EURECOM

A n t i p o |l is

S op hia

EURECOM
Department of communications mobiles
Campus Sophia Tech

450 route des Chappes
B.P. 193
06410 Biot
FRANCE

Research Report RR-12-268

Hybrid CPU-GPU Distributed Framework for Large Scale
M obile Networ ks Simulation

June 5", 2012
Last update January'7, 2013

Ben Romdhanne Bilel, Nikaein Navid ,Mohamed Said Mosli Bouksiaa , and
Christian Bonnet

'EURECOM’s research is partially supported by its industrial members\WBGtoup, Cisco,

Monaco Telecom, Orange, SAP, SFR, STEricsson, Swisscom, $gman

Tel : (+33) 4 93 00 81 00
Fax: (+33) 4930082 00
Email : {benromdh,nikaeinn,mosli,bonjé&eurecom.fr

Hybrid CPU-GPU Distributed Framework for Large Scale
M obile Networ ks Simulation

Ben Romdhanne Bilel, Nikaein Navid ,Mohamed Said Mosli Bouksiaa , and
Christian Bonnet

Abstract

Most of the existing packet-level simulation tools are deed to per-
form experiments modeling a small to medium scale netwoilge main
reason of this limitation is the amount of available comgiatapower and
memory in quasi mono-process simulation environment. Ebknefficient
packet-level simulation for large scale scenario, we thice a new CPU-
GPU co-simulation framework where synchronization andeexpent de-
sign are performed on CPU and node’s processes are exenyiathilel on
GPU according to the master/worker model [13]. The framé&vi®idevel-
oped using Compute-Unified Device Architecture (CUDA) amthated as
Cunetsim [18], CUDA network simulator. To study the perfame gain
when GPU is used, we also introduce the CPU-legacy versi@uagtsim
optimized for multi-core architecture.

In this work, we present Cunetsim architecture, design eph@nd fea-
tures. We evaluate the performance of Cunetsim (both vessmmpared to
Sinalgo and NS-3 using benchmark scenarios [20]. Evalnaésults show
that Cunetsim execution time remains stable and that iegekisignificantly
lower computation time than CPU-based simulators for btaticsand mo-
bile networks with no degradation in the accuracy of the ltesuVe also
study the impact of the hardware configuration on the peréoce gain and
the simulation correctness.

Cunetsim presents a proof of concept, demonstrating thegbiéty of a
fully GPU-based simulation rather than GPU-offloading atiphaccelera-
tion, through adequate architecture.

Index Terms

Large Scale; Hybrid simulation; GPGPU; CUDA; Parallel siation;

Contents

1 Introduction 1
2 TheCunetsim Framework 2
2.1 TheWorkerDesign i 3
2.1.1 Applications (APP) 3
2.1.2 Protocol stack(PROTO) 4
2.1.3 Mobility (MOB) 4
2.1.4 Connectivity (CON) 4
2.1.5 Packetsservices(PKT) 5
2.2 TheMasterDesign 6
2.2.1 Hybrid Events Scheduler 6
2.2.2 DataAbstractionLayer 7
2.2.3 ScenarioManagement 8
23 CommonAPIs 8
231 TheTesterAPl 9
2.4 HardwareMapping e 9
241 FullyGPUwversion 9
2.4.2 CPU-legacyversion 10
3 Comparative Performances Results 10
3.1 Simulationruntime 12
3.1.1 StaticScenario 12
3.1.2 MobileScenario 14
3.2 Memoryusage v v vt e e e e e e 15
4 Hardwareimpact 16
41 GPUImpact. e 16
4.1.1 Impact of total numberof GPUcores 16
4.1.2 Impactof GPUfrequency 16
42 CPUImMpact e 17
421 fullyGPU 17
422 CPU-legacyversion 17
5 Discussion 19
6 Conclusion 19

List of Figures

OO WNPRF

11

12

13

Cunetsim Framework Architecture and Dependency 3
MOB WP functioning 4
Scheduling Ambiguities oL 7
Cunetsim Hardware Mapping 9
Simple Grid Topology, 11
End-to-End Packet Loss: Under the same conditions, all simulators
present equivalent E-TO-E loss, considered as the output 12
Simulation runtime of the static network: CPU simulators are effi-

cient on small scale but computing power becomes critical on large

scale 12
Simulation runtime of the mobile network: the complexity of wire-

less mobile scenario highlights the limitation of classic approaches
under large scale conditions 14
Memory usage vs. Drop probability 15
Simulation runtime of different devices: Naturally, more cores means
higher efficiency, 16
Harware impact for Fully GPU version: neither the CPU frequency

nor the number of CPU-embedded cores has a significant impact . 17
CPU Cores’ impact (Legacy): best performance was reached when

then number of thread is equal to the number ofcores 18
CPU frequency impact (Legacy): As expected, the runtime is lin-

early relatedtothe CPU frequency 18

Vi

1 Introduction

Packet-level simulators are usually based on a discrete event paratigma w
sequences of events are generated. In general, such evensergpnebility, con-
nectivity, channel calculation and in/out packets processing. The timelegityp
and memory usage of a simulation are then proportional to the frequencysef the
events for the total number of nodes, which represent the main bottlendeks
targeting scalability and efficiency. There exists also a trade-off betieeac-
curacy of the models, in particular channel models, and time complexity that has
to be taken into account when targeting large scale simulations. This calls for a
parallel node execution environment with minimal inter-processes commumicatio
overhead [9].

In the literature, there are three major approaches to deal with large snale s
ulation: (i) CPU-based parallel & distributed simulation, (ii) Partial accelematio
using specific Co-processor and (iii) The fully GPU approach.

