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Abstract | We propose a low-complexity space-time

architecture based on diagonal interleaving of a single

trellis code and on a PSP receiver that makes use of

predecisions on the surviving paths of the Viterbi al-

gorithm in a decision-feedback scheme. Forward and

backward �lters of the decision-feedback front-end are

designed either according to the ZF or to the MMSE

criterion. Then, we develope an approximated union-

bound semi-analythic performance analysis technique

based on multivariate weight enumerators, by assum-

ing perfect decisions in the feedback. The FER evalu-

ated in this way is in very good agreement with com-

puter simulations of the true PSP scheme.

I. Introduction

Multiple antenna transmission/reception has been recog-

nized as one of the most promising ways of enhancing the

spectral e�ciency of wireless links. Information theoretic re-

sults can be found in a very large number of recent papers (see

for example [14, 5, 9, 1, 10], and the references therein). These

works study the capacity of multiple antenna channels under

di�erent assumptions on the availability of channel state in-

formation (CSI). Capacity with no transmitter CSI has been

addressed in [14, 5]. Capacity with perfect CSI both at the

transmitter and at the receiver has been studied in [1] and

capacity with no CSI available both at the transmitter and

at the receiver is the object of [9]. The design of codes for

multiple antenna transmission reception (known generally as

space-time codes), is addressed, for example, in [13].

In this paper, we consider quasi-stationary frequency-at

Rayleigh fading representative of a narrowband wireless local

loop or of an indoor wireless link. In this case, the channel is

assumed to be random but constant during the transmission of

each code word, perfectly known at the receiver and unknown

at the transmitter. For very high spectral e�ciency, a very

large number of antennas is needed and Maximum-Likelihood

decoding as considered in [13] becomes too complex. In [4], a

layered space-time architecture is proposed in order to allow

a very large number of antennas with moderate complexity.

In this way, the information stream is demultiplexed into t

substreams, which are independently encoded by t encoders.

The t code words are interleaved by a diagonal interleaving

scheme and send in parallel to t transmitting antennas. The

interleaver is designed so that the symbols of a given code word

are cyclically sent over all the t antennas, in order to guarantee

the necessary diversity order. At the receiver side, the out-

put of r � t antennas is processed by a reduced-complexity

suboptimal detector which mimics zero-forcing (ZF) decision

feedback equalization. The output of the decision-feedback

\equalizer" is deinterleaved and sent to a bank of t decoders.

The layered space-time architecture of [4] is very attractive

but presents some problems. First, it requires several indepen-

dent encoder/decoder pairs, running in parallel. Then, if used

with trellis component encoders, not all symbols are decoded

with the same decoding delay. This might pose a problem for

the underying Viterbi algorithm. The interference cancella-

tion via decision feedback is prone to error propagation due

to unreliable pre-decisions, as in standard decision-feedback

equalization.

In order to solve these problems at once, while still keep-

ing the nice reduced-complexity receiver, we propose a mod-

i�cation of the scheme of [4] where a single trellis encoder

is \wrapped" along the transmitting antennas by a diagonal

interleaver, and where the decision-feedback scheme is inte-

grated into a per-survivor processing (PSP) receiver. Thanks

to the PSP, the impact of unreliable decisions in the feedback

loop is greatly reduced. Our scheme is general and applies

to any trellis code and number of antennas (provided that

r � t). In order to demonstrate our ideas, we develop an

e�cient semi-analytic performance analysis technique based

on modeling the channel with decision feedback as a block

fading channel with cyclic interleaving of the code word over

the fading blocks [16, 8]. Multivariate Euclidean weight enu-

merators are used to compute an upper bound on the frame

error rate. Strictly speaking, our method does not provide

true upper bounds, because of the optimistic assumption of

perfect decisions in the feedback loop. However, simulations

show that the approximations obtained are very accurate. Im-

plicitly, this shows that the impact of wrong decisions on the

performance of the PSP receiver is minimal.

II. System model

We consider a multiple-antenna system with t transmitting

(Tx) and r � t receiving (Rx) antennas. A multidimensional

TCM encoder [2], with rate R = k=d bit/complex symbol,

produces d modulation symbols x[i] 2 X � C every k input

information bits (X denotes the modulator signal set, e.g.,

QAM or PSK). The sequence of coded symbols is interleaved

and grouped into blocks of t symbols, that are sent in parallel

over the t Tx antennas. The resulting spectral e�ciency is

� = tR bit/channel use.

The encoder is connected to the Tx antennas through

a diagonal interleaver of depth t, as shown in Fig. 1 for

t = 8. Diagonals in the interleaving array are written from

top to bottom, and the numbers i = 1; 2; : : : in each ar-

ray entry denote the corresponding code symbol x[i]. The

n-th column of the interleaver array forms the block a[n] =

(a1[n]; a2[n]; : : : ; at[n])
T , which is transmitted in parallel from

the t antennas We use indexes i and n to indicate the time

ordering of code symbols at the decoder output (i.e., before

interleaving) and the time ordering of blocks at the Tx an-

tennas (i.e., after interleaving). Symbol x[i] corresponds to

the (`; n)-th element a`[n] of the interleaving array, i.e., it is



transmitted at time n from the `-th antenna, where i is related

to ` and n by

` = i�

�
i� 1

t

�
t

n = i�

�
i� 1

t

�
(t� 1) (1)

The channel, during the time span of a code word, is described

by

y[n] = Ca[n] + �[n] (2)

where �[n] � N
C
(0; I) is a circularly symmetric complex

Gaussian noise vector. The channel matrix C is random but

constant with time, and it is assumed to be known to the re-

ceiver and unknown to the transmitter. Its (i; j)-th element

ci;j is the complex gain from the j-th Tx to the i-th Rx an-

tenna. The channels are normalized in order to have average

power gain E[jci;j j
2] = =t, and the symbols have average

energy E[jx[i]j2] = 1. In this way,  = �Eb=N0 is the total

transmit SNR.

