
EURECOM
Department of communications mobiles

Campus Sophia Tech
450 route des Chappes

B.P. 193
06410 Biot
FRANCE

Research Report RR-12-268

Hybrid CPU-GPU Distributed Framework for Large Scale
Mobile Networks Simulation

June 5th, 2012
Last update January 7th, 2013

Ben Romdhanne Bilel, Nikaein Navid ,Mohamed Said Mosli Bouksiaa , and
Christian Bonnet

1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco,
Monaco Telecom, Orange, SAP, SFR, STEricsson, Swisscom, Symantec.

i

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {benromdh,nikaeinn,mosli,bonnet}@eurecom.fr

Hybrid CPU-GPU Distributed Framework for Large Scale
Mobile Networks Simulation

Ben Romdhanne Bilel, Nikaein Navid ,Mohamed Said Mosli Bouksiaa , and
Christian Bonnet

Abstract
Most of the existing packet-level simulation tools are designed to per-

form experiments modeling a small to medium scale networks.The main
reason of this limitation is the amount of available computation power and
memory in quasi mono-process simulation environment. To enable efficient
packet-level simulation for large scale scenario, we introduce a new CPU-
GPU co-simulation framework where synchronization and experiment de-
sign are performed on CPU and node’s processes are executed in parallel on
GPU according to the master/worker model [13]. The framework is devel-
oped using Compute-Unified Device Architecture (CUDA) and denoted as
Cunetsim [18], CUDA network simulator. To study the performance gain
when GPU is used, we also introduce the CPU-legacy version ofCunetsim
optimized for multi-core architecture.

In this work, we present Cunetsim architecture, design concept, and fea-
tures. We evaluate the performance of Cunetsim (both versions) compared to
Sinalgo and NS-3 using benchmark scenarios [20]. Evaluation results show
that Cunetsim execution time remains stable and that it achieves significantly
lower computation time than CPU-based simulators for both static and mo-
bile networks with no degradation in the accuracy of the results. We also
study the impact of the hardware configuration on the performance gain and
the simulation correctness.

Cunetsim presents a proof of concept, demonstrating the feasibility of a
fully GPU-based simulation rather than GPU-offloading or partial accelera-
tion, through adequate architecture.

Index Terms

Large Scale; Hybrid simulation; GPGPU; CUDA; Parallel simulation;

Contents

1 Introduction 1

2 The Cunetsim Framework 2
2.1 The Worker Design . 3

2.1.1 Applications (APP) . 3
2.1.2 Protocol stack(PROTO) 4
2.1.3 Mobility (MOB) . 4
2.1.4 Connectivity (CON) . 4
2.1.5 Packets services (PKT) 5

2.2 The Master Design . 6
2.2.1 Hybrid Events Scheduler 6
2.2.2 Data Abstraction Layer 7
2.2.3 Scenario Management 8

2.3 Common APIs . 8
2.3.1 The Tester API . 9

2.4 Hardware Mapping . 9
2.4.1 Fully GPU version . 9
2.4.2 CPU-legacy version . 10

3 Comparative Performances Results 10
3.1 Simulation runtime . 12

3.1.1 Static Scenario . 12
3.1.2 Mobile Scenario . 14

3.2 Memory usage . 15

4 Hardware impact 16
4.1 GPU Impact . 16

4.1.1 Impact of total number of GPU cores 16
4.1.2 Impact of GPU frequency 16

4.2 CPU impact . 17
4.2.1 fully GPU . 17
4.2.2 CPU-legacy version . 17

5 Discussion 19

6 Conclusion 19

v

List of Figures

1 Cunetsim Framework Architecture and Dependency 3
2 MOB WP functioning . 4
3 Scheduling Ambiguities . 7
4 Cunetsim Hardware Mapping . 9
5 Simple Grid Topology . 11
6 End-to-End Packet Loss: Under the same conditions, all simulators

present equivalent E-TO-E loss, considered as the output 12
7 Simulation runtime of the static network: CPU simulators are effi-

cient on small scale but computing power becomes critical on large
scale . 12

8 Simulation runtime of the mobile network: the complexity of wire-
less mobile scenario highlights the limitation of classic approaches
under large scale conditions . 14

9 Memory usage vs. Drop probability 15
10 Simulation runtime of different devices: Naturally, more cores means

higher efficiency . 16
11 Harware impact for Fully GPU version: neither the CPU frequency

nor the number of CPU-embedded cores has a significant impact . 17
12 CPU Cores’ impact (Legacy): best performance was reached when

then number of thread is equal to the number of cores 18
13 CPU frequency impact (Legacy): As expected, the runtime is lin-

early related to the CPU frequency 18

vi

1 Introduction

Packet-level simulators are usually based on a discrete event paradigm where
sequences of events are generated. In general, such events represent mobility, con-
nectivity, channel calculation and in/out packets processing. The time complexity
and memory usage of a simulation are then proportional to the frequency of these
events for the total number of nodes, which represent the main bottleneckswhen
targeting scalability and efficiency. There exists also a trade-off betweenthe ac-
curacy of the models, in particular channel models, and time complexity that has
to be taken into account when targeting large scale simulations. This calls for a
parallel node execution environment with minimal inter-processes communication
overhead [9].

In the literature, there are three major approaches to deal with large scale sim-
ulation: (i) CPU-based parallel & distributed simulation, (ii) Partial acceleration
using specific Co-processor and (iii) The fully GPU approach.

