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Abstract

Hybrid cloud computing combines private clouds with gepgiieally-distributed
resources from public clouds, desktop grids or in-housewvggys to provide the
most flexibility of each kind of cloud platforms. Service pisioning for wide-
area applications such as cloud backup or cloud network gasngensitive to
wide-area network metric such as round trip time, bandwitites rates. In or-
der to optimize the quality of the service provision in hgbeiouds, it is highly
valuable for the hybrid clouds to collect detailed networktrit between par-
ticipating nodes of the hybrid clouds. However, since noches be large-scale
and dynamic, the network metric may be diverse for diffexdatd services, it
is challenging to increase the generality, scalabilitguaacy and the robustness
of the measurement process. We propose a novel distribeted monitoring
method HPM (Hierarchical Performance Measurement) yaigthese require-
ments. For each kind of network metric, HPM represents tlyeeseof pairwise
closeness with discrete level values inspired by the tohreal clustering tree.
HPM maps probed metric to discrete levels based on an exidisiributed K-
means clustering method that helps maximize the similafitiie network metric
in the same level, which therefore optimizes the matchingé&en pairwise levels
and the real-world pairwise proximity. Furthermore, HPMnputes the pairwise
levels with decentralized coordinates for scalability. cliEmode independently
maintains its low-dimensional coordinate based on a noseéntralized imple-
mentation of the Maximum Margin Matrix Factorization medhthat optimizes
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the mapping between the network metric and the level valBesulation results
for the RTT, bandwidth, loss and hop metric confirm that HPMvawges fast,
is robust to parameter settings, scales well with increpkEwels or system size,
and adapts well to diverse metric. A prototyping deploymamthe PlanetLab
platform shows that HPM not only converges fast, but alsarsienodest mainte-
nance bandwidth costs. Finally, applying HPM to optimize $lervice provision
of hybrid clouds shows how HPM can achieve close to optimlaitsms.

Keywords:
decentralized algorithm, application health monitorinigyarchical
decomposition, K-means clustering, decentralized méaasorization

1. Introduction

Service provisioning in hybrid clouds that combines gepfreal-distributed
and heterogeneous platforms such as private and publidg|alusters, grids,
desktop grids, or in-house gateways, can maximize the heweeich kind of plat-
forms. For example, high performance computing (HPC) appibns can be bet-
ter completed by combining the internal capacity of thegie\clusters and elastic
resources of the public clouds; cloud backup (e.g. Wualpdéijvices can store
users’ data on nearby in-house gateways for fast respomnlseearote distributed
desktop grids for redundancy; network gaming (e.g Halog&tvices can scale to
millions of clients by combining processing capacity of fhavate clouds, elastic
resources of public clouds and low-latency desktop grigs/e&l hybrid clouds
such as Aneka [3, 4], MOON [5], NaDa [6], Elastic Cluster [&vie already at-
tracted tremendous attention from both academic and indfislkds.

Unfortunately, service provisioning with wide-area distited nodes comes
with costs, since the quality of many cloud services suchigis performance
computing (HPC), cloud backup (e.g. Wuala [1]), network gainfe.g Halo [2])
is sensitive to end to end network metric. For instance, tR€ ldcientific applica-
tions need minimum pairwise delays when synchronizingstat different nodes
[4]; the file backup service is affected by low bandwidth ogthpacket losses;
game players’ experiences may be impaired by high RTTs dgbdasses.

*Corresponding author. Phone: +8613875828390.
Email addressesyongquanf@nudt.edu.cn (Yongquan Fu),
wangyijie@nudt.edu.cn (Yijie Wang), erbi@eurecom.fr  (Ernst Biersack)

Preprint submitted to Future Generation Computer Systems ovehlnber 29, 2012



As a result, in order to improve the quality of the servicevisimn in hy-
brid clouds, the hybrid cloud platforms need to monitor tleéwork conditions
between participating nodes. However, the number of ppaiing nodes could
grow to thousands or millions, which implies that directheasuring pairwise
network conditions does not scale well; worse still, thetipgrating nodes may
also join or leave the hybrid cloud dynamically because ififes, maintenance
or decentralization. Therefore, a scalable and decerd¢ineasurement method
is valuable for performance optimization in hybrid clouds.

1.1. Related Work

Existing work on measuring network conditions for largelecand dynamic
nodes can be categorized into #iesolute-value measurementand therelative-
value measurements

e The absolute-value measurement provides detailed enditoetgwork met-

ric, such as the RTT, bandwidth that can satisfy diverseperdince-optimization

requirements. However, measuring the precise absoluteesyas costly,
since covering all-pair routing paths fO{ V') sized systems requiréy N?)
measurements. As a result, most absolute-value measuiensnmathe-
matical models to predict pairwise network metric.

e The relative-value measurement only provides degrees afimpity be-
tween nodes, which is less powerful than the absolute-vakssurements,
but can also fulfil many performance-optimization needs.example, they
allow to select proximity nodes for matchmaking in netwoskrges in terms
of RTTs, or losses, or select the backup servers based onmdkienity of
the bandwidth values or the loss rates. Moreover, since ggsorements
only need to infer the relative proximity relations, the m@@ment band-
width cost can be reduced.

1.1.1. Absolute-Value Measurement

Many absolute-value measurements predict end to end netaglric in order
to improve the scalability of the measurements. Existiregipotion methods can
be categorized into network coordinate based methodsldagpdased methods
and network tomography based methods.

First, the network coordinate based methods embed nodeswidimensional
coordinate space and predict end-to-end absolute-valtricrbased on point-to-
point coordinate distances. Each node maintains its owrdauate using a fixed
number of neighbors, the overall bandwidth cost of the meibo (V). However,
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most network coordinate methods are specifically suitatrdlfe RTT metric,
such as GNP [8], Vivaldi [9], Htrae [10], NetICE9 [11], DMFZ}], Phoenix [13],
which limits the generality of the measurement process. eR&¢ researchers
have extended network coordinates to predict the bandwidtop metric. The
Non-Metric [14] method can predict both delays and bandwidith the min-
plus metric. Beaumont et al. [15] and Douceur et al. [16] mtednd-to-end
bandwidth based on the constraints of the upload and dowrdapacity of de-
centralized nodes. Xing et al. [17] have proposed an Ultraioieased bandwidth
estimation scheme. However, these extended network cwiedi for bandwidth
or loss rates are less accurate than those that predict theneTric.

Second, the topology based methods predict a virtual tgydiar participat-
ing nodes and estimate end-to-end metric using topologgarties. The topol-
ogy expresses flexible proximity information between nodéane [18] and
iPlane Nano [19] create an approximated Internet topolagget on extensive
Traceroute measurements from distributed vantage padiiis.Sequoia methods
[20, 21] construct multiple trees to predict the delays aadwidth between de-
centralized nodes. Unfortunately, due to the dynamics eh#twork metric and
the participating nodes, maintaining the topology incughtbandwidth cost.

Third, some of the network tomography based methods predidtto-end
absolute-value metric using algebra based models. Theralgeodels assume a
linear relationship between path links and path metric sascthe delay and loss
metric. As a result, the models are no longer useful when boelr assumption
is violated, e.g., the bandwidth metric. Chen et al. [22]gmse to select a basis
set of routing paths to monitor and estimate pairwise detaylass of overlay
nodes with linear systems. But it is not clear whether suchmproach applies
to other performance metric. Coates et al. [23] estimateterehd path metric
based on the diffusion wavelets and nonlinear estimatianttterate incomplete
path measurements. Qazi and Moors [24] further show thabveeay moni-
toring quality can significantly degrade when some parthiefrouting topology
are missing or incorrect. Besides, the routing topologysisally assumed to be
known for establishing the algebra models, which may belehging for hybrid
clouds involving distributed and dynamic nodes.

1.1.2. Relative-value Measurement

The relative-value measurement methods directly compaitavjse proxim-
ity based on mathematical models for scalability. Existimgthods can be cate-
gorized into divisive clustering methods, hierarchicalstéring methods and the
coordinate based methods.



Figure 1: A simple hierarchical clustering example. Theeethree levels in the logical tree. The
level number decreases one per layer from the top layer tbdtiem layer.

First, the divisive clustering based methods group neadules into the same
cluster. The intra-cluster nodes are closer than intestellones. Unfortunately,
nodes in the same cluster are assumed to be equally closehm#eaer and no
proximity information is available for inter-cluster naleBeaumont et al. [25]
aggregate distributed resources into proximity clustérsodes based on approx-
imately solving the problem of bin covering under distangestraints. SOLARE
[26] constructs utility-optimized proximity clusters obdes in the P2P structured
overlay. Malik et al. [27] iteratively divide nodes into paimity clusters based on
static proximity threshold values.