In a CPU-based parallel and distributed simulation [14], the platform may be
federated and includes multiple copies of the same or different simulators (mod
eling different portions of the network) linked together either sequentialliyn o
parallel. Such a federated approach makes use of the existing modelouitdp
a rapid parallelization of existing sequential simulators [17]. Howevelh sye
proach introduces a significant overhead due to the synchronizatiomgadiiféer-
ent processes and/or machines and requires sophisticated andwexpanslation
infrastructure [13]. This overhead may increase drastically in mobile @mvient
if the network topology and machines mapping is not dynamically managed (e.g.
through nodes migration). For the majority of CPU-based simulators, therperf
mance degradation happens when a combination of the limiting factors, mobility
rate, number of nodes, and traffic load increases. For the distributethiins,
such performance degradation happens when the inter-machines cormatiomnic
increases. A scalability demonstration, based on the distributed NS-3readlya
avoided the problem of the interaction between nodes in different simulation ma
chines [11]. Even if parallel and distributed simulators have crossedlability
boundary, they introduce new problems such as the cost of a simulategdthede
strategy of initial nodes distribution and their migration across different mash

The second approach addresses the question differently, It aims easecr
the efficiency of the simulation locally by offloading the most CPU-intensive pa
of the simulation from the CPU to a dedicated co-processor. The FPGA was
widely used as an acceleration solution [8] however, in some recenbapes,
the Graphics Processing Unit (GPU) is used to offload intensive comptaisikg
such as channel modeling [5] and queuing [15] within the simulator. Retedt
ies of GPUs allow us to utilize the GPU for more general-purpose computation
(GPGPU) [16], or even as a GPU-accelerated simulation architecture adie
curacy and runtime performance are both critical [4]. Thus, the GPUbbhas
come an increasingly attractive alternative to the expensive CPU-basatbpism,
with significant computational power at a relatively low cost. With the advént o

the GeForce 8 series GPU in 2006 and the compute unified device arclatectur
(CUDA) [12], the control of the unified stream processors of GPU issjparent to

the programmer, and CUDA provides an efficient and wealthy environtoetd-
velop parallel codes in a high-level language without the need for grsysbecific
knowledge. Even if this approach reduces significantly the computing time, the
simulation remains principally in the CPU which continues to be the main system
bottleneck in large scale scenarios. Further, a continuous transferdretie GPU
memory and the CPU one presents a serious limitation of such approach.

The third approach aims to realize the simulation entirely on the GPU which
reduce significantly the memory transfer compared to the second appaadch
decrease the synchronization latency compared to classic parallebappidow-
ever, the GPU is not fully X86 compliant and did not support CPU featuesds
a specific software architecture to disclose its power and did not supgonory
lock mechanism. Because of these limitations, the fully GPU simulation approach
is poorly studied even if it is extremely promising in term of raw performance.
As a proof of concept, we propose to use the GPU as a main simulation environ-
ment and the CPU as a controller, introduced VIA a new CPU-GPU co-simulatio
framework denoted as Cunetsim, CUDA Network Simulator. Cunetsim is an ex-
perimental simulation platform allowing validation and experimentation of a novel
approach. As opposed to previous works, Cunetsim is designed tidlpavinde-
pendent parallel execution environment for each simulated node. Nodasu-
nicate with each other only through the message passing based on theelsuffe
change, thus avoiding the usage of any global knowledge on onedraohthcrease
significantly the parallelism level on the the other hand. Furthermore, it éxplo
the master/worker model for CPU-GPU co-simulation and provides hybrid sy
chronization model which maximizes the efficiency and respects the carssabf
the simulation. The simulation exploits the large number of computing cores of
the GPU to execute nodes in parallel and the high speed memory accessc® red
nodes communication latency.

The remainder of the paper is organized as follows. Section 2 presents the
framework architecture and features. Preliminary comparative resaltivan in
section 3. Detailed study of the hardware configuration impact is summarized in
section4 and we discuss limits of our concept in section 5 followed by congud
remarks and future directions in section 6.

2 TheCunetsm Framework

Cunetsim framework is designed and implemented following a hardware/ soft-
ware co-design approach to maximize the efficiency. The simulation distritigtion
based on the master/ worker model [13] where the master controls the simulatio
achieved by the workers group. Figure. 1 summarizes the cunetsim centpbn
hierarchy through three blocks: the master, the worker and common APIs.

Worker components (node) Master components
C

re—m——————— ¢ - |
: Tester :
| o] | |
| Applications [| Helper I
| | | |
I Protocols stack \ Monitoring |
<			
, 2)	
Packet Services (msg)	&	/	Data Abstraction Layer
! 2 ! |
- |

| Connectivity | | |
: | : Events Scheduler :
| Mobility | | |
L

T B _Sy_ste_m_AP_I: §d_l_|b_,aJ[;A API & Libraries (Curand, Cublas) |

Figure 1: Cunetsim Framework Architecture and Dependency

Conceptually, a worker is associated with one node and is therefore sethpo

of a node’s five Worker Processes (WPs) [6]: (i) the application, (&) fghoto-

col stack, (iii) the mobility, (iv) the connectivity and (v) the packet sersit@eir
functioning is explained in section 2.1. The master is also composed of five com-
ponents: (i) The hybrid events scheduler, (ii) The data abstraction l@yerhe
scenario manager, (iv) The monitoring component and (v) The helpére. dé-
tailed implementation is explained in section 2.2. Common APIs regroup those
shared by the master and workers. It includes three components: téjrsyeé°|,
including CUDA APIs and libraries, (ii) monitoring API, and (iii) testing API.

2.1 TheWorker Design

The Worker implements the simulated node, modeled as a stack of independent
WPs. Nodes communicate through messages passing. Only bufferchamgsd
between nodes to avoid global knowledge. In Cunetsim, each node cofitain
ordered WPs described in the following sections.

2.1.1 Applications (APP)

Cunetsim provides a packet-level traffic generator to simulate applicattan da
based on packet size and inter-departure time. Each instance is compldeely in
pendent, allowing the framework to support an important load. The tradfielg
ator tags the packet as a function of communication type: unicast, multicast and
broadcast, and assumes that such traffic will be processed by theQPRQITPKT
WPs.

2.1.2 Protocol stack(PROTO)

implements the node behavior both in control and data planes, which are pro-
tocol or algorithm specific. It may also include additional models requireslich
a protocol. Cunetsim implements various broadcasting techniques, suobbas p
abilistic, counter-based and location-based. Such implementations s@G#ort
parallelism and provide inter-process communication through a bufféraege,
avoiding simulation global knowledge, to ensure the simulation scalability and ef-
ficiency.