In a CPU-based parallel and distributed simulation [14], the platform may be
federated and includes multiple copies of the same or different simulators (mod-
eling different portions of the network) linked together either sequentially or in
parallel. Such a federated approach makes use of the existing models and provides
a rapid parallelization of existing sequential simulators [17]. However, such ap-
proach introduces a significant overhead due to the synchronization among differ-
ent processes and/or machines and requires sophisticated and expensive simulation
infrastructure [13]. This overhead may increase drastically in mobile environment
if the network topology and machines mapping is not dynamically managed (e.g.
through nodes migration). For the majority of CPU-based simulators, the perfor-
mance degradation happens when a combination of the limiting factors, mobility
rate, number of nodes, and traffic load increases. For the distributed simulators,
such performance degradation happens when the inter-machines communication
increases. A scalability demonstration, based on the distributed NS-3 has carefully
avoided the problem of the interaction between nodes in different simulation ma-
chines [11]. Even if parallel and distributed simulators have crossed a scalability
boundary, they introduce new problems such as the cost of a simulated node, the
strategy of initial nodes distribution and their migration across different machines.

The second approach addresses the question differently, It aims to increase
the efficiency of the simulation locally by offloading the most CPU-intensive part
of the simulation from the CPU to a dedicated co-processor. The FPGA was
widely used as an acceleration solution [8] however, in some recent approaches,
the Graphics Processing Unit (GPU) is used to offload intensive computingtasks
such as channel modeling [5] and queuing [15] within the simulator. Recentstud-
ies of GPUs allow us to utilize the GPU for more general-purpose computation
(GPGPU) [16], or even as a GPU-accelerated simulation architecture when ac-
curacy and runtime performance are both critical [4]. Thus, the GPU hasbe-
come an increasingly attractive alternative to the expensive CPU-based parallelism,
with significant computational power at a relatively low cost. With the advent of

1

the GeForce 8 series GPU in 2006 and the compute unified device architecture
(CUDA) [12], the control of the unified stream processors of GPU is transparent to
the programmer, and CUDA provides an efficient and wealthy environmentto de-
velop parallel codes in a high-level language without the need for graphics-specific
knowledge. Even if this approach reduces significantly the computing time, the
simulation remains principally in the CPU which continues to be the main system
bottleneck in large scale scenarios. Further, a continuous transfer between the GPU
memory and the CPU one presents a serious limitation of such approach.

The third approach aims to realize the simulation entirely on the GPU which
reduce significantly the memory transfer compared to the second approachand
decrease the synchronization latency compared to classic parallel approach. How-
ever, the GPU is not fully X86 compliant and did not support CPU features, needs
a specific software architecture to disclose its power and did not supportmemory
lock mechanism. Because of these limitations, the fully GPU simulation approach
is poorly studied even if it is extremely promising in term of raw performance.
As a proof of concept, we propose to use the GPU as a main simulation environ-
ment and the CPU as a controller, introduced VIA a new CPU-GPU co-simulation
framework denoted as Cunetsim, CUDA Network Simulator. Cunetsim is an ex-
perimental simulation platform allowing validation and experimentation of a novel
approach. As opposed to previous works, Cunetsim is designed to provide an inde-
pendent parallel execution environment for each simulated node. Nodescommu-
nicate with each other only through the message passing based on the buffer ex-
change, thus avoiding the usage of any global knowledge on one hand,and increase
significantly the parallelism level on the the other hand. Furthermore, it exploits
the master/worker model for CPU-GPU co-simulation and provides hybrid syn-
chronization model which maximizes the efficiency and respects the correctness of
the simulation. The simulation exploits the large number of computing cores of
the GPU to execute nodes in parallel and the high speed memory access to reduce
nodes communication latency.

The remainder of the paper is organized as follows. Section 2 presents the
framework architecture and features. Preliminary comparative results are given in
section 3. Detailed study of the hardware configuration impact is summarized in
section4 and we discuss limits of our concept in section 5 followed by concluding
remarks and future directions in section 6.

2 The Cunetsim Framework

Cunetsim framework is designed and implemented following a hardware/ soft-
ware co-design approach to maximize the efficiency. The simulation distributionis
based on the master/ worker model [13] where the master controls the simulation
achieved by the workers group. Figure. 1 summarizes the cunetsim components’
hierarchy through three blocks: the master, the worker and common APIs.

2

Figure 1: Cunetsim Framework Architecture and Dependency

Conceptually, a worker is associated with one node and is therefore composed
of a node’s five Worker Processes (WPs) [6]: (i) the application, (ii) the proto-
col stack, (iii) the mobility, (iv) the connectivity and (v) the packet services.Their
functioning is explained in section 2.1. The master is also composed of five com-
ponents: (i) The hybrid events scheduler, (ii) The data abstraction layer, (iii) The
scenario manager, (iv) The monitoring component and (v) The helper . The de-
tailed implementation is explained in section 2.2. Common APIs regroup those
shared by the master and workers. It includes three components: (i) system API,
including CUDA APIs and libraries, (ii) monitoring API, and (iii) testing API.

2.1 The Worker Design

The Worker implements the simulated node, modeled as a stack of independent
WPs. Nodes communicate through messages passing. Only buffers are exchanged
between nodes to avoid global knowledge. In Cunetsim, each node contains five
ordered WPs described in the following sections.

2.1.1 Applications (APP)

Cunetsim provides a packet-level traffic generator to simulate application data
based on packet size and inter-departure time. Each instance is completely inde-
pendent, allowing the framework to support an important load. The traffic gener-
ator tags the packet as a function of communication type: unicast, multicast and
broadcast, and assumes that such traffic will be processed by the PROTO and PKT
WPs.