Second, the hierarchical clustering based methods cats@uogical tree to
represent multilevel proximity. The hierarchical clugtgrmethod [28] recur-
sively groups nearby nodes into multipéyelsto produce a logical tree structure.
Tiers [29] organizes distributed nodes as a logical treergvbkister-head nodes
recursively re-cluster themselves in a bottom-up mannequ8ia [20] creates
logical trees where distributed physical nodes are addedtie tree as the leaf
vertices and virtual nodes are added to connect all leavestiee. Wieser and
Boszoényi [30] recursively aggregate P2P nodes basdtieopairwise hops on
the overlays, and nodes with the highest identifiers arerse@ly selected as the
cluster heads at each level.

Figure 1 plots an example of the hierarchical clustering toe six nodes based
on the RTT metric. The level value of two nodes at the bottorellef the tree is
the layer number of therlosest common ancestain the tree that is depicted by
the horizonal dashed lines in the figure. Higher levels apoead to larger RTTs.



Although the hierarchical clustering tree provides intgtand powerful prox-
imity information, it also has two drawbacks:

e It is unsuitable for dynamic nodes, since we have to fredqueqdate the
logical topology when some nodes leave or join the tree orptievise
network metric changes, which increases the maintenarsts.co

e It cannot guarantee the matching between the topologytateiand the
ground-truth metric, since most trees are created basedcahHeuristics.
Several network metric such as the available bandwidthd3,133], routing
hops are asymmetric, i.e., the bandwidth or hop count froedirection
differs from that in the reverse direction. For example, dsgmmetry of
the network metric is missing on the topology structure.

Third, the coordinate based methods embed nodes into pitgxémace and
represent the pairwise proximity based on the coordinattances. Unfortu-
nately, most existing coordinate based approaches typiftadus on one kind
of network metric. Netvigator [34] creates relative cooates using the vectors
of RTTs from edge nodes to landmarks and some 'milestonéerstdiound based
on traceroute measurements. Netvigator's similarity imgoted as clusters of
coordinates. CRP [35] constructs coordinates of end hastheafrequency of
being forwarded to different CDN edge servers. The pairwiselarity of CRP
is based on the cosine similarity of two coordinates. ShehHamang [36] com-
putes the vectors of RTTs from edge nodes to landmarks adiocates and uses
the space-filling curves to represent the pairwise proyimitnodes. Liao et al.
[37] propose a general and distributed method to map alesehltie measure-
ments to binary performance classes, i.e., good or bad jmihigerhaps the most
related work with us. However, there are three differeneds/éen [37] and our

study:

e The level mapping process is differehiao et al. [37] only performs binary
classification, while we explicitly map network metric touméble number
of levels. Since the network metric values are usually skkwe propose a
distributed K-means clustering based level mapping psottet maximizes
the similarity of network metric values in each level.

e The coordinate structure is differenitiao et al. [37] represent the coordi-
nate structure with matrix factorization and take the sifjthe coordinate
distances as the binary performance classes. We reprégecbdrdinates



with matrix factorization and thresholds that optimallymtae coordinate
distances to discrete levels.

e The coordinate movement is differebiao et al. [37] use the stochastic gra-
dient descent method to update coordinates with fixed monestep. We
propose a distributed conjugate gradient method to adpestdoordinates
with optimal movement steps.

1.2. Our Approach

Our objective is to provide fine-grained relative-value swe@aments for opti-
mizing the service provision of hybrid clouds. To that emdpired by the layered
proximity of the hierarchical clustering tree, we propos®meel network metering
metric, i.e., thdevel number, to quantify the pairwise proximity. The level num-
ber is represented by integer numbers, where higher levabats mean worse
network metric. The level number is computed for each dimaecbf a pair of
nodes. Therefore, the asymmetry of network metric can beepved by defining
suitable level mapping procedures, which improves thedeaity of proximity
by the hierarchical clustering tree.

We propose a novel distributed level measurement methéedddierarchi-
cal Performance Measuremeni{HPM) that can measure the levels for any kind
of network metric for large-scale and dynamic nodes of ld/blouds. For each
kind of network metric, HPM first maps measured network rodtrilevel values
that preserve the proximity of network metric values anchtegtimates pairwise
levels based on decentralized coordinates for scalability

First, in order to provide accurate proximity informatiome propose a dis-
tributed K-means clustering based level mapping methodagmthe most similar
network metric to the same level. Therefore, the level v@hre able to match the
pairwise proximity between nodes. The number of levels aatubed to show
detailed proximity of nodes. Besides, we also recommend tooset the num-
ber of levels based on the distributions of network metri;ic& we separately
compute level values for unidirectional measurementsasliyenmetry of network
metric values can be preserved.

Second, since directly measuring all-pair level valuesdus scale well, we
propose a novel distributed implementation of a well-knaetaborative filtering
method called Maximum Margin Matrix Factorization (MMMR3§, 39]. The
key idea of MMMF is to learn adaptive thresholds to optimaiigp coordinate
distances to level values. For level completion, each nadegendently maps
the coordinate distances from itself to other nodes to disdevels using its own



thresholds that are part of the coordinate structure. Wpqa® a decentralized
implementation of MMMF method to adapt the large-scale aymhdic nodes.
Each node maintains its coordinate based on the distribotptementation of
the conjugate gradient method. At each step, the coordisaeéjusted with an
optimal step size towards the conjugate gradient direction

In summary, we make the following contributions:

e We propose a novel level based network metering method ¢paesents
the hierarchical proximity for any kind of network metrich& method is
general for different network metric such as RTTs, bandwitibp counts
or loss rates.

e We propose a scalable and accurate decentralized leveline@aant proce-
dure HPM that estimates pairwise levels in a fully deceizteal manner.

e We extensively evaluate the efficiency and efficacy of HPMhvgitmula-
tions and the PlanetLab-deployment experiments.

e We apply the level metric to optimize the service provisibhybrid clouds
and show its superiority against state-of-art methodsdoneting pairwise
network metric.

The rest of the paper is organized as follows. Section 2 deftmelevel con-
cept and presents the level-estimation problem. Sectiatr@duces the data sets
used in this paper. Section 4 presents key ideas of HPM.debtshows how
to map network metric to optimal levels. Section 6 presémedével estimation
method. Section 7 presents the simulation results on thevweadd data sets. Sec-
tion 8 presents the implementation of HPM and the perforreamthe PlanetLab.
Section 9 shows several application examples of HPM. Sedfioconcludes the
paper.

2. Problem Definition

2.1. Level

As discussed in Section 1, the concept of the level is indgigethe hierar-
chical clustering tree. Each level value is an integer faeeaf representation.
Higher level values imply worse network performance.
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Figure 2: A hierarchical clustering example for the bandtvithatrix. Since the hierarchical
clustering requires the dissimilarity metric, but the baitth is a similarity metric, i.e., higher
bandwidth corresponds to higher proximity, we transforstandwidth to dissimilarity value as
D;; =1 - (D;;/MaxBW), whereMaxBW denotes the maximal pairwise bandwidth, i.e., 8
Mbps.

We illustrate the level values with the hierarchical clusig. Consider five
geo-distributed machines indexed By B, C', D and E' that are located in differ-
ent networks. The pairwise bandwidth matfix(Mbps) is given as:
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where the-th row vector corresponds to the bandwidth fromtie node to other
nodes.

We use the standard hierarchical clustering method toetbat logical tree
for these five nodes. Figure 2 plots the result. We set the fevaber between
two nodes as the layer number of their closest common amdedtioe tree. For
example, node€’, D and I/ are grouped in a cluster, and their pairwise level
value is 1; since nodd and B have low bandwidth to all other nodes, their level
values to other nodes are 2. In fact, the pairwise levels épigrarchy clustering
are symmetric, since there is only one closest common andestany two leaf
nodes.

However, the symmetry of the hierarchical clustering triséodts the structure
of the bandwidth matrix, since the bandwidth maiidxs extremely asymmetric.
On the other hand, the pairwise level numbers can presesvasyymmetry, since
we can separately compute the level number for each uniatired network met-
ric value. As a result, the level value is more general tharhibrarchical cluster-
ing tree.



2.2. Measurement Goal and Challenges

Given a set of large-scale and distributed nodes provisibgenybrid clouds.
These nodes may dynamically join or leave cloud servicessume that these
nodes are able to probe any kind of network metric to eachr athi@g active
measurement tools. However, due to the limited capacityfixed access band-
width constraints, each node can concurrently probe a smaiber of nodes.