2.1.3 Mobility (MOB)

The MOB calculates a specific movement in the defined space following a mo-
bility model, for each node. We define a generic mobility container, implemented
as a unigue CUDA kernel which functioning is explained in Figure.2 . We im-
plement two mobility modelsRandomWayPoint and RandomDirection [10] and
three boundary policy modelgnnulment of excess, Siding on the boundaries and
bouncing on the boundaries.

Mobility Mobility Data Flow
- .\jmﬂjmjmf LR

Space Data l

Structure of Mobility
data element Mobility Container

Mobility Model Mobility Model |
2 1

I
|
I i Thread Unique id = Tid
I
I
I

Mobility Model Mobility Model , !
© ”?\" oce ”% i Select Associated
| Pl ~Mobility Models — — — 2 Select Associated Data
S Mobility Model

|
ESP Model2 ESP Model 1 |
| Select Associated
I ESP Model

ESP Models

Figure 2: MOB WP functioning

2.1.4 Connectivity (CON)

The connectivity WP identifies all neighbors of the concerned node.prois
lem is NPC [7]. The complexity of the brute force approach is of the ordler o
O(N?). In Cunetsim design, we divided the space into geometric cells where the
radius of the cell must be at least the double of the maximum transmission range
(2 * Rmax). In this case each node will find its neighbors in its own cell and in
the neighboring cells. This approach reduces significantly the complexiighw
will be related to the network density. We define a connectivity containeghwh

will call a specific connectivity model (the Unit Disk GrapdDG) and the Quasi
Unit Disk Graph(QUDG) are available in the first version). This kernel will be in-
stantiated into N GPU threads, where N is the nodes number in the scenago. Th

tid=BlockDim.x*blockldx.x+threadldx.x;

MyCell=Node[tid].Cellid;

NeighborCell=Cell[MyCell].Neighbor;

for i of NeighborCell do

if ParseCell(Node[tid],Cell[i]) then

| Continue;

end

Nnodes=Cell[i].size;

for j of Nnodesdo

candidate=Cell[i].memberf[j];

if UDG(Node[tid] ,Node[Candidate]) then
Node[tid].neighbor[Node][tid].V]=candidate;
Node[tid].V++;
if(Node[tid].V==MaxNeighbor)Break;

end

end

end
Algorithm 1: The Pseudo-code of the Connectivity WP

pseudo-code of the connectivity WP is summarized in the algorithm 1. Ealgh no
will be identified with its tid and will be executed independently. By calling the
ParseCell function, we apply an optional optimization. Cell is the data steuctur
used to represent the geometric cell and its member which name is "member” con-
tains the ids of the nodes that currently belong to the cell. Using these vatiable
node is able to access to each node contained in a particular cell in ordexdo c
their mutual distance.

215 Packetsservices(PKT)

Packets services manage their exchange between nodes. The notamketf p
can represent any protocol data unit (PDU), which is layer-depgndie simulate
multiple interfaces, a node may have more than one buffer, each of wtsohias
ated with a given interface. Packet services support both send egidaePacket
send service allows a node to write a packet to the selected in-buffer néile-
bor(s). The packet write operation is an atomic operation avoiding the déstin
in-buffer to be over-written, as described in section 2.2.2. It has to be¢ioned
that the sending process adds a simulation header with additional relef@nt in
mation including the timestamps, the sending energy, and antenna charasteristic
(e.g. orientation, type), which is used at the receiver. Packet eeseivice allows
a node to read at most one packet from its in-buffer at each simulation time (i.e

round). However, the in-buffer is capable of receiving up to M ptekem other
nodes at each round. The receiving service determines which mdssage be
read by the node based on the lowest timestamps and/or signal enevgygderim
the simulation header.

2.2 TheMaster Design

The master ensures the simulation correctness, simplifies the framework us-
ability by providing high-level simulation APls, and guarantees the simulation re
producibility. These features are performed via five components detaled b

2.2.1 Hybrid Events Scheduler

Cunetsim events scheduler (CES) implements a conservative approath fo
dependent WPs where we respect a strict order between sequeRsaioneach
node. This model was developed in [19] where the notioiBPool is introduced:

a WP pool,I1; is defined incorporating same WHRor all nodes. For a givefl;,

all P;; processes must end to assert flias achieved. This presents a simple yet
efficient implementation of the coherence and consistency paradigm.In agditio
CES addresses two fundamental scheduling issues: independennWmRs band
and the events sequencing of each WP on the other hand.

(1) Independent WPs concerns typically heterogeneous simulationamd h
pens when nodes are composed of different WPs sequences. . F3jajeshows
a situation where we have two kinds of nodes which implement two independent
WPs: WP2 and WP5. In such case, conservative approach did fivee dedeter-
ministic order between WP2 and WP5 pools. As Cunetsim targets to maximize the
efficiency, in such situation we use an optimistic approach, where both afaie
WP5 pools can be executed in parallel on the GPU.

(2) The sequencing of WP’s events typically happens when the numberex
is not a multiple of the number of nodes. Figure. 3(b) shows one WP compose
of 2 events for 3 nodes and 2 cores. In this figure each event is iddntifie
a triple (WPRid, Eventid, Nodeid). In conservative and optimistic approaches,
the execution of the event (1,2,1) at the same time as (1,1,3) is forbiddenasince
strict order exists. However respecting this order may induce a sigrificesie of
resources (e.g. 25%in this example), while executing both of them at thetisagne
will not impact the correctness of the simulation. In such case, Cunetsiliespp
relaxed approach within the events of each WP’s pool. In this way, thedities
and the events sequencing of each node will be preserved, thus maxiteitzhg
resource usage.

To summarize, the Cunetsim hybrid event scheduler works as following: Th
conservative approach is used for sequential WPs as defined bynthkation
model. The optimistic approach is applied when possible, especially for indepe
dent WPs and independent WPs sequences. Relaxed approached appevent
scheduling into each WP.

LPI__——_____—
Node Type 1| Node Type 2 |TW = e |

| | E(1,1,1) | | E(1,1,2) | [E(1,1,3) } |

| | E(1,2,1) I | E(1,2,2) | [E(1,2,3) } |

2 Cores
Vs
Y- S
@

(a) WPs dependency: while the scheduler (b) Events Conflict: E113 and E121 will
can determine that WP3 threads cannot start be executed at the same time while the
until finishing those of WP2 and WP5, there strict synchronization prohibited

is no strict order between them.