3

2.1.2 Protocol stack(PROTO)

implements the node behavior both in control and data planes, which are pro-
tocol or algorithm specific. It may also include additional models required bysuch
a protocol. Cunetsim implements various broadcasting techniques, such as prob-
abilistic, counter-based and location-based. Such implementations supportGPU
parallelism and provide inter-process communication through a buffer exchange,
avoiding simulation global knowledge, to ensure the simulation scalability and ef-
ficiency.

2.1.3 Mobility (MOB)

The MOB calculates a specific movement in the defined space following a mo-
bility model, for each node. We define a generic mobility container, implemented
as a unique CUDA kernel which functioning is explained in Figure.2 . We im-
plement two mobility models:RandomWayPoint andRandomDirection [10] and
three boundary policy models:Annulment of excess, Sliding on the boundaries and
bouncing on the boundaries.

Figure 2: MOB WP functioning

2.1.4 Connectivity (CON)

The connectivity WP identifies all neighbors of the concerned node. Thisprob-
lem is NPC [7]. The complexity of the brute force approach is of the order of
O(N2). In Cunetsim design, we divided the space into geometric cells where the
radius of the cell must be at least the double of the maximum transmission range
(2 ∗ Rmax). In this case each node will find its neighbors in its own cell and in
the neighboring cells. This approach reduces significantly the complexity, which
will be related to the network density. We define a connectivity container, which

4

will call a specific connectivity model (the Unit Disk Graph(UDG) and the Quasi
Unit Disk Graph(QUDG) are available in the first version). This kernel will be in-
stantiated into N GPU threads, where N is the nodes number in the scenario. The

tid=BlockDim.x*blockIdx.x+threadIdx.x;
MyCell=Node[tid].Cellid;
NeighborCell=Cell[MyCell].Neighbor;
for i of NeighborCell do

if ParseCell(Node[tid],Cell[i]) then
Continue;

end
Nnodes=Cell[i].size;
for j of Nnodes do

candidate=Cell[i].member[j];
if UDG(Node[tid],Node[Candidate]) then

Node[tid].neighbor[Node[tid].V]=candidate;
Node[tid].V++;
if(Node[tid].V==MaxNeighbor)Break;

end
end

end
Algorithm 1: The Pseudo-code of the Connectivity WP

pseudo-code of the connectivity WP is summarized in the algorithm 1. Each node
will be identified with its tid and will be executed independently. By calling the
ParseCell function, we apply an optional optimization. Cell is the data structure
used to represent the geometric cell and its member which name is ”member” con-
tains the ids of the nodes that currently belong to the cell. Using these variables, a
node is able to access to each node contained in a particular cell in order to check
their mutual distance.

2.1.5 Packets services (PKT)

Packets services manage their exchange between nodes. The notion of packet
can represent any protocol data unit (PDU), which is layer-dependent. To simulate
multiple interfaces, a node may have more than one buffer, each of which associ-
ated with a given interface. Packet services support both send and receive. Packet
send service allows a node to write a packet to the selected in-buffer of theneigh-
bor(s). The packet write operation is an atomic operation avoiding the destination
in-buffer to be over-written, as described in section 2.2.2. It has to be mentioned
that the sending process adds a simulation header with additional relevant infor-
mation including the timestamps, the sending energy, and antenna characteristics
(e.g. orientation, type), which is used at the receiver. Packet receive service allows
a node to read at most one packet from its in-buffer at each simulation time (i.e.

5

round). However, the in-buffer is capable of receiving up to M packets from other
nodes at each round. The receiving service determines which messagehas to be
read by the node based on the lowest timestamps and/or signal energy derived from
the simulation header.

2.2 The Master Design

The master ensures the simulation correctness, simplifies the framework us-
ability by providing high-level simulation APIs, and guarantees the simulation re-
producibility. These features are performed via five components detailed below:

2.2.1 Hybrid Events Scheduler

Cunetsim events scheduler (CES) implements a conservative approach for all
dependent WPs where we respect a strict order between sequential WPs for each
node. This model was developed in [19] where the notion ofWP Pool is introduced:
a WP pool,Πi is defined incorporating same WPj for all nodes. For a givenΠi,
all Pij processes must end to assert thatΠ is achieved. This presents a simple yet
efficient implementation of the coherence and consistency paradigm.In addition,
CES addresses two fundamental scheduling issues: independent WPs on one hand
and the events sequencing of each WP on the other hand.

(1) Independent WPs concerns typically heterogeneous simulation and hap-
pens when nodes are composed of different WPs sequences. Figure. 3(a) shows
a situation where we have two kinds of nodes which implement two independent
WPs: WP2 and WP5. In such case, conservative approach did not define a deter-
ministic order between WP2 and WP5 pools. As Cunetsim targets to maximize the
efficiency, in such situation we use an optimistic approach, where both of WP2 and
WP5 pools can be executed in parallel on the GPU.

(2) The sequencing of WP’s events typically happens when the number ofcores
is not a multiple of the number of nodes. Figure. 3(b) shows one WP composed
of 2 events for 3 nodes and 2 cores. In this figure each event is identified by
a triple (WPid, Event id, Nodeid). In conservative and optimistic approaches,
the execution of the event (1,2,1) at the same time as (1,1,3) is forbidden sincea
strict order exists. However respecting this order may induce a significant waste of
resources (e.g. 25%in this example), while executing both of them at the sametime
will not impact the correctness of the simulation. In such case, Cunetsim applies a
relaxed approach within the events of each WP’s pool. In this way, the WPsorder
and the events sequencing of each node will be preserved, thus maximizingtotal
resource usage.