Our goal is to compute pairwise levels for these large-sealé dynamic
nodes. There are two main challenges for the level measutgmacess:

e How to map metric values into optimal level#\n ideal level mapping
process should maximize the similarity of network metrituea that are
mapped into the same level, and separate those dissim#arioto differ-
ent levels.

e How to scale the level measuremenifie measurement procedure should
incur modest computation overhead and bandwidth overhé&hdvereas-
ing number of nodes or levels.

3. Data Sets

We use four representative network metric for our evaluatibe RTT metric,
the available bandwidth metric, the end-to-end routing hgtric and the end-
to-end loss rate metric. We then choose four publicly ab&elaata sets for the
experiments:

e RTT, the pairwise RTT metric between 169 PlanetLab machines fre
pairwise Ping project [40];

e Bandwidth, the pairwise available bandwidth matric between 360 Riane
Lab machines from the3%roject [41];

e Hop, the pairwise routing hop metric between 188 PlanetLab imastby
the iPlane project [18];

e Loss the loss rate metric between 146 DNS servers by the Quegecpro
[42].

Some of the data sets are asymmetric, which are illustratatidoasymmetry
ratio:
min (DZ], D]Z)
Tasy =
Y max (DZ], Dﬂ)

(2)
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Figure 3: The asymmetry ratio of all data sets.

for D;; > 0,Dj;; > 0 butD,; # D;;. The asymmetry ratio,, is always< 1.

A data set is symmetric if and only if,,, = 1 for every pair of nodes. We set
resy = 0 WhenD,; or D;; is zero. Figure 3 plots the results. We can see that alll
data sets contain a fraction of asymmetric metric values.|®$s rate data set has
nearly 100% asymmetry for all node pairs.

4. Our Design

We design and implement a scalable decentralized levehastn method
calledHierarchical Performance Measurements(HPM). Assume that a set of
decentralized nodes run the HPM method. For each kind ofarktmetric, each
node estimates level values to other nodes based on ddzmaticoordinates that
is computed in a fully decentralized manner: Each node gexadly probes the
network metric to a small number of sampled nodes (calleghtrs), then com-
putes the optimal levels for these probed metric, and finadgementally updates
its coordinate based on these sampled level values anddhdicates of its neigh-
bors.

In order to accurately preserve the proximity of nodes ihtogairwise levels,
HPM proposes two complement techniques:

¢ Distributed K-means clustering based level mappi@yen a network met-
ric, each node maps the absolute-value measurements st levels
based on an existing distributed K-means clustering me@®jdhat max-
imizes the similarity of the network metric values in the sdevel.
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¢ Distributed maximum margin matrix factorization basedelegstimation

We complete unobserved level values based on a novel ditgdbmple-

mentation of the Maximum Margin Matrix Factorization medhan order

to optimize the mapping of coordinate distances to disdestels. The co-
ordinate includes low-dimensional vectors and threshdltie products of
vectors are treated as the coordinate distances; the thidsséire used to
map coordinate distances to discrete levels. Each nodenmartally ad-
justs its coordinate based on a distributed conjugate gmadnethod that
has low computational costs and fast convergence speed.

HPM has the following advantages:

Applies to diverse metric The level estimation process assumes that the
pairwise level matrix has low effective ranks. Such an aggion holds for

a wide range of network metric. Since many end hosts shatalpauting
paths to some target nodes [20], the network metric valwes &nd hosts to
the targets are correlated with each other. The pairwis \&lues between
these end hosts to the targets are also correlated with daeh dherefore,

the pairwise level matrix can be well approximated by a lawkrmatrix.

Scales with increasing number of hostsThe measurement process is fully
distributed.

Adapts to system churn The estimation accuracy does not change signif-
icantly when hosts join or leave the system.

Adapts to the temporal variations of network metric. The estimation
keeps up-to-date levels using periodical coordinate gsdat

5. Mapping Network metric Into Discrete Levels

In this section, we introduce how to optimally map a networgtme into a
discrete level in a distributed manner.

5.1. Problem Formulation

As discussed in the introduction section, the level mappraress should
maximize the similarity of network metric values in the saleeel, so that the
level results stably represent latent proximity betweedeso To that end, since
the network metric values can be arranged into points inedstording to their
magnitudes, we should perform clustering on the networkimelues.
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Clustering network metric values means we need to clustetpm a one-
dimensional space. Let thg distance between two network metric valdgsd,,
be the absolute difference éf andd,, i.e.,

|dy — d| 3)

The clustering objective is to optimally separate points tlense regions in the
line. We choose the well-known K-means clustering meth@&] {@ cluster net-
work metric values td. groups:

L
arg min Z Z (Dy; — )’ (4)

I={I€lL I} 12 p ey,

whereL denotes the number of levels,; denotes the network metric value from
node: to nodej, I; represents the set of network metric values in/ttiecluster,
I denotes the whole set of network metric values, andepresents the cluster
centroid of the-th cluster:

o ZDijellDij

My = i ‘ (5)

As a result, the objective of the level mapping is transfatrieesolve Eq (4) for
large-scale and dynamic nodes.

5.2. Ouitlier Detection

When the network metric values that do not belong to typitadters, i.e.,
outliers, are adopted for the K-means clustering prochss;ltister quality can be
severely impaired. For robust clustering, we need to rentioeeffects of these
outliers.

Intuitively, in a one-dimensional space, the outlier psiate far away from
other points. Therefore, if a network metric value is not enske clusters, this
value can be regarded as an outlier. We propose a hierarchistering based
outlier detection method. For each nadgit performs the following steps:

1. In order to construct accurate clusters, nddeollects network metric val-
ues measured by its neighbors. For each neighbor, Aa@@domly sam-
ples at most,qtier NEtWOrk metric values without replacement.

2. NodeA constructs a hierarchical clustering tree for the netwoekrio val-
ues. The distance between two network metrics is calculatetty (3). Let
the maximum layer number in the hierarchical clustering treL{}2%,
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3. In the hierarchical clustering tree, each network metaice that has layer
numberLg &, with every other network metric values is regarded as an out-
lier. In other words, network metric values in singletonstérs are treated

as outliers.

After detecting outliers from the samples, the remaineda metric values that
are not outliers are used for obtaining cluster centroidddation 5.3.

Removing these network metric values may be inappropsatege the cluster
centroids may evolve due to the dynamics of network metricaates, therefore
the set of outliers may also change dynamically. As a resiiér a network
metric value is regarded as an outlier, this value is onlps&d for one round of
the K-means clustering process.

For a nodeA with |S4| neighbors, constructing the hierarchical cluster tree
needsO((noutier X |Sa| + nA)2) computing complexity in the worst case, where
noutier denotes the maximum number of samples from each neighhatenotes
the number of network metric values measured by néde

5.3. Obtaining Cluster Centroids

For K-means clustering, each network metric value is mappede nearest
clustering centroid. Therefore, the key problem is to abtae optimal clustering
centroidsii = {1, ..., 11}

We use an existing distributed K-means clustering meth8ptfloptimize Eq
(4). The basic idea is to let each node learn the optimalelesintroids via gossip
communications. When a nodgjoins the system, it randomly samples a number
of online nodes as neighbors. Nodehen initializes its global cluster centroids
ii4 as a random vector. Then each node updates its global ctestenids with
its neighbors via rounds of gossip communications. Theajloluster centroids
of different nodes gradually converge to identical posi$io

In order to adapt the dynamics of network metric values, eacte A period-
ically performs the following operations:

1. Measurement based local-centroid updaidode A periodically performs
measurements to its neighbors and then computes its lasdéclcentroids
w4 based on the current global cluster centrgids For each network met-
ric valued,, nodeA selects the centroid, (j) in 14 that is nearest td,,
ie.,

j = argmin [ (9) — da| (6)
i€[1,L]
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Then, for each clustere [1, L], nodeA computes the local centroid), as
the average value of all network metric values assigneddb elaster, i.e.,

W= e 3 d )

where D; denotes the set of network metric values in tkth cluster. Let
the size of the-th cluster bex’, = | D;]|.