Figure 3: Scheduling Ambiguities

It has to be mentioned that the CES benefits from the GPU hardware $idgedu
capabilities. Indeed, the optimistic approach is achieved using the GigaiBhrea
scheduler (i.e. GPU hardware acceleration), the relaxed approiactiie 4 wrap
schedulers of each SM. The conservative approach is implementedvimsaf

2.2.2 DataAbstraction Layer

Cunetsim data are modeled based on the kernel/flow model. We define sev-
eral flows where each one presents a specific part of the simulationDiata.is
grouped by functionality. Each WP uses one (or more) flow and eacdh masl a
specific box with R/W rights. One node can access foreign data with relaid rig
Flow model is natively used by graphics application to manage the communication
between the GPU and the CPU. We apply a flows loading-offloading meahanis
between the GPU memory (limited and non-extensible) and the principal memory
(larger and extensible). The master manages flows transfer betweernnitipal
memory and the GPU one, such that no WPs will be in famine situation.

The memory management component provides two services: memory alloca-
tion abstraction (MAA) and critical section management (CSM). MAA insties
double allocation of each data flow in both of the RAM and the DRAM. The syn-
chronization of the two copies of the flow is a manual operation which must be
specified by the user. Critical section is a recurrent challenge in casieaoéd
memory between several processes. Software mutual exclusion soksdicmsis
semaphores, mutex and locks are commonly used in CPU context. How&\ér, G
context did not provide such explicit solutions. The problem arises maihinw
two nodes try at the same time to write messages in a third noddsfiar, in
which case we may lose some of them. CSM provides an abstraction of this prob
lem based on CUDA atomic operations: thanks to atomicinc, a node makes an
atomic reservation operation before proceeding to the writing of the mesElaige
operation consists in atomically incrementing the wiitdex, a pointer to a box in
the receiver’s buffer.

2.2.3 Scenario Management

This component ensures the reproducibility of the simulation via a complete
XML layout incorporating five sub-categories: the system, the envirohntlea
network topology, the application configuration and the simulation I/O. This con
cept aims to simplify the interaction between the simulation and the user. The
process applied for cunetsim reflects the same experimentation worktpeged
on [6].

2.3 Common APIs

Common APIs are those shared by the master and the worker and inclade sys
tem/host, Cuda, monitoring and testing tool APIs and libraries. Cuda APl ieslud
the driver and the runtime used to manage the GPU using high level programming
language such as C/C++. Cuda libraries provide an efficient harcwwaeteration
of common libraries such as Math and BLAS libs. The monitoring process is a
CPU-expensive task which may reduce the efficiency of the simulation &md in
duce an important overhead. Since Cunetsim benefits from at least twmutiog
contexts, it could easily offload this process from one simulation contexiditar
depending on the load (e.g. from CPU to GPU or vice versa, or evendnensPU
to another). Cunetsim monitoring provides three APIs as follows:

GPU Monitoring: Each WP uses, in addition to simulation data flows, moni-
toring data flows, where WP instances write their monitoring results (e.g. nrumbe
of messages, processing time, flags). A specific monitoring WP is implemented
and used to process these flows to produce final results. In this appribe
monitoring process is included in the simulation and thus necessarily impacts its
performances, however, the impact can be reduced using dedicated (&ec-
ond GPU). Such approach is appropriate to online monitoring techniquessisin
provides results as soon as they exist.

CPU Monitoring: The monitoring process dumps -in asynchronous mode- the
simulation data flows into the RAM to process them and produces final monitoring
results. The asynchronous dumping operation will not impact the simulatien pe
formance, however, the CPU process must be able to consume thesinflbwes
same speed (or higher) that the simulation produces; otherwise the RAMewill b
saturated. This approach is more appropriate to offline monitoring techsiioce
it can use saved data.

Co-GPU-CPU Monitoring: In this approach, the monitoring process is shared
between GPU and CPU. As in the GPU approach, WPs use monitoring dasa flow
to write raw information, and as in the CPU approach, the CPU process dumps
in asynchronous mode the monitoring flows. This approach impacts moderately
the simulation performance but reduces significantly the size of trandfdata,
making this approach more adequate for a large scale scenario for Hivte and
online monitoring.

2.3.1 TheTester API

The tester API implements a validation component which ensures the simu-
lation correctness, in particular the user-specific implementation for a gien
and its integration with the simulation framework. The basic test consists of im-
plementing the same algorithms, sequentially and in parallel, for both master and
worker. The master tests the process, compares both of their resultalatades
the worker group results. It has to be noted that the testing process igsedyin
developing and debugging mode when the simulation correctness is required

2.4 Hardware Mapping

In this section, we detailed the hardware mapping of the cunetsim’s software
components: First we present the hardware mapping of the fully GPlibreasd
second we describe the CPU-legacy one.

24.1 Fully GPU version

z
g
2

P1

{

P2

._
Monitoring
Data
Collector

Master

Monitoring
LP3 >
i Master
P4 <>
Simulation
Core
GPU Device CPU
Event Scheduler Event Scheduler
Registers Registers
c1 | c2 c3 4 C1 c2 c3 c4 Giga Cc1 c2
s c6 C7 c8 cs 6 C7 8 SI:;Z‘:;
PCI-E
Shared Momory Shared Momory
t t c3 ca

Global Memory

Figure 4: Cunetsim Hardware Mapping

The hardware mapping of the software components is presented in Figure.4
further detailing the CPU-GPU co-simulation. At each time, it can be seen that
each WP is mapped to a GPU core, called scalar processor (SP) wrajtpied
a streaming multiprocessor (SM), while the master processes are mapped to CP
cores. Nodes’ WPs exploit three memory levels: registers, sharedayad mem-
ory. Registers include local variables of each WP instance. Shared mésnor
used as an acceleration cache where a prior knowledge on the datdablava
Global memory is used when WPs communicate (sending messages / reading po
sition) without having a prior knowledge on communicating nodes. It has to be

mentioned that such mapping provides a dedicated execution environmeatfo
node, where inter-WP and node communication is minimized over three memory
stages. As for the Master, it is represented by two processes: (i) thessonicore

and the Data abstraction layer representing the primary process of the,randte

(i) monitoring process in charge of data collection and user interfacesept-

ing the secondary process of the master. This separation maintains arrityf p
order between the primary and the secondary process.