To summarize, the Cunetsim hybrid event scheduler works as following: The
conservative approach is used for sequential WPs as defined by the simulation
model. The optimistic approach is applied when possible, especially for indepen-
dent WPs and independent WPs sequences. Relaxed approach is applied for event
scheduling into each WP.

6

(a) WPs dependency: while the scheduler
can determine that WP3 threads cannot start
until finishing those of WP2 and WP5, there
is no strict order between them.

(b) Events Conflict: E113 and E121 will
be executed at the same time while the
strict synchronization prohibited

Figure 3: Scheduling Ambiguities

It has to be mentioned that the CES benefits from the GPU hardware scheduling
capabilities. Indeed, the optimistic approach is achieved using the GigaThreads
scheduler (i.e. GPU hardware acceleration), the relaxed approach using the 4 wrap
schedulers of each SM. The conservative approach is implemented in software.

2.2.2 Data Abstraction Layer

Cunetsim data are modeled based on the kernel/flow model. We define sev-
eral flows where each one presents a specific part of the simulation data.Data is
grouped by functionality. Each WP uses one (or more) flow and each node has a
specific box with R/W rights. One node can access foreign data with read right.
Flow model is natively used by graphics application to manage the communication
between the GPU and the CPU. We apply a flows loading-offloading mechanism
between the GPU memory (limited and non-extensible) and the principal memory
(larger and extensible). The master manages flows transfer between the principal
memory and the GPU one, such that no WPs will be in famine situation.

The memory management component provides two services: memory alloca-
tion abstraction (MAA) and critical section management (CSM). MAA insuresthe
double allocation of each data flow in both of the RAM and the DRAM. The syn-
chronization of the two copies of the flow is a manual operation which must be
specified by the user. Critical section is a recurrent challenge in case ofshared
memory between several processes. Software mutual exclusion solutionssuch as
semaphores, mutex and locks are commonly used in CPU context. However, GPU
context did not provide such explicit solutions. The problem arises mainly when
two nodes try at the same time to write messages in a third node’s inbuffer, in
which case we may lose some of them. CSM provides an abstraction of this prob-
lem based on CUDA atomic operations: thanks to atomicInc, a node makes an
atomic reservation operation before proceeding to the writing of the message. This
operation consists in atomically incrementing the writeindex, a pointer to a box in
the receiver’s buffer.

7

2.2.3 Scenario Management

This component ensures the reproducibility of the simulation via a complete
XML layout incorporating five sub-categories: the system, the environment, the
network topology, the application configuration and the simulation I/O. This con-
cept aims to simplify the interaction between the simulation and the user. The
process applied for cunetsim reflects the same experimentation workflow proposed
on [6].

2.3 Common APIs

Common APIs are those shared by the master and the worker and include sys-
tem/host, Cuda, monitoring and testing tool APIs and libraries. Cuda API includes
the driver and the runtime used to manage the GPU using high level programming
language such as C/C++. Cuda libraries provide an efficient hardwareacceleration
of common libraries such as Math and BLAS libs. The monitoring process is a
CPU-expensive task which may reduce the efficiency of the simulation and intro-
duce an important overhead. Since Cunetsim benefits from at least two computing
contexts, it could easily offload this process from one simulation context to another
depending on the load (e.g. from CPU to GPU or vice versa, or even fromone GPU
to another). Cunetsim monitoring provides three APIs as follows:

GPU Monitoring: Each WP uses, in addition to simulation data flows, moni-
toring data flows, where WP instances write their monitoring results (e.g. number
of messages, processing time, flags). A specific monitoring WP is implemented
and used to process these flows to produce final results. In this approach, the
monitoring process is included in the simulation and thus necessarily impacts its
performances, however, the impact can be reduced using dedicated device (sec-
ond GPU). Such approach is appropriate to online monitoring techniques since it
provides results as soon as they exist.

CPU Monitoring: The monitoring process dumps -in asynchronous mode- the
simulation data flows into the RAM to process them and produces final monitoring
results. The asynchronous dumping operation will not impact the simulation per-
formance, however, the CPU process must be able to consume these flowsin the
same speed (or higher) that the simulation produces; otherwise the RAM will be
saturated. This approach is more appropriate to offline monitoring techniquesince
it can use saved data.

Co-GPU-CPU Monitoring: In this approach, the monitoring process is shared
between GPU and CPU. As in the GPU approach, WPs use monitoring data flows
to write raw information, and as in the CPU approach, the CPU process dumps
in asynchronous mode the monitoring flows. This approach impacts moderately
the simulation performance but reduces significantly the size of transferred data,
making this approach more adequate for a large scale scenario for both offline and
online monitoring.

8

2.3.1 The Tester API

The tester API implements a validation component which ensures the simu-
lation correctness, in particular the user-specific implementation for a givenWP
and its integration with the simulation framework. The basic test consists of im-
plementing the same algorithms, sequentially and in parallel, for both master and
worker. The master tests the process, compares both of their results and validates
the worker group results. It has to be noted that the testing process is onlyused in
developing and debugging mode when the simulation correctness is required.

2.4 Hardware Mapping

In this section, we detailed the hardware mapping of the cunetsim’s software
components: First we present the hardware mapping of the fully GPU version and
second we describe the CPU-legacy one.