2. Gossip based global-centroid updatéet the vector of the local cluster
centroids beiis = {wl,...,wk}. Let the vector of the cluster sizes be
iia = {nk,...,nk}. NodeA periodically pushes its local centroids, and
the size of each clustei;, to its neighbors and pulls back the local centroids
and size of each cluster of neighbors. Then, each rodggregates itg-th
global centroidu 4 (7) as:

ZiGSA nzwf

ZiGSA n‘z

for j € [1, L), whereS, includes neighbors and nodeitself, n] denotes

the size of thej-th cluster of nodé in Sy, wf denotes thg-th centroid of
nodes.

pa(j) = (8)

5.4. Mapping Network Metric to Levels

Having obtained the clustering centroids, we next assigel alues for net-
work metric values in each cluster. The cluster centroidsarted in an ascending
(or descending for bandwidth) order. Then each nédéores the sorted centroids
into a list Leenroi¢ EACh network metric value is mapped to the nearest centroid
The level number is calculated as the index of that mappettaidnn the list.
Formally, given a network metric sampfe measured by nodd. Node A then
mapsd, to the nearest centrojd, (1) in the list Leentroid:

| = argmin|d, — pa(i)] 9)
i€[1,L]

Figure 4 illustrates the results after the level mappingcess. We can see
that points of a cluster are mapped to an identical level rermbherefore, the
similarity of network metric values in a level is maximized.
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Figure 4: Map network metric values to levels.

5.5. Determining the Number of Levels

The number of levels is up to the applications’ needs and eacobfigured
to a wide range of integer numbers. However, all nodes shioaN@ the same
number of levels for interoperability.

We also propose an offline heuristic to recommend the nunfidevels L that
tries to find the optimal clustering structure for a kind ofverk metric. Assume
that a noded collects the measurement results from some of online noden
the nodeA computes the optimal numbér of clusters that minimizes Eq (4),
i.e., the K-means clustering error function. Finally, notdistributes the optimal
numberL of clusters to other nodes.

5.6. Example

We next use an example to illustrate the process of the leappimg. Let the
numberL of clusters be 2. Assume that each node has two neighbonsg ths
measurements to neighbors, we construanaomplete bandwidth matrix D1
as follows:

125

| ] (10)
0

based on the bandwidth matidXin Eq (1).

We first perform the outlier detection. Nodg i.e., the node corresponding
to the fifth row vector ofD1, constructs a hierarchical cluster tree based on net-
work metric valueq1, 8,0.125,0.125, 1, 1) that include the measurements from
its neighbors4 and D. From the hierarchical tree, we found that only the sample
8Mbps is in a singleton cluster. As a result, the value 8Mispegarded as an
outlier.

We next calculate the K-means clustering centroids. Weharistributed K-
means clustering until all nodes reach identical centroidgch are 0.125 Mbps
and 1 Mbps.

Finally, we compute the level value for each measured badtthviun D1. For
example, 0.125 Mbps should be mapped to level 1, 1 Mbps and & Mbould
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be mapped to level 2. As a result, the pairwise level matrifor the bandwidth
matrix D and the level matrix'1 for the bandwidth matri¥D1 are as follows:

00202
] (11)

The level matrices” andY'1 preserve most observed asymmetries in the band-
width matrix, except the one betwedhand E because of a limited number of
levels.

=N
oOoO—O
[esenlen] V)
—HOOO
OO

6. Decentralized Level Estimation

Having shown how to map measured network metric values toetis levels,
we next introduce how to estimate level numbers with deeénéd coordinates
for unobserved network metric values. In order to accuygieddict pairwise lev-
els, we model the optimization objective of finding the cooates based on the
well-known Maximum Margin Matrix Factorization (MMMF) [389]. We im-
plement a decentralized MMMF algorithm based on a noveliliged conjugate
gradient method that converges within a few tens of roundsagps to be stably
accurate after convergence. Table 1 summarizes key naosatidiPM.

6.1. Problem Formulation

For large-scale and dynamic nodes in hybrid clouds, we ptefestimate
pairwise levels in a distributed manner. Besides, in ordgsréserve the asym-
metry of level values, we should estimate unidirectiona¢lealues for a pair of
users.

6.1.1. Estimating the Level
We define the coordinate distances based on the matrix iz&tion, in order
to be general enough to adapt different kinds of network igiefrhe pairwise
coordinate distance is represented by the linear combmafitwo low-rank ma-
trices:
X=UxV (12)

whereU isaN x d matrix andV is ad x N matrix andd denotes the rank of the
matricesU, V,d < N.
Suppose that there are a total bflevels. Since a pairwise levé(; is an

ordinal value, i.e.Y;; € {1,2,..., L}, but the coordinate distancfél-j is a real-

valued number, we have to classify the continuous cooreliditanceX;; into
the ground-truth levey;;.
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Notation

Meaning

N

the number of nodes

performance measurement matrix

number of layers

coordinate dimension

I-th cluster of the performance measurements

whole set of clusterg;

averaged performance value of thth cluster

set of neighbors of a node

layer matrix

| < | = [~ = 2[5 o

.
.

coordinate distance from nodéo nodej

thresholds for layer mappings

soft-margin loss function

N =<
—~
N

a function quantifying the layer estimation errors

~)
=)

N—"1

=
<

coordinate of each node;; = u; x v;

the regularization constant

the set of observed layer values

steepest direction

conjugate direction

Polak-Ribiere scalar

movement step

“<§®>I>{OQ?

an estimated layer matrix

number of UDP packets per measurement

maximal number of neighbors

inter-gossip interval

Table 1: Key notations in HPM.
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Figure 5: Map coordinate distances to level values.

For robust classification against coordinate errors, wetlhussholds to map
coordinate distances to level values. Each node maintdaqstize thresholds and
use thresholds as separation points of mapping continumrdinate distances to
ordinal level values. For each nodeit maintainsZ. — 1 real-valued thresholds
6: = (Hﬂ, . ,HZ-(L_l)). The thresholds separate the whole range of real values
into L disjoint intervals: (—oo, 0;1] , (0i1,62] , - - -, (Gi(L_l), +oo). Then, node
maps each coordinate distance to the interval that contlagndistance. Finally,
node: compute the level value as the index of that mapped inteRaalexample,
let the number of leveld be 3 and let two real-valued numbers -0.2, 0.3 be two
thresholds. Figure 5 plots such an example of how to comptdetvels for a
specific node.

Setting proper thresholds is fundamental for accuratetymging the levels.
Uniformly distributed thresholds do not preserve the pmagy of network met-
ric values, since most kinds of network metric are distelduhon-uniformly, as
shown in Figure 6. Therefore, we need to adaptively set treskiolds according
to the distributions of network metric values. To that end,treat the thresholds
6: of a node; as new dimensions of the coordinate, which will be computedl i
fully decentralized manner.

6.1.2. Coordinate Structure
The coordinate includes low-rank vectors and the thresholet«; denote
i-th row vector ofU, v; denote the-th column vector o/ andé; denote the-th

—

row vector of the threshold matrix = (6}, - QN). We set thecoordinate of
nodei to be the vectof; = <u_;, o, 9:)
The coordinate distance)A(ij between node and; is computed by the inner
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Figure 6: Distributions of popular network metric based ablgcly available data sets in Section
3.

product ofu; andv;:
d
- Z Uim Umyj (13)
m=1

The coordinate distance can be symmetric or asymmetriceéﬁ;y may differ
from X jie

For level estimation, each nodendependently maps the coordinate distances
from itself to other nodes using nods thresholds,. Suppose that we need to
estimate the level value from nodéo node;j. We first compute the coordinate
dlstanceXU from nodei to nodej. Then, we map’(w into a level value using
nodei’s threshold vecto#;. Algorithm 1 summarizes the steps. Step 3 computes
the coordinate distance. Step 4 initializes the level numBe&epss — 9 iterate
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through the threshold valugsto find a numerical interval that contaiPA(sj. Steps
6 — 8 detects whether the current numerical interval contaips

Algorithm 1: level Completion from nodéto nodej.

1: {Input: nodei's coordinated;, 7;, 6;, nodej’s coordinateu;, v}, 6 }
2: {Output: estimated level valué

3: )?ij = ’L[; X U}

4:1=1

5. fork=1:(L—1)do

6: if Xi; > 0y then

7: l+1+1

8: endif

9: end for

6.1.3. Level Estimation Error

Having defined how to map coordinate distances to discretésleve next de-
fine the optimization objective for computing the coordesgatwhich measures the
difference between the ground-truth level values and thimated level values.