242 CPU-legacy version

Cunetsim architecture is designed for a fully GPU simulation as detailed in sec-
tion 2.4.1. However the GPGPU is a recent discipline and rare are thealaers
which use the GPUs as computing Co-Processors. On the other hanehiGurd
future CPUs are also multi-core and provide interesting features, asdtor par-
allelism. These reasons have convinced us to provide a pure CPU soBitised
on the PGI unified Binary technology [3], we generate a CPU compliasiorer
which parallelizes nodes through the OpenMP API using several thréadsiser
can specify the number of threads in conformity with the CPU capabilities. We
note that the software architecture and code did not change, only thdlatomp
procedure is different. in following, this version will be appointed as @ineLN,
where the last number presents the threads’ number.

3 Comparative Perfor mances Results

To evaluate the real performance of each approach presented imskatider
large scale condition regardless of different models impact, we extencetizhb
marking methodology for network simulators presented on [20] to supdogt w
less and mobility conditions. In this methodology, authors implement identical
node model for all considered simulators. They demonstrate that NS-3i§2]
and Omnet++ have the best performance. However, they did not adddslity
issues and ignored Sinalgo [1], known as a stable simulator on large scale ¢
tions. In the following study, we choose Sinalgo as a representative l28ed
solution while NS-3 is involved as the most optimized public simulator, providing
also a stable distributed version over MPI. The CPU version of cunetsiimchwh
involves 4 CPU cores is a representative case of the partial acceleggieahch
while the GPU version presents the fully GPU approach. The mobility and the
connectivity algorithms are the same as we propose for all simulators. Omhy a s
ple flooding protocol is implemented using equivalent algorithms. We prdpase
benchmark scenarios: The first compares the performance of eadatsirisiker-
nel regardless of the efficiency of implemented models, while the seconelszed
their robustness in mobile conditions. The first scenario models a simple ketwor
where the nodes are arranged in a grid topology as illustrated in Figuleins.
cludes one traffic source which genera@®8 uniform packets withl second of

10

Sender [O

| 15 | Receiver

Figure 5: Simple Grid Topology

inter-departure time. Packet size is fixed to 128 Bytes. All nodes -inclutlieg
source- relay unseen packets after a delaysdcond, thus flooding the totality of
the network. The delay df second models the propagation. Nodes do not provide
any packets management services. Transmission and reliability are modeled o
the channel using a fixed dropping probability which is identical on all lifikee
sender is the node with the lowest identity and the receiver is the one with the hig
est identity. In the second scenario, nodes are mobile. The mobility model is the
random way point with speed uniformly distributed betwéen 5m/s. The max-
imum transmission range, Rmax, 1i80 and the connectivity model is UDG. The
simulation space is a cubic free space whose dimensiori$@de: 1600 x 200 m.
Each node moves before each round and recalculates its connectiviBose of
these scenarios are outlying real networks and include major node simifEa
nevertheless, they have two advantages: they guaranteed a reledaméwral
comparative since they minimize the models’ efficiency impact and they provide a
representative estimation of the computing power needed for such simulations
All simulation runs were conducted using a simple PC including an INTEL i7
940 CPU (4 cores with hyper-threading), 6GB of DDR3 and one GPUz#teorce
460 1GB (336 cores for GPGPU computing). 4 machines are used folighe d
tributed NS-3, interconnected VIA a Gigabyte switch. The OS is Ubuntu Linux
11.10, the Java version is 1.6 and the Nvidia driver version is 285.05.33n€a+
surements were taken using NS-3.13, Sinalgo 10.75.03 and Cunetsim peototy
To validate the model equality, we use the first scenario with all simulatorsawher
we varied the drop probabilities in the interyal 1]. Figure.6 depicts the end-to-
end packet loss repossessed and normalized from different simulgitara the
dropping probability and the network size. All studied simulators produce simila
results.We conclude that our implementations are equivalent -in terms oftotatpu
those of [20]. We evaluate simulators’ efficiency regarding two perfogeanet-
rics: simulation runtime and memory usage. Our results give the average of fiv
executions. The minimal simulation time is sefrti) seconds.

11

M Sinalgo
I CuNetSim
T, w“"ﬁf NS-3
1 Y % ﬁﬁ;ﬂ"’ ;
0.8 v o M
L4 N

Loss 06 b el

0.4 g M .
02 e T ¥ ',.v"""'d:f;"f
0 ”/,/’/d‘ H;L;R;Y!i;"'i;
24000
e . 400
08 ;\'75.’6*“4‘“‘0\[D //,,11‘0"‘ network size
Drop probability 02 "‘“\0—4"‘

Figure 6: End-to-End Packet Loss: Under the same conditions, all simmlato
present equivalent E-TO-E loss, considered as the output

3.1 Simulation runtime

To evaluate the simulation runtime of the concerned simulators, we fixed the
drop probability to0.1 and we increased the network size frdrto 102K nodes.
Section 3.1.1 analyzes the first scenario results while the section 3.1.Zseklre
the second one.

3.1.1 Static Scenario

1000 =

100

H#MM Cunetsim-GPU —a—
ns-3

Sinalgo —e—
ns-3 distributed —+—
Cunetsim-L4

m
3

Simulation runtime

01 e

10 100 1000 10000 100000
Network size

Figure 7: Simulation runtime of the static network: CPU simulators are efficient
on small scale but computing power becomes critical on large scale

Figure. 7 shows the average simulation runtime for each simulator. For small
to medium networks, Cunetsim-L4 is the fastest simulator up to 2000 nodes-and r
mains faster than Sinalgo and NS-3 in all cases. Beyond, Cunetsim (@&ebhles
the most efficient simulator and the deviation is growing with the network size.
Function of the simulators runtime, we distinguish four network size intervals:
small networks [2-50], medium networks [50-200], large network©{2000] and
the very large networks [2000-102000].