2.4.1 Fully GPU version

Figure 4: Cunetsim Hardware Mapping

The hardware mapping of the software components is presented in Figure.4,
further detailing the CPU-GPU co-simulation. At each time, it can be seen that
each WP is mapped to a GPU core, called scalar processor (SP) wrappedwithin
a streaming multiprocessor (SM), while the master processes are mapped to CPU
cores. Nodes’ WPs exploit three memory levels: registers, shared and global mem-
ory. Registers include local variables of each WP instance. Shared memory is
used as an acceleration cache where a prior knowledge on the data is available.
Global memory is used when WPs communicate (sending messages / reading po-
sition) without having a prior knowledge on communicating nodes. It has to be

9

mentioned that such mapping provides a dedicated execution environment for each
node, where inter-WP and node communication is minimized over three memory
stages. As for the Master, it is represented by two processes: (i) the simulation core
and the Data abstraction layer representing the primary process of the master, and
(ii) monitoring process in charge of data collection and user interface represent-
ing the secondary process of the master. This separation maintains a strict priority
order between the primary and the secondary process.

2.4.2 CPU-legacy version

Cunetsim architecture is designed for a fully GPU simulation as detailed in sec-
tion 2.4.1. However the GPGPU is a recent discipline and rare are the data-centers
which use the GPUs as computing Co-Processors. On the other hand, Current and
future CPUs are also multi-core and provide interesting features, as the vector par-
allelism. These reasons have convinced us to provide a pure CPU solution.Based
on the PGI unified Binary technology [3], we generate a CPU compliant version
which parallelizes nodes through the OpenMP API using several threads. The user
can specify the number of threads in conformity with the CPU capabilities. We
note that the software architecture and code did not change, only the compilation
procedure is different. in following, this version will be appointed as Cunetsim-LN,
where the last number presents the threads’ number.

3 Comparative Performances Results

To evaluate the real performance of each approach presented in section 1 under
large scale condition regardless of different models impact, we extend the bench-
marking methodology for network simulators presented on [20] to support wire-
less and mobility conditions. In this methodology, authors implement identical
node model for all considered simulators. They demonstrate that NS-3 [2], Jist
and Omnet++ have the best performance. However, they did not address mobility
issues and ignored Sinalgo [1], known as a stable simulator on large scale condi-
tions. In the following study, we choose Sinalgo as a representative CPU-based
solution while NS-3 is involved as the most optimized public simulator, providing
also a stable distributed version over MPI. The CPU version of cunetsim, which
involves 4 CPU cores is a representative case of the partial acceleratedapproach
while the GPU version presents the fully GPU approach. The mobility and the
connectivity algorithms are the same as we propose for all simulators. Only a sim-
ple flooding protocol is implemented using equivalent algorithms. We proposetwo
benchmark scenarios: The first compares the performance of each simulator’s ker-
nel regardless of the efficiency of implemented models, while the second addresses
their robustness in mobile conditions. The first scenario models a simple network,
where the nodes are arranged in a grid topology as illustrated in Figure. 5.It in-
cludes one traffic source which generates600 uniform packets with1 second of

10

Figure 5: Simple Grid Topology

inter-departure time. Packet size is fixed to 128 Bytes. All nodes -includingthe
source- relay unseen packets after a delay of1 second, thus flooding the totality of
the network. The delay of1 second models the propagation. Nodes do not provide
any packets management services. Transmission and reliability are modeled on
the channel using a fixed dropping probability which is identical on all links.The
sender is the node with the lowest identity and the receiver is the one with the high-
est identity. In the second scenario, nodes are mobile. The mobility model is the
random way point with speed uniformly distributed between1− 5m/s. The max-
imum transmission range, Rmax, is100 and the connectivity model is UDG. The
simulation space is a cubic free space whose dimensions are1600 ∗ 1600 ∗ 200 m.
Each node moves before each round and recalculates its connectivity set. Both of
these scenarios are outlying real networks and include major node simplifications
nevertheless, they have two advantages: they guaranteed a relevant and neutral
comparative since they minimize the models’ efficiency impact and they provide a
representative estimation of the computing power needed for such simulations.

All simulation runs were conducted using a simple PC including an INTEL i7
940 CPU (4 cores with hyper-threading), 6GB of DDR3 and one GPU: theGeForce
460 1GB (336 cores for GPGPU computing). 4 machines are used for the dis-
tributed NS-3, interconnected VIA a Gigabyte switch. The OS is Ubuntu Linux
11.10, the Java version is 1.6 and the Nvidia driver version is 285.05.33. Our mea-
surements were taken using NS-3.13, Sinalgo 10.75.03 and Cunetsim prototype.
To validate the model equality, we use the first scenario with all simulators where
we varied the drop probabilities in the interval[0, 1]. Figure.6 depicts the end-to-
end packet loss repossessed and normalized from different simulators, given the
dropping probability and the network size. All studied simulators produce similar
results.We conclude that our implementations are equivalent -in terms of output- to
those of [20]. We evaluate simulators’ efficiency regarding two performance met-
rics: simulation runtime and memory usage. Our results give the average of five
executions. The minimal simulation time is set to700 seconds.

11

Figure 6: End-to-End Packet Loss: Under the same conditions, all simulators
present equivalent E-TO-E loss, considered as the output

3.1 Simulation runtime

To evaluate the simulation runtime of the concerned simulators, we fixed the
drop probability to0.1 and we increased the network size from4 to 102K nodes.
Section 3.1.1 analyzes the first scenario results while the section 3.1.2 addresses
the second one.

3.1.1 Static Scenario

Figure 7: Simulation runtime of the static network: CPU simulators are efficient
on small scale but computing power becomes critical on large scale

Figure. 7 shows the average simulation runtime for each simulator. For small
to medium networks, Cunetsim-L4 is the fastest simulator up to 2000 nodes and re-
mains faster than Sinalgo and NS-3 in all cases. Beyond, Cunetsim (GPU) becomes
the most efficient simulator and the deviation is growing with the network size.
Function of the simulators runtime, we distinguish four network size intervals:
small networks [2-50], medium networks [50-200], large networks [200-2000] and
the very large networks [2000-102000].