Assume that we have measured the level vaju¢Y;; € [1, L]) from node: to
nodej based on Section 5. Then in order to estimate the grounid{ewel values
by Algorithm 1, node: should map the coordinate distankg to the numerical
interval (6;(y,, -1, 0iv,,|, wheref;y = —oo, 6;, = +o0. Otherwise, the level
estimation process incurs an error, where the coordinatartieX; is either
mapped to the left intervals of the threshald,,, 1), i.e., X’ij — biy;;-1) < 0
or to the right intervals of the thresholtdy,, i.e., Oy, — X’ij < 0. We next
measure the level-estimation error based orstiiemargin loss functionh (z) =
max (0, 1 — z) for robustness against input noises:

f (YU, XJ) —h (X' _ 92-%_1)) +h (9% ~ X ) (14)

f <Yij, X”> is a convex differential loss function that can be optimie#ctiently
by gradient based methods [38]. Therefore, when the estrlavels are incor-
rect, f (Y, X’Z-j is a positive value.

Besides, for robustness against threshold errors, wepocate all thresholds
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into Eq (14):

Y1 L-1
L (Y;J? Xz]) = h (XU 927‘) + h (627* XZ>
r=1 r=Yj;
¥ h (7}7} [, Yij] - (9” - Xw)) (15)

Tl i) = { 53750 (16)

Although Eq (15) defines the classification errors, findintiropl coordinates
matching all observed levels is likely to fail (the overfitliphenomenon), since
the level matrixY” is only approximately low-rank. In order to avoid such over-
fitting situations, combining the error function with an gdate regularization
model is a common practice. Therefore, by incorporatingstima of the Frobe-
nius norm ofu; andv; as the regularization term for capacity control, we minieniz
the following regularized objective of Eq (15):

L-1
Jo= S Sh(Thn Yyl 0 — (6 x 5) +
i#j,1,j€[1,N]r=1 (17)

N
-2 2
(2 (. + uvz-uF))
1=

m

wherea denotes the regularization constant, dag,,||> = S0, =
Frobenius norm.

2 denotes the

)

6.2. Distributed Conjugate Gradient Optimization

We now introduce how to compute the coordinates for each nodefully
decentralized manner. Generally, assume that eachinoelgodically samples a
number of online nodes; as neighbors. Nodeprobes several kinds of network
metric values to and from its neighbors with cooperation.elfor each kind
of network metric, node maps the network metric values to discrete levels by
Section 5. Each node then predicts unobserved pairwiskMakees to nodes that
are not its neighbors.

The objective (17) needs the complete pairwise level matriwhich implies
a centralized computation process. Since we prefer a fidtyibuted computation

22



process, we decompose the objectiveénto separable objectiveX, of each node
7 and its neighbors;:

= = T ¥ )j
JD (1’1) - jgirglh (,TZJ [T’ }/;]] ' (9“” - (ul X vj))> + (18)

$ (Wl + 1))

Therefore, Eq (18) can be independently optimized by riode

We choose the Polak-Ribiere variant of the nonlinear ogetie gradient meth-
ods (PR-CG) to minimize the objective (18) due to its fastvengence and ro-
bustness [44]. For a nonlinear objective function, PR-CGgaiively updates the
position of the solution vectar according to the conjugate direction @funtil
reaching a local minimum. There are two important pararsd@rPR-CG:

e Conjugate direction Az. It is a conjugate version of the successive gradi-
ents obtained as the progress of the iterations.

e Movement stepa. It determines how far we move in the conjugate di-
rection. The movement stepis calculated through a line search method
[44].

For example, letr; be the concatenation of the coordinate componentis of

—

i.e.,r; = [@;@; ei]. Letz;(0) be a random vector. In a round! > 1), for each

nodei, PR-CG updates nods vectorz;(l — 1) a small stepy; towardsz; (I —1)’s
conjugate directiorhz;(():

7i(l) = Ti(l = 1) + ailai(l) (19)

We can see that PR-CG incurs low computation overhead tlwatngparable to
gradient based methods.

Algorithm 2 presents the detailed steps of the distributeatdinate update
procedure. Each node periodically updates its coordinaterding to Eq (19).
The procedure first constructs the vecigr(line 3) and calculates the steepest
directionA (line 4 — 6) that is the negative gradient of the vect¢r Then, line
7 computes the Polak-Ribiere scafafor updating the conjugate gradient. Line
8 updates the new conjugate directibibased on the steepest directidrand 5
times of the conjugate direction of last round. Line 9 deiass the optimized
step lengthn; based on the line search method [44]. Then line 10 updates the
vector based on the conjugate gradient vedtand the step length;. Lines
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Algorithm 2: HPM Algorithm

1:

© ® N o

10:
11:
12:
13:
14:
15:

{Input: nodei’s current coordinate;, v;, 9: nodes’s steepest directiothx;, node
i's conjugate directiom\x;, the set of neighborS§, the level valuey” from nodei to
its neighbors inS, the coordinates of neighbors $h}

{Output: node’s updated coordinate;, v;, 6;, nodei’s updated steepest direction
Ax;, nodei’s updated conjugate directiok; }

Ti < [W;%‘;Qi];

I _ S ZTT r Yl W (T Vi) (0 = X))o (20)

Dui, jes; r=1

2D — - Y S b (T (- %)) @D
v jeSs; r=1

W _ DRGSR (751 Yi)- (0 — 45)) (22)

(23)

. TaJp 0Jp 8,
VaJp (#i) = [ 655 855 aﬂ

D A+ =V, Jp (%);

AT(A—Az;).
5<— A:(:ZTAZ’,L- !

: a; < argmin Jp (7 + a;A);

T & + o

ASL'Z' — A;

w; < [l 2 d);

7 B[(d+ 1) : 2d);

0; < @[(2d+1) : (2d + L —1)];

11 — 12 compute the new steepest directiam; and the conjugate directiohr;.
Finally, lines13 — 15 update nodé's coordinate.

We analyze the storage of each node from Algorithm 2. Fimg,léngth of
the steepest direction and the conjugate direction botlaledbat of the vector
x. Storing the node’s coordinate, its steepest directioni@nmbnjugate direction
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Table 2: Default Parameter Configuration for HPM
Parameter Value
number of leveld. 10
regularization constant 0.3
number of neighbor€’;, 32
coordinate dimensiot 5
neighbor choice random
update round 120 rounds

requiresO (2d + L) space. Second, each node needs to store recent level samples
to neighbors and the coordinates of neighbors. |Bgrneighbors, the storage
become® (|5;| x (2d + L)). Therefore, the overall space overhead of Algorithm
2isO (|S;] x (2d + L)).

7. Simulation

In this section, we evaluate HPM’s performance with reatidvdata sets. We
address four questions:

e Does HPM predict accurate hierarchical proximity that isgistent with
the pairwise proximity of nodes?

¢ Is HPM sensitive to parameter settings?
¢ Is HPM robust to missing measurements or coordinate errors?
e Does HPM scale with increasing number of levels or systeefsiz

We use the data sets in Section 3. We repeat the experimetdn times and
compute the average results and the corresponding staddaiations. HPM’s
default parameters are shown in Table 2.

7.1. Performance Comparison

We first test whether the level numbers predicted by HPM pvestne pair-
wise proximity of the data sets. For that purpose, we use &kmelvn metric
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Cophenetic Correlation Coefficient (CCC)[45] to quantify the matching de-
gree between the estimated pairwise lewélsnd the pairwise proximit{D:

E(m)eﬂ (DU - D) <Y” B Y)
\/[Zm‘)eﬂ(DU - Dﬂ {Z(”’)EQ <Yij - Y> 2]

N — 1 ; .
whereD = Sl >_(ijea Dij is the average value of the performance matrix

CCC =

(24)

= - ; ’\” . .
D, Y = Soieal >_(ijea Yij: 1s the average level value of the estimated level

matrix Y, and is the set of performance measurements. The CCC takes values
between -1 and +1. Higher CCC values mean that the pairwiséslenatch much
closer with the pairwise proximity.

We compare HPM with six related methods:

e Optimal. We regard the pairwise levels computed by teatralized K-
means clustering methas theOptimal pairwise levels, since the K-means
clustering based results optimally preserve the simylaritthe metric val-
ues mapped into each level number. Accordingly, HPM triesstonate the
pairwise levels computed by the K-means clustering method.

e Hierarchical Clustering. As discussed in the introduction section, the hi-
erarchical clustering method can compute the logical the¢ tepresents
multilevel proximity between a set of nodes with respect g distance
metric. Accordingly, we compute the logical tree using therdrchical
clustering method, and treat the pairwise level of theisekt common an-
cestor of two bottom leaf nodes as the estimated levels bhitrarchical
clustering method.

e NonMetric. The NonMetric method [14] estimates the latency or thelavai
able bandwidth based on decentralized coordinates. Thdioates are up-
dated based on the spring field simulation. However, the Netrimethod
only estimates continuous distances. For ease of comparis®compute
the logical tree of the estimated distances based on (iidgrarchical clus-
tering method.

e LandmarkMDS . The LandmarkMDS method [46] estimates the pairwise
hops based on the Multidimensional Scaling (MDS) methonhil&r to the
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NonMetric method, we compute the logical tree of the estdalistances
based on the hierarchical clustering method.