12

For small scale Cunetsim-L4 and NS-3 are the most efficient simulators. In
fact, much of NS-3 components use the very high-speed L3 cache ceinpih
much slower RAM while the cunetsim-L4 uses also the L3 cache and all CPU
cores. Cunetsim-GPU is outperformed for two reasons: first the impatataf
transfer between the RAM and the GDRAM is significant, second the GPU is
underused since only few cores are active. For medium scale, battonerof
cunetsim are faster than NS-3. In fact, when the network size increasestsim
uses additional GPU cores. However,the data transfer between the Ré\kha
GDRAM remains significant which allows Cunetsim-L4 to be the fastest solution.
In both intervals, distributed NS-3 suffers from the initial setup load of thd,M
relegating it behind the classic version.

For large scale, sinalgo has successfully overcome NS-3 thanks to its @atimiz
nodes management. However, the distributed version of NS-3 remainsetable
coming easily sinalgo. On the other hand, cunetsim-L4, reaches the CPU limit
while Cunetsim-GPU remains stable in this interval. Finally, for 2000 nodes, both
of Cunetsim-GPU and Cunetsim-L4 need 0.35 second, 80 times faster th&n NS-
and 26 times faster than sinalgo. For very large scale, the power of tnreRU
is revealed, the number of cores involved in the simulation makes the difteasiac
Cunetsim-L4 fails to follow, even if it remains the most efficient CPU-based-simu
lator. For 48K nodes cunetsim needs 5.93 seconds, 3.5 times faster Hesiicu
L4, 22 times faster than sinalgo and 150 times faster than NS-3. It is interesting to
compare in such scale Cunetsim-4L and Distributed NS-3 since both userbke sa
computing power in theory. In fact, Cunetsim-4L overcomes NS-3 due to two ma
jor reasons: first it uses a shared memory synchronization (overNIp)ewhile
NS-3 uses Ethernet (over MPI). Second, The events schedulingigletely dif-
ferent: Cunetsim has a prior knowledge regarding events relationstiig M8-3
has only their timestamps as a scheduling information.

From a theoretical point of view, if we suppose that a CUDA core is,fagaxft
as an i7 core, we can admit that at the same frequency, they are eguivake
our GPU includeg24 effective CUDA cores @676Mhz and our CPU includes
cores @3.6Ghz(overckolecd+ turbo mode), than the maximum theoretindbga
9.46 which is two times higher than what we achieved. This value suggests that
there still exist some interesting optimizations to consider, especially increasing
the GPU use which did not exceed 82% while Cunetsim-L4, NS-3 and sinalgo
saturate the CPU. The SIMD architecture of the GPU implies that we dedicated
the totality of each stream multiprocessor (3 32 nodes until they finished. In
such a situation we allocated resources for all nodes, including inactegwhile
a sequential execution (CPU) did not waste resources.

13

100000

10000

1000

100

10 |

Simulation runtime (s)

1L

CuNetSim —a—

ns-3
ns-3 distributed —+— 7
Sinalgo —=—

01 |

Cunetsim-L4

0.01 L L .
10 100 1000 10000 100000

Network size

Figure 8: Simulation runtime of the mobile network: the complexity of wireless
mobile scenario highlights the limitation of classic approaches under large scale
conditions

3.1.2 Mobile Scenario

Figure. 8 shows the average measured simulation runtime for each simulator.
The mobility imposes the evaluation of nodes connectivity in each round. Once
again, the general behavior of the five simulators is similar to the previods sce
nario. NS-3 is the fastest CPU-based simulator upstmodes and cunetsim-L4
becomes the fastest CPU-based simulator beyond. NS-3 runtime incexases
nentially as a function of network size while Sinalgo and Cunetsim-L4 seem more
robust. The distributed version of NS-3 increases its leeway but did fieénte
the global behavior. Thus, distributed NS-3 remains faster than sinaltm 8Q0
nodes but its computing time becomes unstable further. Cunetsim-L4 runtime re-
mains relatively invariant for small to medium networks, and becomes a functio
of nodes’ number nearby of 1000. Sinalgo presents a quasi-linemeuas a
function of the network size but cannot achieve a very large scale sinmuliatio
realistic time (simulating 48K nodes requires 3552 seconds).

Cunetsim(GPU version) runtime is linear per segment betweand 8000
nodes. For each segment the runtime is almost linear. From this threshold, it
becomes relative to the network size but remains reasonable, evéidfomodes.

In all cases, Cunetsim is extremely faster than all CPU-based simulator$8&or
nodes cunetsim is up .2 times faster than Cunetsim-L4 aRd0 times faster
than sinalgo. NS-3 is unable to compete in such scale. In addition the CPtylega
version presents very interesting results since 28gimes faster than Sinalgo
for the same scale. As the results of the distributed NS-3 prove, distributing th
simulation over several machines is not sufficient in itself but must be cowylk,
either a clever networking partitioning or a specific distributed event steed

'Fermi architecture’ SMs include 32 Cuda cores

14

The higher performance of Cunetsim (in both modes) is due to the simulta-
neous action of four factors.(i)The high parallelism degree of Cunetsihitac-
ture allows efficient use of the GPU computing power and all CPU cores in the
CPU-legacy mode. (ii)The connectivity algorithm was designed and optiniized
be parallel and distributed taking advantage of the largest cores’ nuiih&he
DRAM offers larger bandwidth than the current RAM, theoretically 10 tinaasdr.
(iv)The software scheduling task becomes a critical process in CPidxtpwhile
its overhead is minimized in GPU since it is achieved using dedicated hardware.
Since (iii) and (iv) are not available for the CPU-legacy version, thedéfice be-
tween both versions runtime is growing function of the network size. Fomna ve
large network the GPU version is up 9@ times faster than the CPU one which
proves the interest of using the GPU as a Co-processor.