12

For small scale Cunetsim-L4 and NS-3 are the most efficient simulators. In
fact, much of NS-3 components use the very high-speed L3 cache compared with
much slower RAM while the cunetsim-L4 uses also the L3 cache and all CPU
cores. Cunetsim-GPU is outperformed for two reasons: first the impact ofdata
transfer between the RAM and the GDRAM is significant, second the GPU is
underused since only few cores are active. For medium scale, both versions of
cunetsim are faster than NS-3. In fact, when the network size increases, cunetsim
uses additional GPU cores. However,the data transfer between the RAM and the
GDRAM remains significant which allows Cunetsim-L4 to be the fastest solution.
In both intervals, distributed NS-3 suffers from the initial setup load of the MPI,
relegating it behind the classic version.

For large scale, sinalgo has successfully overcome NS-3 thanks to its optimized
nodes management. However, the distributed version of NS-3 remains stableover-
coming easily sinalgo. On the other hand, cunetsim-L4, reaches the CPU limit
while Cunetsim-GPU remains stable in this interval. Finally, for 2000 nodes, both
of Cunetsim-GPU and Cunetsim-L4 need 0.35 second, 80 times faster than NS-3
and 26 times faster than sinalgo. For very large scale, the power of cunetsim-GPU
is revealed, the number of cores involved in the simulation makes the difference and
Cunetsim-L4 fails to follow, even if it remains the most efficient CPU-based simu-
lator. For 48K nodes cunetsim needs 5.93 seconds, 3.5 times faster than cunetsim-
L4, 22 times faster than sinalgo and 150 times faster than NS-3. It is interesting to
compare in such scale Cunetsim-4L and Distributed NS-3 since both use the same
computing power in theory. In fact, Cunetsim-4L overcomes NS-3 due to two ma-
jor reasons: first it uses a shared memory synchronization (over OpenMP) while
NS-3 uses Ethernet (over MPI). Second, The events scheduling is completely dif-
ferent: Cunetsim has a prior knowledge regarding events relationship while NS-3
has only their timestamps as a scheduling information.

From a theoretical point of view, if we suppose that a CUDA core is, as efficient
as an i7 core, we can admit that at the same frequency, they are equivalent. As
our GPU includes224 effective CUDA cores @676Mhz and our CPU includes4
cores @3.6Ghz(overckolecd+ turbo mode), than the maximum theoretical gain is
9.46 which is two times higher than what we achieved. This value suggests that
there still exist some interesting optimizations to consider, especially increasing
the GPU use which did not exceed 82% while Cunetsim-L4, NS-3 and sinalgo
saturate the CPU. The SIMD architecture of the GPU implies that we dedicated
the totality of each stream multiprocessor (SM)1 to 32 nodes until they finished. In
such a situation we allocated resources for all nodes, including inactive ones while
a sequential execution (CPU) did not waste resources.

13

Figure 8: Simulation runtime of the mobile network: the complexity of wireless
mobile scenario highlights the limitation of classic approaches under large scale
conditions

3.1.2 Mobile Scenario

Figure. 8 shows the average measured simulation runtime for each simulator.
The mobility imposes the evaluation of nodes connectivity in each round. Once
again, the general behavior of the five simulators is similar to the previous sce-
nario. NS-3 is the fastest CPU-based simulator up to36 nodes and cunetsim-L4
becomes the fastest CPU-based simulator beyond. NS-3 runtime increasesexpo-
nentially as a function of network size while Sinalgo and Cunetsim-L4 seem more
robust. The distributed version of NS-3 increases its leeway but did not influence
the global behavior. Thus, distributed NS-3 remains faster than sinalgo upto 800
nodes but its computing time becomes unstable further. Cunetsim-L4 runtime re-
mains relatively invariant for small to medium networks, and becomes a function
of nodes’ number nearby of 1000. Sinalgo presents a quasi-linear runtime as a
function of the network size but cannot achieve a very large scale simulation in
realistic time (simulating 48K nodes requires 3552 seconds).

Cunetsim(GPU version) runtime is linear per segment between4 and 8000
nodes. For each segment the runtime is almost linear. From this threshold, it
becomes relative to the network size but remains reasonable, even for100K nodes.
In all cases, Cunetsim is extremely faster than all CPU-based simulators. For48k
nodes cunetsim is up to9.2 times faster than Cunetsim-L4 and260 times faster
than sinalgo. NS-3 is unable to compete in such scale. In addition the CPU-legacy
version presents very interesting results since it is28 times faster than Sinalgo
for the same scale. As the results of the distributed NS-3 prove, distributing the
simulation over several machines is not sufficient in itself but must be coupled with,
either a clever networking partitioning or a specific distributed event scheduler.

1Fermi architecture’ SMs include 32 Cuda cores

14

The higher performance of Cunetsim (in both modes) is due to the simulta-
neous action of four factors.(i)The high parallelism degree of Cunetsim architec-
ture allows efficient use of the GPU computing power and all CPU cores in the
CPU-legacy mode. (ii)The connectivity algorithm was designed and optimizedto
be parallel and distributed taking advantage of the largest cores’ number. (iii)The
DRAM offers larger bandwidth than the current RAM, theoretically 10 times faster.
(iv)The software scheduling task becomes a critical process in CPU context, while
its overhead is minimized in GPU since it is achieved using dedicated hardware.
Since (iii) and (iv) are not available for the CPU-legacy version, the difference be-
tween both versions runtime is growing function of the network size. For a very
large network the GPU version is up to9.2 times faster than the CPU one which
proves the interest of using the GPU as a Co-processor.