¢ Vivaldi. The Vivaldi method [9] estimates the RTTs based on dedérech
coordinates that are calculated based on the spring fieldl&iion. Simi-
lar to the NonMetric method, we compute the logical tree efektimated
distances based on the hierarchical clustering method.

e Sequoia The Sequoia method [20] constructs the logical tree oi@pst-
ing nodes based on a tree embedding process.

We can see that all methods except Optimal and HPM do notfggheimax-
imum number of allowed levels. For fair comparison, our ea#ibn consists of
two parts depending on whether we limit the number of levElsst, we do not
specify the maximum levels. We compute the logical treedHierarchical clus-
tering, NonMetric, LandmarkMDS, Vivaldi and Sequoia. Thea compute the
Cophenetic Correlation Coefficient values for these |ddreas. Second, we limit
the maximum levels for all methods. After we construct thgidal trees for Hi-
erarchical clustering, NonMetric, LandmarkMDS, VivalgicaSequoia, we com-
pute the pairwise levels for these logical trees, then wscede the corresponding
levels of the tree into the interval whose upper bound is tleevad maximum
level. We finally compute the Cophenetic Correlation Cogdfit values for the
re-scaled levels.

Figure 7 shows the results for the case without limiting tleximum number
of levels. The Optimal method has the highest matching @egrth the ground-
truth pairwise proximity, and HPM has similar accuracy as@ptimal approach.
We can see that the Optimal and HPM methods are able to esttihr@abtccurate
levels that match the latent structure of the data sets.

However, Optimal and HPM methods have much lower CCC valuethe
loss data set than those on other data sets. This is becagspairavise loss rates
are zeros, which makes the distributed clustering proces®efo be trapped into
bad local minimum.

On the other hand, the Hierarchical clustering, NonMett@ndmarkMDS
and Vivaldi methods have much smaller CCC values than thex@pand HPM
methods, which implies that the estimated logical trees atowell match the
pairwise proximity of the data sets. Furthermore, Optinmal BIPM have similar
CCC values on all four network metric, but other methods haging CCC
values for different network metric, which means that Ojtirand HPM have
better generality with respect to different network metiian other methods. For
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Figure 7: The average values and the corresponding staddaiations of the cophenetic corre-
lation coefficients of different methods when we do not lith#2 maximum number of levels.

example, the Hierarchical clustering method has a high Ca@lGevon the RTT
metric, but has quite low CCC values on the other three metric

Second, let all methods use the same number of levels, wearertipe match-
ing degree between the estimated levels and the pairwisenuity of the data
sets. Figure 8 shows the Cophenetic Correlation CoeffEi@mnive vary the max-
imum number of levels. Similar to Figure 7, the Optimal metias the highest
matching degree. HPM has nearly the same accuracy as the&@papproach.
We can see that the Optimal and HPM methods are able to aelyupaedict the
pairwise proximity of the data sets with respect to diffénemmber of levels. On
the other hand, the Hierarchical clustering, NonMetricndimarkMDS, Vivaldi
and Sequoia have much lower CCC values than the Optimal artdRIM method,
less than 0.4 on average, which implies that the logicakte=stimated by these
four methods have a high degree of mismatch with respectet@tbund-truth
pairwise proximity.

7.2. Sensitivity Analysis

We analyze the effects of the parameter choice on the agcafé&tPM. Since
HPM incrementally adjusts its coordinate position, we eat# its convergence
and robustness as a function of the number of rounds of coateliupdates in-
crease. Assume that all nodes join the system at time zedeeash node updates
its coordinate once per round. Let the default parametefigamation of HPM
be defined in Table 2. We compare the differences betweersthmeated levels
of the Optimal method and those of the HPM method based on thmalized
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Figure 8: The cophenetic correlation coefficients for vasionethods with increasing number of
levels.

Mean Absolute Error (NMAE):

D (i,)Yiy >0 ‘Yij =Yy

NMAE =
Z(i,j):Yij>0 }/;']

(25)

whereY;; denotes the level value fromto j by the Optimal methodffij de-
notes the estimated level value frarto j by HPM. the NMAE metric can adapt
to various performance metric that have different levedivls. Smaller NMAE
values correspond to higher prediction accuracy. We repertiveraged results
that are based on ten repeated simulations.

29



0.9 1.1
071 —L=6 0.9}y —L=6
R L=10 0.8} { L=10
w 2o\ w -7\ —-L=20
< 0.5} \i < 0.6 \t
=04 \ =051} == =40
z Y Z Oy
0.3
0.2 02 ..
01 01 S ol S Bl "l "l st B ol "t ©
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Round Round
(@) RTT (b) Bandwidth
1 g —L=2 T —L=2
16 . _L=6 6 " _L=6
14} L=10 5, L=10
w .2 TTLE20 gy —-L=20
S 1 erl=40 S g -+-+L=40
Zosf z3 =
061X, 2ty
0.4 k i
N 1\
0.2 e e e e e e e e o \\‘4 ___________________________
O 0 — e ——— — ——"—" — — o """
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Round Round
(c) Hop (d) Loss

Figure 9: The rate of convergence of HPM as we vary the numidevels.

7.2.1. Number of levels

We first test HPM'’s accuracy as a function of the number ofl&evEigure 9
shows the convergence for different number of levels. HPRMvemes in about
20 rounds, then remains accurate afterwards. We see thatddmrges fast and
that varying the number of levels does not affect the corerrg speed of HPM.

Therefore, HPM can achieve very good accuracy independagheaumber of
levels.

7.2.2. Size of Neighbors

We next evaluate the accuracy of HPM as a function of the nuwieeigh-
bors. Figure 10 shows the results. We see that increasinguthber of neighbors
generally increases the accuracy of HPM. But the perforemanprovements be-
come negligible when the number of neighbors exceeds 16efdre, a moderate
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Figure 10: The effectiveness of the number of neighbors.

number of neighbors is enough for accurate level estimstion

7.2.3. Neighbor Selection Choice
We test whether the choices of neighbors affect HPM'’s aocguié/e use four
kinds of neighbors:

e Random. We choose neighbors uniformly at random from the whole tet 0
nodes.

e Closest We choose neighbors that have lowest RTT, loss, hops oekigh
bandwidth.

e Farthest. We choose neighbors that have highest RTT, loss, hops @slow
bandwidth.

e Hybrid . We select half neighbors using the Closest based seletidthe
other half neighbors using the Farthest based selection.

Figure 11 shows that the Random based neighbor selectimy pchieves the
highest accuracy, compared to the other three policies. #swt, we can ran-
domly choose neighbors for level estimations, which camiyjgemented easily.

7.2.4. Dimensionality

We next evaluate the effectiveness of the coordinate dimerm the accu-
racy of HPM. Figure 12 plots the simulation results with \yagycoordinate di-
mensions. The results show that low coordinate dimensiansrough for con-
verging to accurate level predictions. Increasing the dioate dimensions does
not significantly increase the accuracy of level prediction

31



0.8¢

o7l - Il Random
' [ |Closest

0.6/ [ |Farthest
w 0.5 Il Hybrid
<04 - .
< 0.3}

0.2f

0.1}

RTT Bandwidth Hop Loss
Data Sets

Figure 11: The effect of neighbor selection policies on oiteonverge.

0.13; - —RTT
Bandwidth
0.12 AEEREREPN . —=Hop
**.. ===-Loss
wo.11} "
<€
! \
Z 01 ———x
\
\\
0.09 RTT,Beindwidth\\\
N\
0.08 ; : s
0 5 10 15 20

Coordinate Dimension

Figure 12: The effect of coordinate dimension on the rateakergence. We vary the coordinate
dimension ranging from 2 to 16 on all data sets.
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7.2.5. Regularization constant

We finally test whether the regularization parameten the loss function of
Eq (18) affects HPM’s accuracy. When varyingrom 0.1 to 2, we did not see
any significant effect on the accuracy. Therefore, HPM iseguabust against the
choice of the regularization parameter

7.3. Robustness
We test the robustness of HPM in this section.

7.3.1. High Erroneous Nodes

We first test whether HPM is sensitive erroneous coordinatés divide the
overall set of nodes in the data sets into two equal halvdg,haif of the nodes
join the system at time 0 and the other half nodes join theegystfter 40 rounds.
As aresult, the erroneous coordinates are injected intsytstem after 40 rounds.
To quantify the stability of the coordinate of each nadee calculate th€oor-
dinate Drift using thel; norm defined as

S s (m) — 5 (m) (26)

m=1

wherez;, = [d}; 0;; 62} denotes the updated coordinate, apdienotes the previ-

ous coordinate. We plot the accuracy of level estimationscaordinate drifts in
Figure 13.