3.2 Memory usage

1e+008 :
CuNetSim —a—

ns-3
Simat§o —=—

1e+007 T

Memory usage

1e+006
0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Drop probability

Figure 9: Memory usage vs. Drop probability

Figure. 9 shows the maximum used memory during the simulation as a func-
tion of the dropping probability for a fixed network size (3721). We notd tha
both cunetsim versions use exactly the same quantity of RAM then we just men-
tion cunetsim in this section. The drop probability affects the network trafiic a
the number of exchanged messages. Sinalgo presents a slight dedrieassed
memory when the traffic decreases, while NS-3 presents a more flexitdgibeh
and adapts its usage to the network load. Cunetsim uses always the same mem-
ory for a fixed network size because each simulated node has at leafkdéwo
buffers. Sinalgo needs between 20% and 600% more than NS-3 whilés@ane
seems more efficient for large traffic load. We notice, however, thaBX8s a
dynamic memory management process while Cunetsim assigns a fixed buffer f
each node.

15

4 Hardwareimpact

The performance of cunetsim is directly related to the hardware effigiency
however, the GPU on one hand and the CPU on the other hand affepiallye
the simulation performance. This section provides a qualitative and quaetitativ
study of their respective impacts as a function of the number of cores arftkth
guency. We note that we use the first scenario based on the grid tops#otg(3)
since old devices did not support Curand library.

41 GPU Impact
411 Impact of total number of GPU cores

We propose to compare four devices which differ essentially by their numbe
of embedded cores: The 8400GS includes 8 Cuda cores. The FX8&0Mabile
GPU including 48 Cuda cores. The GTX 560 includes 336 Cuda cores thiile
GTX 580 includes 512 one. We varied the network size from 4 to 246K, umneds
the simulation runtime with each of the four devices and reported the results in
Figure. 10. For a small network [4,81], the GPU-CPU data transfeheeaer is
the bottleneck. For a middle-range network [100, 250], the GPUs havinggtime
architecture offer similar performance. As for networks involving more %0
nodes, both 8400GS and FX880M GPUs are overloaded by the computiadinye
and their few cores (8, 48) are no longer able to compete with the GTX 560 an
580 GPUs. The difference between the latter is proportional to their'caregoer.

100000 |
10000

1000

100

Simulation runtime (ms)

10 |

GTX580 —a—
1F GTX560 —»— =
8400GS —=—

FX880M

10 100 1000 10000 100000
Network size

0.1

Figure 10: Simulation runtime of different devices: Naturally, more cores mean
higher efficiency

4.1.2 Impact of GPU frequency

For this experiment, we use three devices (1: GTX460@715 Mhz, 2: GUX4
@763 Mhz (reference) and 3: GTX560 @810 Mhz) where the majorrdiifee is

16

the GPU frequency. We fixed the network size to 246K nodes and welai@du

the runtime of each device. Results are summarized in Figure. 11. The GI'X 56
is 7% faster than the reference device while its frequency exceeds ¥ 6The

first device, is 7.5% slower than the reference one while its frequency & loy
6.71%. These measurements demonstrate that the runtime is proportional to the
frequency of the GPU, however, the frequency evolution is generaitydignifi-

cant and more expensive than the Cores’ number.

95000

CPU: cdres=4, freq=3.06 / GPU: 460, freq=763
CPU: cores=2 mmmmm
CPU: cores=1 mmm
90000 | GPU: 560 mmmm |
GPU: 460, freq=715
CPU: freq=2.4 mm
P CPU: freq=1.6 m==m
85000

80000

Simulation runtime (ms)

75000

70000

Hardware Config

Figure 11: Harware impact for Fully GPU version: neither the CPU fraquaor
the number of CPU-embedded cores has a significant impact

4.2 CPU impact

To evaluate the CPU impact, we distinguish the two versions of cunetsim: The
fully-GPU version where the CPU manages the simulation and the CPU-legacy
one where it achieves the totality of the simulation.

421 fully GPU

To evaluate the sensibility of the fully GPU version to the CPU capabilities,
we fixed the network size to 246K nodes. First we vary the enabled CiRé$ co
from 4 to 1. Second, we reduce its frequency gradually from 3.06 Gh6tGhz.
Results are reported on fig 11 where we can observe that the CPU impett is
proportional to the CPU power:reducing the frequency by 45% implies énhlpb
performance loss.

4.2.2 CPU-legacy version

We conduct 6 series of measurement where we varied the number alghrea
involved in the simulation between 1 and 8. Our CPU is a i7-920 including four
cores with the hyper-threading technology. This means that each cdnle i®&Xx-
ecute two threads. We varied the network size betwlesmd72k nodes. Figure.12

17

summarizes results. As expected, the Cunetsim-L1 runtime is generally the slow-
est one, Cunetsim-L2 presents a gain of 23 % while the Cunetsim-L4 gainus abo
46%. When the number of active threads exceeds the number of physiesl

we observe a relative performance degradation (about 4-5%), thisopienon is
mainly due to concurrence between threads which complicates the schesjing
eration.

Cunetsim-L1 —a—
Cunetsim-L2
10 Cunetsim-L3 —e—
Cunetsim-L4
5 Cunetsim-L6 —e—
Cunetsim-L.8 —=—

0 10000 20000 30000 40000 50000 60000 70000
Network size

Simulation runtime (s)
[
o

Figure 12: CPU Cores’ impact (Legacy): best performance waseeavhen then
number of thread is equal to the number of cores

Based on these results, we conduct 4 series of measurement usingéisi@u
L4 in the same conditions, where we varied the CPU frequency betweeha.6G
and 3.6Ghz. Results are reported on Figure.13. We observe that theitiale is
a function of the CPU frequency. In average, An increase of 30%efr¢lquency,
implies an increase of 20% on the performance. These results demonsitadketh
legacy version depends on the CPU computing power and profits of the rordti-c
capability.

50000
45000
40000
35000
30000 |
25000
20000
15000
10000
5000

Simulation runtime (s)

Cunetsim-L4 1.60Ghz
Cunetsim-L4 2.00Ghz —»—
Cunetsim-L4 2.66Ghz

Cunetsim-L4 3.06Ghz —e—

0 10000 20000 30000 40000 50000 60000 70000
Network size

Figure 13: CPU frequency impact (Legacy): As expected, the runtimedarliyn
related to the CPU frequency

18

5 Discussion

In this section, we briefly discuss three limiting factors of Cunetsim, namely
event scheduler, neighborhood discovering and floating point wacis

Event Scheduler The conservative approach that we use for WPs in Cunetsim
events scheduler presents an efficiency weakness for small neterkie reach

a reasonable efficiency ratio, the network size must be greater thannitenof
GPU cores. Note that current GPU includes ug 360 cores for mono-GPU de-
vices. On the other hand, this approach can induce an important wassoafces

in case of parallelization in CPU context where the number of cores is betivee
ands if we address a small network. However, in large scale scenarios, fee dif
ence between this schedulers and an optimal one will be reduced.