3.2 Memory usage

Figure 9: Memory usage vs. Drop probability

Figure. 9 shows the maximum used memory during the simulation as a func-
tion of the dropping probability for a fixed network size (3721). We note that
both cunetsim versions use exactly the same quantity of RAM then we just men-
tion cunetsim in this section. The drop probability affects the network traffic and
the number of exchanged messages. Sinalgo presents a slight decreaseof its used
memory when the traffic decreases, while NS-3 presents a more flexible behavior
and adapts its usage to the network load. Cunetsim uses always the same mem-
ory for a fixed network size because each simulated node has at least twofixed
buffers. Sinalgo needs between 20% and 600% more than NS-3 while Cunetsim
seems more efficient for large traffic load. We notice, however, that NS-3 has a
dynamic memory management process while Cunetsim assigns a fixed buffer for
each node.

15

4 Hardware impact

The performance of cunetsim is directly related to the hardware efficiency,
however, the GPU on one hand and the CPU on the other hand affect unequally
the simulation performance. This section provides a qualitative and quantitative
study of their respective impacts as a function of the number of cores and the fre-
quency. We note that we use the first scenario based on the grid topology(section3)
since old devices did not support Curand library.

4.1 GPU Impact

4.1.1 Impact of total number of GPU cores

We propose to compare four devices which differ essentially by their number
of embedded cores: The 8400GS includes 8 Cuda cores. The FX880M isa mobile
GPU including 48 Cuda cores. The GTX 560 includes 336 Cuda cores whilethe
GTX 580 includes 512 one. We varied the network size from 4 to 246K, measured
the simulation runtime with each of the four devices and reported the results in
Figure. 10. For a small network [4,81], the GPU-CPU data transfer overhead is
the bottleneck. For a middle-range network [100, 250], the GPUs having the same
architecture offer similar performance. As for networks involving more than 250
nodes, both 8400GS and FX880M GPUs are overloaded by the computationcharge
and their few cores (8, 48) are no longer able to compete with the GTX 560 and
580 GPUs. The difference between the latter is proportional to their cores’ number.

Figure 10: Simulation runtime of different devices: Naturally, more cores means
higher efficiency

4.1.2 Impact of GPU frequency

For this experiment, we use three devices (1: GTX460@715 Mhz, 2: GTX460
@763 Mhz (reference) and 3: GTX560 @810 Mhz) where the major difference is

16

the GPU frequency. We fixed the network size to 246K nodes and we calculated
the runtime of each device. Results are summarized in Figure. 11. The GTX 560
is 7% faster than the reference device while its frequency exceeds by 6.15%. The
first device, is 7.5% slower than the reference one while its frequency is lower by
6.71%. These measurements demonstrate that the runtime is proportional to the
frequency of the GPU, however, the frequency evolution is generally less signifi-
cant and more expensive than the Cores’ number.

Figure 11: Harware impact for Fully GPU version: neither the CPU frequency nor
the number of CPU-embedded cores has a significant impact

4.2 CPU impact

To evaluate the CPU impact, we distinguish the two versions of cunetsim: The
fully-GPU version where the CPU manages the simulation and the CPU-legacy
one where it achieves the totality of the simulation.

4.2.1 fully GPU

To evaluate the sensibility of the fully GPU version to the CPU capabilities,
we fixed the network size to 246K nodes. First we vary the enabled CPU cores
from 4 to 1. Second, we reduce its frequency gradually from 3.06 Ghz to1.6 Ghz.
Results are reported on fig 11 where we can observe that the CPU impact isnot
proportional to the CPU power:reducing the frequency by 45% implies only 5% of
performance loss.

4.2.2 CPU-legacy version

We conduct 6 series of measurement where we varied the number of threads
involved in the simulation between 1 and 8. Our CPU is a i7-920 including four
cores with the hyper-threading technology. This means that each core is able to ex-
ecute two threads. We varied the network size between4 and72k nodes. Figure.12

17

summarizes results. As expected, the Cunetsim-L1 runtime is generally the slow-
est one, Cunetsim-L2 presents a gain of 23 % while the Cunetsim-L4 gain is about
46%. When the number of active threads exceeds the number of physicalcores,
we observe a relative performance degradation (about 4-5%), this phenomenon is
mainly due to concurrence between threads which complicates the schedulingop-
eration.

Figure 12: CPU Cores’ impact (Legacy): best performance was reached when then
number of thread is equal to the number of cores

Based on these results, we conduct 4 series of measurement using the Cunetsim-
L4 in the same conditions, where we varied the CPU frequency between 1.6Ghz
and 3.6Ghz. Results are reported on Figure.13. We observe that the totalruntime is
a function of the CPU frequency. In average, An increase of 30% on the frequency,
implies an increase of 20% on the performance. These results demonstrate that the
legacy version depends on the CPU computing power and profits of the multi-core
capability.

Figure 13: CPU frequency impact (Legacy): As expected, the runtime is linearly
related to the CPU frequency

18

5 Discussion

In this section, we briefly discuss three limiting factors of Cunetsim, namely
event scheduler, neighborhood discovering and floating point precision.

Event Scheduler The conservative approach that we use for WPs in Cunetsim
events scheduler presents an efficiency weakness for small network size. To reach
a reasonable efficiency ratio, the network size must be greater than the number of
GPU cores. Note that current GPU includes up to1500 cores for mono-GPU de-
vices. On the other hand, this approach can induce an important waste of resources
in case of parallelization in CPU context where the number of cores is between 4
and8 if we address a small network. However, in large scale scenarios, the differ-
ence between this schedulers and an optimal one will be reduced.