We can see that the first half nodes converges to stable cabediwithin 20
rounds and keep steady until 40 rounds. Furthermore, thedic@de drifts de-
crease close to zeros after the coordinates are stabilfEd2® rounds. When
the other half nodes join the system after 40 rounds, theativewordinate er-
rors increase sharply after 40 rounds, since the coordimditeewly-joined nodes
are randomly initialized and incur high errors. Accordidghe coordinate drifts
also increase. However, the whole set of coordinates cgaweithin the next
20 rounds to stable positions. The newly stabilized coatedis have the similar
accuracy as those before 40 rounds and the coordinate @lgtisiecrease to the
similar degrees as those before 40 rounds.

7.3.2. Missing Measurements

We next test HPM’s performance when some level measurerteenesghbors
are unavailable due to node failures or routing disruptitmeach round, for each
node, we choose uniformly at random a fraction of neightaas do not respond
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Figure 14: HPM'’s accuracy as a function of the percent of mismeasurements to neighbors.

the level measurements. We than collect the final perforenatatistics of all
nodes. Figure 14 plots the results. We can see that HPM istalgainst missing
measurements: the estimation accuracy degrades sligtitlyngreasing percent
of missing measurements. This is because the conjugateegtamptimization
method is quite robust to incomplete information.

7.4. Scalability
In this section we show the scalability of HPM.

7.4.1. CPU Efficiency

We first test the efficiency of HPM as a function of the numbeegéls. We
compute the CPU time of completing one round of distributeth&ans clustering
algorithm and that of finishing one round of coordinate updd&rom Figure 15
we can see that with increasing number of levels, the CPU difitiee distributed
K-means clustering and the coordinate update increasestlmearly. However,
the slope of the fitted line is quite modest. As a result, HPlesc well with
increasing number of levels.

Besides, we also evaluate the CPU efficiency of HPM in ternte@humber
of neighbors or the coordinate dimension. We found that tR&) @me is quite
stable as we increase the number of neighbors or the cotediimaensions.

7.4.2. Accuracy With Increasing System Size

Our previous evaluation uses a fixed number of nodes. In dgigos, we test
HPM'’s accuracy with increasing number of participating @dWe choose the
RTT and bandwidth metric as examples. Due to the limited sizbe RTT data
set, we use a larger RTT data set from the Meridian projedt [47
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Figure 16: HPM's accuracy as a function of the size of nodes.

From Figure 16, we can see that there are clearly phase chanitencreas-
ing number of nodes on the RTT and bandwidth data sets. Thegehaoints
of different phases for RTT and bandwidth metric occur whas system size
is much smaller than the overall size of the data sets. At dgnining, HPM
incurs higher estimation errors with increasing numberades; but soon HPM
keeps to be stably accurate. This is because smaller systermeans narrower
search spaces for the optimization problem, which implieg the solution is
much closer to the global optimum [38].
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8. PlanetLab Evaluation

8.1. Implementation

We have implemented HPM in Java. The main logic consistspfeagmately
4000 lines, including th@eighborhood managementcomponent, thegerfor-
mance measurementomponent, théayer mapping component, théayer es-
timation component, as shown in Figure 17. Each node periodicatigers
the performance measurement component to probe perfoenmaatric towards
available neighbors, then calls the layer mapping compaoesalculate discrete
levels with updated clustering centroids, and finally updats coordinate based
on the layer estimation component. Besides, each node gaesethe coordi-
nates of any pairs of nodes based on the XML RPC interface amgpuate the
corresponding two-direction levels based on the requestediinates.

Our prototype measures the RTT and loss metric simultamgobach node
A periodically triggers a measurement event, which sendgjaesee of probe
packets to a randomly selected neighldyrand returns immediately in an asyn-
chronous manner. Accordingly, the receiveechoes the sender with an acknowl-
edge packet as soon as it receives a measurement packdi ke A computes
the RTT and loss metric as:

e RTT The round trip time is calculated by averaging the perioccath
pair of a measurement packet and the corresponding ackdgevigacket,
(ijf““ T3)/ Lsyccess, Where Lg,q..ss 1S the number of successful pairs of
measurement and acknowledge pacKEts the time period of theth pair
of measurement and acknowledge packets.

e Loss RateThe loss rate is calculated by the ratio between the nunflzero
knowledge packets to the total number of measurement pa({kte% %) :
whereL;,;, is the overall number of measurement packets.

Furthermore, as the performance measurements to neigkéepschanging
due to dynamic network conditions, we use the exponentizimgoaverage filter
with a coefficient at 0.05 to smooth out short-term fluctuatioAfter completing
a performance measurement to a neighbor, nddgdates its coordinate vector
based on available performance samples of all neighboosder to optimize the
convergence of its coordinate vector.
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Figure 17: The HPM architecture.

8.2. PlanetLab Experiments

We selected 269 physical machines on PlanetLab and ircsthkeHPM pro-
gram. We update the cluster centroids and issue the penfmen@easurement
based on the gossip communication. The inter-gossip ialt&tvis 30 seconds.
Accordingly, the coordinates are updated approximatety3@eseconds. Each
node independently maintains two coordinates based on ldR&Icoordinate for
the RTT metric and the other one for the loss metric. We chotser parameters
for HPM as those shown in Table 2 in the Simulation section.

The evaluation metric for the prototype include:

¢ Relative Error, Each node calculates the relative error with each neigh-
=Y

bor ; between the estimated level and the ground-truth lev
whereY;; denotes the level number computed by the distributed K-mean
clustering method an}ij denotes the estimated level number by Algorithm
2. Then each nodeupdates the relative error towards the neighpathen
nodei’s coordinate changes or nod@btains new performance measure-
ments to nodg. The updating rule is based on the exponentially moving
average with a coefficient at 0.05.

e Coordinate Drift, We calculate the coordinate drift per minute based on
Eq (26) in order to quantify the stability of each node’s acboate.

e Bandwidth Costs We collect the bandwidth costs of HPM per minute, in-
cluding the gossip messages and measurement costs inbyrtieel packet
trains.
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Figure 18: Performance statistics of HPM on PlanetLab. Stbtkes the standard deviation.

Relative Error: Figure 18(a) plots the CCDF of the relative errors of level
estimations by HPM. For the RTT based level estimation, HRbMiis low es-
timation errors for each node pair, where the maximum redagrror is around
0.4. For the loss based level estimation, HPM is even mongratxand predicts
accurate level values for most node pairs, where in arouftl 8bthe cases of
the median relative errors are below 0.1. Therefore, HPMipte representative
metric quite accurately.

Coordinate Drifts: We next plot the dynamics of the coordinate drifts in Fig-
ure 18(b). The results show that the coordinate drifts degively high at the
bootstrap phase, with mean and standard deviation at ataand his is because
the initial coordinates move at large steps to converge ¢arate positions. On
the other hand, after ten minutes, the coordinates keep $tabé with close-to-
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zero coordinate drifts. We can see that ten minutes cornesfmtwenty rounds
of coordinate updates, since the coordinate update intsraaound 30 seconds.
The convergence speed of the PlanetLab deployment is temisigith that in the

simulation results.

Bandwidth Costs Figure 18(c) depicts the dynamics of the system overhead.
The mean control overhead stay around 1.8 KB per minute gtin@ experiment
period, which is quite modest. However, the standard dieviatof the control
overhead at the beginning are relatively large, since eade meeds to contact
multiple potential neighbors returned from the bootstragen After the initial
contact process, the overhead becomes steadily low.

Summary of Results We confirm that HPM can converge to stable positions
with accurate level predictions at low bandwidth costs. tir@enmore, HPM can
still estimate levels very accurately for skewed networkrinesuch as the loss
rates where most of them are zeros.

9. Application

In this section, we illustrate several service provisioattban benefit from
HPM in the context of the Nano Data Center (NaDa) [6], which iand of hy-
brid clouds that uses Nano data centers to reduce the engngymption of tra-
ditional data centers. NaDa comprises geographicallyibiiged in-house gate-
ways. NaDa can allow ISPs to host Internet applications antent on residential
gateways to reduce the access time for end hosts.

