycle précis HW / SW co-simulation via Modeli<t (3) la validation du récepteur
sur la plate-forme matérielle. Un composant manquantCioud est le Préprocesseur otl une pre-
miére solution comprenant un Sample Rata Converter (SR&)fadrni. Sur la base des résultats
obtenus, nous avons identifié les goulots d’étranglemenbdeeption et nous avons présenté des
solutions possibles pour remédier a ces inconvénients.eBard de cela nous avons eu un coup
d'oeil & un traitement multimodal des deux normes d'ing&rBEEE 802.11p et ETSI DAB.

Ces objectifs ont été exprimés dans une liste de tachegetifs qui ont d étre accompli au
cours de cette thése:

1. Emulation du récepteur IEEE 802.11p avec 'aide de ladripfor ExpressMIMO baseband
appelédibembb

2. Lamise en ceuvre du récepteur IEEE 802.11p et I'évaludiosa performance sur la plate-
forme ExpressMIMO

3. Savoir comment DAB et IEEE 802.11p peuvent étre exécdidasitanément sur la plate-
forme ExpressMIMO

4. Identification des goulots d’étranglement et la foumatde solutions possibles

5. La mise en ceuvre d'un prototype de Préprocesseur pourlé@nfa chaine du récepteur
|IEEE 802.11p

Pour résumer, nous pouvons affirmer que la mise en ceuvre deesat’exploitation de grands
vecteurs peut étre déja effectué d’'une maniére trés effisacda plate-forme ExpressMIMO
lorsque FPGASs sont considérées comme la technologie dildes de I'exécution d’'une opéra-
tion sur un vecteur de taille de 4096 échantillons, par eXxeni temps de traitement nécessaire
serait de I'ordre de 2@s tandis que le temps de programmation du DSP reste a un naxitau
360 ns. La surcharge de communication qui en résulte peuwté&omnégligée.

Lorsque le traitement des normes basée sur des court dofeéede a été actuellement manuelle-
ment optimisée par une préparation de commande, groupataesymboles, d'interrogation au
lieu d'interruptions, etc . La conception du récepteur quiésulte est donc plus compliqgué mais
en suivant ces recommandations, une performance élevéétpenbtenue, méme pour cette type
de norme.
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