Neighborhood discovering Cunetsim implements an optimized connectivity WP
which aims to minimize the number of comparisons; the optimization is based
on the existence of Rmax. Whatever the wireless technology is, this appsac
adapted to the free space model, but remains relevant for terrains whlakén
obstacles and multi-path channel. In this case, the correctness of the simulatio
will be respected if these variations are taken into account for the calaulatio
Rmax value. It is worth noting that it remains possible to turn off this optimization
at the expense of the simulation runtime.

Floating Point Precision The implementation of the floating point on NVIDIA
device is not fully IEEE compliant. To analyze the difference between a GPU
and CPU implementation, we use the distance computing between two nodes as a
benchmark test and calculate this distance using both, over 1 million of samples.
The difference between each pair of results is less than 0.01%. Depeordihe
scenario, this difference might cause some simulation inaccuracy (e.gnaiha
modeling).

6 Conclusion

New challenges emerge when simulating large scale mobile networks, espe-
cially if we consider the paradigm o€ry large network rather tharthe network of
networks. While network simulation tools are widely used for validation and per-
formance evaluation, their scalability and efficiency remain challenging.e€un
sim aims to unlock the parallel capabilities of the state-of-the-art hardwate a
software architectures to achieve simulation scalability and efficiency witlfisign
cantly lower cost. Cunetsim is the first fully GPU based simulator which previde
a CPU-GPU co-simulation framework for large scale scenarios. In ctintiith
existing GPU acceleration approach, the simulation is fully executed ovelRbe G

19

Further, Cunetsim proposes an efficient solution for the managementrobrye

critical section which presents a real challenge of the GPU programminglmode
Performance results show that the execution time could be radically improved

when GPU parallelism is used to carry out the simulation. In particular, Gonets

is able to achieve up tP60 faster execution time than existing simulators, when

targeting large scale mobile networks. The results also reveal that the gxistin

simulators could be further improved through multi-core parallelism.

Acknowledgments

This paper describes work undertaken in the context of the LOLA andETY
project. The research leading to these results has received fundingtfe Euro-
pean Community’s Seventh Framework Programme under grant agree?@d8093
andn®57616.

References

[1] http://disco.ethz.ch/projects/sinalgo/.
[2] http://lwww.nsnam.org/.
[3] http://www.pgroup.com/resources/unifiedbinary.htm/.

[4] P. Andelfinger, J. Mittag, and H. Hartenstein. Gpu-baasthitectures and their benefit for accurate and
efficient wireless network simulations. MASCOTS, 2011 |EEE 19th International Symposium on, pages
421-424. |EEE, 2011.

[5] S.Baiand D. Nicol. Acceleration of wireless channel siation using gpus. IWMreless Conference (EW),
2010 European, pages 841-848. IEEE, 2010.

[6] B. Bilel, N. Navid, K. R., and B. C. Openairinterface largcale wireless emulation platform and method-
ology. INMSWIM. ACM, 2011.

[7] H. Breu and D. Kirkpatrick. Unit disk graph recognition mp-hard.Computational Geometry, 9(1):3-24,
1998.

[8] E. Chung, E. Nurvitadhi, J. Hoe, B. Falsafi, and K. Mai. t®ftex: Fpga-accelerated hybrid functional
simulator. InIPDPS2007. |EEE International, pages 1-6. IEEE, 2007.

[9] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G. Rild_arge-scale network simulation:
how big? how fast? Ii1th IEEE/ACM MASCOTS2003., pages 116 — 123, oct. 2003.

[10] J. Harri, F. Filali, and C. Bonnet. Mobility models forhkieular ad hoc networks: a survey and taxonomy.
Communications Surveys & Tutorials, |IEEE, 11(4):19-41, 2009.

[11] C.P.Ken Renard and J. Clarke. A performance and scajad¥aluation of the ns-3 distributed scheduler.
The Workshop on ns-3 (WNS3)), 2012.

[12] C. Nvidia. Compute unified device architecture prograngngnoide.NVIDIA: Santa Clara, CA, 2011.

[13] A. Park and R. Fujimoto. Efficient master/worker paratldcrete event simulatior2009 ACMIEEESCS
23rd Workshop on Principles of Advanced and Distributed Smulation, pages 145-152, 2009.

[14] A. Park and R. M. Fujimoto. Parallel discrete event sirtiataon desktop grid computing infrastructures.
International Journal of Smulation and Process Modelling, 5(2):157 — 171, 2009.

[15] H. Park and P. A. Fishwick. An analysis of queuing netwsimulation using gpu-based hardware acceler-
ation. ACM Trans. Model. Comput. Smul., 21(3), Feb. 2011.

[16] K. Perumalla. Discrete-event execution alternativeg@neral purpose graphical processing units (gpgpus).
In Proceedings of the 20th Workshop on Principles of Advanced and Distributed Smulation, pages 74-81.
IEEE Computer Society, 2006.

[17] K. Perumalla, R. Fujimoto, T. McLean, and G. Riley. Expedes applying parallel and interoperable
network simulation techniques in on-line simulations of railjt networks. pages 97-104, 2002.

20

[18] B. Romdhanne and B. Navid. Cunetsim: a new simulation frapnkeor large scale mobile networks. In
Proceedings of the 5th International 1CST Conference on Smulation Tools and Techniques, pages 217-219,
2012.

[19] B.romdhanne Bilel and Navid. Cunetsim: A GPU based sinidestbed for large scale mobile networks.
In The 2nd International Conference on Communications and Information Technology (ICCIT): Wreless
Communications and Sgnal Processing (ICCIT-2012 WCSP), pages 374-378, June 2012.

[20] E. Weingartner, H. Vom Lehn, and K. Wehrle. A performanoenparison of recent network simulators. In
Communications, 2009. ICC’ 09. |EEE International Conference on, pages 1-5. leee, 2009.

21