We assume that each node in NaDa computes its coordinatg BN, and
that each node learns the coordinates of all nodes in themystrough a co-
ordinate propagation scheme such as the anti-entropypjoggirocedure. Since
each coordinate requiré®d+ L) space, storing the coordinateshodes incurs
O (N-(2d + L)) space, which is quite modest.

9.1. K nearest neighbor search

The K nearest neighbor search aims to fikdnano servers having the low-
est delays or the highest bandwidth to the targenhearest neighbor search helps
optimize the streaming applications and the content basknpce, since redirect-
ing host requests to nearest nano servers can reduce tlys deld increase the
transmission throughput. Furthermore, locatiighearby nano serverg( > 1)
can be used for parallel connections in the content backryiceeto avoid the
performance bottlenecks of some nano servers.
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We simulateK” nearest neighbor search using HPM as follows: first, we ran-
domly choose a target from the whole set of nodes, and coefiperother nodes
as nano servers; second, we randomly choose nano servehateathe small-
est levels to the target to be the closest nodes to the tasipee lower levels
correspond to lower delays or higher bandwidth. For indireethods includ-
ing Vivaldi, NonMetric, Sequoia and LandmarkMDS, we detgrenthe closest
nano servers to the target using estimated delays or batidviddsides, in order
to quantify the effectiveness of the K nearest neighborcéeave calculated the

D ~
stretch of found closest node$or each target asZJGZiD_7 , whereC; denotes the
jec; i

closest nodes found by HPM, aidg represents the ground-truth closest nodes.
The ground-truth closest nodes correspond to nodes thatthavowest delays or
the highest bandwidth to the target.

According to the definition of the stretch, for RTT, the streis> 1, the lower
the stretch, the better HPM performs; on the other handhfobandwidth metric,
the stretch i< 1, the closer to one the better HPM performs. Figure 19 shoevs th
evaluation of mean stretch with increasing numiiesf required nano nodes. The
Optimal method and HPM significantly improve the stretch paned to other in-
direct methods including Vivaldi, NonMetric, Sequoia arahdmarkMDS. More-
over, HPM has similar stretch as the Optimal method for timeltaédth metric and
the delay metric (wherik exceeds 5), implying that HPM can find closest nodes
that are as good as those using the Centralized method. @thiirehand, indirect
methods including Vivaldi, NonMetric, Sequoia and LandkhiDS have much
worse stretch than Optimal and HPM on the delay and bandwliatih sets.

For the delay metric, the stretch values of Optimal and HPRrekese from
around 3 and around 6 to nearly 1 Asreaches 2 and 5, respectively, and stay
close to 1 afterwards. This means that the use of Optimal &M khay select
inaccurate closest nodes whénis low, since the level values are only coarse-
grained proximity metric. On the other hand, Optimal and HB&tome very
accurate with increasinfy. On the other hand, for the bandwidth metric, Optimal
and HPM have a stretch close to 1, which decreases slightlyingreasingi,
indicating that HPM could find high bandwidth nodes, but mags:xsome of the
best ones.

9.2. Proximity-aware matchmaking

Proximity-aware matchmaking finds nodes that have the beginity [10],
by locating hosts that hawewest pairwisedelays or highest bandwidth to each
other. The proximity-aware matchmaking is useful for firgdgroups of nodes in
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Figure 19: The stretch dk nearest neighbor search with varying number of require@sod

networked games in order to increase the responsivenassdiegame levels.

The proximity-aware matchmaking differs from thenearest neighbor search,
since now we need to select nodes for each ri@deh thathe selected nodes and
node: have the lowest delays or the highest bandwidth to each gdtlogrever, in
the K nearest neighbor search we only need to fihd- 1 nodes have the lowest
delays or the highest bandwidth to nade

Furthermore, in order to quantify the network quality of ofahaking nodes,
we redefine thetretch of the matchmaking as the ratio between the averaged
delays or bandwidth of the found nodes and those of the grtrurtid closest

nodes, m% whereC; denotes the set of found nodes pluandC;
denotes the set of (jround-truth nodes plus

To simulate the proximity-aware matchmaking f@rnodes using HPM (in-
direct methods including Vivaldi, NonMetric, Sequoia arahdmarkMDS) with
low computation overhead, for each nadeve locate( X — 1) nodes that mini-
mize the sum of pairwise levels of thegenodes (minimize the sum of pairwise
delays or maximize the sum of pairwise bandwidth for indireethods) through
Nlog (N) randomized combinations of nodes, where ties are brokemaatly.

Figure 20 shows the mean stretch of matchmaking as a funetitre num-
ber of required nodes. Optimal and HPM can find nodes that hmah higher
proximity with each other than those found by Vivaldi, NornMe Sequoia and
LandmarkMDS. Furthermore, HPM has nearly identical skrets the Optimal
method.

For the delay metric, HPM and Optimal increase the stretchnati reaches
3, and decrease the stretch to close to 1 afterwards, ingptiiat the level based
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Figure 20: The stretch of proximity-aware matchmaking withreasing number of required
nodes.

matchmaking produces less accurate results when patiigpaodes are very
few. However, in an interactive game, the number of playgtgpically around

ten, in which case HPM will do a very good job in match-maki@n the other
hand, for the bandwidth metric, HPM and Optimal improve tinetsh from 0.85

to 0.9 when the number of nodes reaches 4, and stay arounétér®ads, indi-

cating that HPM and Optimal increase the matchmaking acgwih increasing

number of participating nodes.

9.3. Network performance anomaly detection

Finding the occurrence of performance anomaly (such as ddgy or loss
events) becomes increasingly critical for network infrastures. Using thresh-
olds to detect anomalous and nearly anomalous networkrpeaiftce is a popular
anomaly detection approach [48], which determine whetieperformance mea-
surements violate the thresholds. Accordingly, the angmietection aims to find
all node pairs whose end to end performance measuremerdb@re (or below
for the bandwidth) these anomaly thresholds.

Similar as Barford et al. [48], we explicitly introduce panhance thresholds
as a set of percentile values of the measurement distribttiat separate equally
with each other. To simulate the threshold based anomaéctieh using HPM,
we use the anomaly thresholds as additional level sepanatimts and a perfor-
mance measurement mapped to one of these level separatiis jgoregarded
as an anomaly. For indirect methods including Vivaldi, Na@iNt, Sequoia and
LandmarkMDS, we compare the estimated delays or bandwidthtiae thresh-
olds to detect anomalies. For comparison, we vary the nuoftaaromaly thresh-
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Figure 21: True positive statistics.

olds, and compute the mean percentage of anomaly that isteétsuccessfully
(true positive) and the percentage of estimated anomaly that do not bedoting t
true anomalyf@alse positive.

Figure 21 and 22 depict the true positive and false positatessics by varying
the number of anomaly performance thresholds. The Optip@aicach has the
highest detection precision. HPM has slightly lower angntigtection accuracy
than the Optimal method due to the low-dimensional apprations. Further-
more, HPM has higher detection accuracy than Vivaldi, NotmdeSequoia and
LandmarkMDS.

10. Conclusion

Hybrid cloud computing provides promisingly elastic, flebe and secure ser-
vice provision for diverse cloud services. Due to the geplgically distributed
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Figure 22: False positive statistics.

and heterogeneous participating nodes, metering the netwaditions between
nodes is increasingly important for optimizing the perfamoe of service provi-
sion. However, the large scale and dynamic nature of hydladd nodes cause
challenges for the measurement process. HPM solves thiiemhiag problem

in a scalable and decentralized manner. It offers a powprfalitive: given any

performance metric, it constructs a hierarchical striectuith tunable levels of
proximity, and does so scalably and accurately. In orderrésgrve the asym-
metry in the hierarchy, we propose a distributed K-meansteting method [43]
based level mapping method that maps performance measueimt® levels that
are separable for dissimilar measurements and coheresitridar ones. Next, in
order to reduce the performance measurement overheadebfieyppings for all

node pairs, each node measures the level values to a smdlenafnodes, then
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maintains a low-dimensional coordinate with these levedsneements by a novel
distributed conjugate gradient optimization scheme, aeb the coordinate dis-
tances to extrapolate the level values to other nodes.

Simulation results and PlanetLab experiments confirm tii¥an achieve
close to optimal performance, and is quite robust with respethe choice of
the parameter values. Furthermore, we show how to use HPMindntext of a
novel Nano data center architecture [6].
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