Neighborhood discovering Cunetsim implements an optimized connectivity WP
which aims to minimize the number of comparisons; the optimization is based
on the existence of Rmax. Whatever the wireless technology is, this approach is
adapted to the free space model, but remains relevant for terrains which include
obstacles and multi-path channel. In this case, the correctness of the simulation
will be respected if these variations are taken into account for the calculation of
Rmax value. It is worth noting that it remains possible to turn off this optimization
at the expense of the simulation runtime.

Floating Point Precision The implementation of the floating point on NVIDIA
device is not fully IEEE compliant. To analyze the difference between a GPU
and CPU implementation, we use the distance computing between two nodes as a
benchmark test and calculate this distance using both, over 1 million of samples.
The difference between each pair of results is less than 0.01%. Depending on the
scenario, this difference might cause some simulation inaccuracy (e.g. channel
modeling).

6 Conclusion

New challenges emerge when simulating large scale mobile networks, espe-
cially if we consider the paradigm ofvery large network rather thanthe network of
networks. While network simulation tools are widely used for validation and per-
formance evaluation, their scalability and efficiency remain challenging. Cunet-
sim aims to unlock the parallel capabilities of the state-of-the-art hardware and
software architectures to achieve simulation scalability and efficiency with signifi-
cantly lower cost. Cunetsim is the first fully GPU based simulator which provides
a CPU-GPU co-simulation framework for large scale scenarios. In contrast with
existing GPU acceleration approach, the simulation is fully executed over the GPU.

19

Further, Cunetsim proposes an efficient solution for the management of memory
critical section which presents a real challenge of the GPU programming model.

Performance results show that the execution time could be radically improved
when GPU parallelism is used to carry out the simulation. In particular, Cunetsim
is able to achieve up to260 faster execution time than existing simulators, when
targeting large scale mobile networks. The results also reveal that the existing
simulators could be further improved through multi-core parallelism.

Acknowledgments

This paper describes work undertaken in the context of the LOLA and CONECT
project. The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme under grant agreementno248993
andno57616.

References
[1] http://disco.ethz.ch/projects/sinalgo/.

[2] http://www.nsnam.org/.

[3] http://www.pgroup.com/resources/unifiedbinary.htm/.

[4] P. Andelfinger, J. Mittag, and H. Hartenstein. Gpu-basedarchitectures and their benefit for accurate and
efficient wireless network simulations. InMASCOTS, 2011 IEEE 19th International Symposium on, pages
421–424. IEEE, 2011.

[5] S. Bai and D. Nicol. Acceleration of wireless channel simulation using gpus. InWireless Conference (EW),
2010 European, pages 841–848. IEEE, 2010.

[6] B. Bilel, N. Navid, K. R., and B. C. Openairinterface large-scale wireless emulation platform and method-
ology. InMSWIM. ACM, 2011.

[7] H. Breu and D. Kirkpatrick. Unit disk graph recognition is np-hard.Computational Geometry, 9(1):3–24,
1998.

[8] E. Chung, E. Nurvitadhi, J. Hoe, B. Falsafi, and K. Mai. Protoflex: Fpga-accelerated hybrid functional
simulator. InIPDPS 2007. IEEE International, pages 1–6. IEEE, 2007.

[9] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G. Riley. Large-scale network simulation:
how big? how fast? In11th IEEE/ACM MASCOTS 2003., pages 116 – 123, oct. 2003.

[10] J. Harri, F. Filali, and C. Bonnet. Mobility models for vehicular ad hoc networks: a survey and taxonomy.
Communications Surveys & Tutorials, IEEE, 11(4):19–41, 2009.

[11] C. P. Ken Renard and J. Clarke. A performance and scalability evaluation of the ns-3 distributed scheduler.
The Workshop on ns-3 (WNS3)), 2012.

[12] C. Nvidia. Compute unified device architecture programming guide.NVIDIA: Santa Clara, CA, 2011.

[13] A. Park and R. Fujimoto. Efficient master/worker paralleldiscrete event simulation.2009 ACMIEEESCS
23rd Workshop on Principles of Advanced and Distributed Simulation, pages 145–152, 2009.

[14] A. Park and R. M. Fujimoto. Parallel discrete event simulation on desktop grid computing infrastructures.
International Journal of Simulation and Process Modelling, 5(2):157 – 171, 2009.

[15] H. Park and P. A. Fishwick. An analysis of queuing network simulation using gpu-based hardware acceler-
ation. ACM Trans. Model. Comput. Simul., 21(3), Feb. 2011.

[16] K. Perumalla. Discrete-event execution alternatives on general purpose graphical processing units (gpgpus).
In Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation, pages 74–81.
IEEE Computer Society, 2006.

[17] K. Perumalla, R. Fujimoto, T. McLean, and G. Riley. Experiences applying parallel and interoperable
network simulation techniques in on-line simulations of military networks. pages 97–104, 2002.

20

[18] B. Romdhanne and B. Navid. Cunetsim: a new simulation framework for large scale mobile networks. In
Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques, pages 217–219,
2012.

[19] B. romdhanne Bilel and Navid. Cunetsim: A GPU based simulation testbed for large scale mobile networks.
In The 2nd International Conference on Communications and Information Technology (ICCIT): Wireless
Communications and Signal Processing (ICCIT-2012 WCSP), pages 374–378, June 2012.

[20] E. Weingartner, H. Vom Lehn, and K. Wehrle. A performancecomparison of recent network simulators. In
Communications, 2009. ICC’09. IEEE International Conference on, pages 1–5. Ieee, 2009.

21