Decoding is done by processing the vectors y[n] accord-

ing to the diagonal deinterleaving ordering. The branch met-

rics for the Viterbi Algorithm are obtained by the decision-

feedback scheme proposed in [4] combined with a per-survivor

processing (PSP) approach. The i-th code symbol is located

in position ` of column n of the interleaver array, where ` and

n are given by (1). Symbols located below, i.e., in positions

` + 1; : : : ; t of column n, have been already processed in the

past decoding steps i�(t�1); i�2(t�1); : : : ; i�(t�`)(t�1). If

t is su�ciently large with respect to the decoding delay, sym-

bols processed more than t steps before are already reliably

detected and can be treated as known. On the contrary, all

symbols above, i.e., in positions 1; : : : ; `� 1, belong to future

decoding steps and are completely unknown.

The n-th column can be partitioned into future, present

and past symbols, as

a[n] = (a
+
` [n]

T
; a`[n]; a

�
` [n]

T
)
T

where a+` [n] = (a1[n]; : : : ; a`�1[n])
T and a�` [n] =

(a`+1[n]; : : : ; at[n])
T . Assuming a�` [n] perfectly known, the

branch metric for the i-th code symbol is obtained from the

output z`[n] of the decision-feedback equalizer

z`[n] = f
H
` y[n]� b

H
` a

�
` [n] (3)

where f` and b` are the forward and the feedback �lter vectors,

of length r and t�`, respectively, which depend on the channel

matrix and on the position ` of the i-th code symbol in the

vector a[n].

By partitioning the channel matrix as C = [C+
` ; c`;C

�
` ],

where C+
` 2 C

r�(`�1)
and C�` 2 C

r�(t�`)
, (3) can be written

as

z`[n] = f
H
` c`a`[n] + f

H
` C

+
` a

+
` [n] +

+(f
H
` C

�
` � b

H
` )a

�
` [n] + f

H
` �[n] (4)

The feedback vector is designed to satisfy the perfect cancella-

tion condition bH` = fH` C
�
` . The forward �lter is designed ei-

ther according to the minimummean-square error (MMSE) or

according to the zero-forcing (ZF) criterion, and normalized in

order to make the variance of the residual noise+interference

equal to 1. Explicitly, we have

f` =

(
1q

c
H

`
(�+

`
)�1c`

(�+
`
)�1c` (MMSE)

q` (ZF)
(5)

where �+
` = C+

` (C
+
` )

H+I and where q` is the `-th column of

the unitary matrix Q in the \QR" factorization [6] C = QR

of the channel matrix C.

With the above �lters, z`[n] can be written as

z`[n] = �`a`[n] + �`[n] (6)

where �`[n] is the residual noise+interference term and �` =

j�`j
2 is the signal-to-interference plus noise ratio (SINR) at

the output of the decision-feedback front-end, given by

�` =

�
cH` (�

+
` )
�1c` (MMSE)

j[R]`;`j
2 (ZF)

(7)

Assuming �`[n] � NC
(0; 1) (this is true for ZF, and approxi-

mately true for MMSE [11]), the set of branch metrics for the

i-th code symbol is fjz`[n] � �`xj
2 : x 2 Xg.

In reality, the symbols in a�` [n] are not perfectly known.

Thus, we propose to use PSP. Consider state s in the code

trellis, and let ba�` (s) be the vector of decisions corresponding
to symbols in a�` [n], obtained from the survivor terminating in

s. Let Mi(s) denote the path metric of the path terminating

in state s at decoding step i. Then, the path metric update

of the PSP decision-feedback scheme is given by

Mi(s) = min
s02P(s)

fMi�1(s
0
) +

+
���fH` y[n]� b

H
` ba�` (s0)� �`x(s

0
; s)
���2g (8)

where P(s) denotes the set of parent states of s and x(s0; s)

denotes the symbol corresponding to the trellis transition s0 !

s.1

Remark 1. If t is larger than the decoding delay of

the Viterbi algorithm (typically, 6 times the code constraint

length), the probability that all survivors merge is very high,

therefore storing a single survivor is enough. Therefore, the

complexity of standard PSP is greatly reduced.

Remark 2. For quasi-stationary fading channels, the �l-

ter pairs (f`;b`) for ` = 1; : : : ; t can be computed once and

used for the whole code word (i.e., until the channel changes

signi�cantly).

III. Performance analysis

In this section we provide a semi-analytic method for e�-

cient evaluation of the frame error rate of the proposed space-

time scheme. Our method is based on multivariate transfer

functions of trellis codes [16], on the modi�ed union bound

of [8] for block-fading channels, on an alternative integral rep-

resentation of the Gaussian tail function (see [12]) and on the

relation between frame error probability and error event prob-

ability for trellis-terminated trellis codes of [3]. For the sake

of simplicity, we assume that the underlying TCM code is geo-

metrically uniform [2]. Then, any sequence can be taken as the

1For simplicity, the metric updating rule is stated here in the

case d = 1 (one symbol per branch) and no parallel transitions. The

generalization to d > 1 symbols per branch and parallel transitions

is straightforward.



reference sequence for calculating error probabilities. General-

izations to non-uniform codes is conceptually straightforward,

even if computation might be considerably more complicated.

We consider the transmission of a code word x of length N

symbols, obtained by trellis termination. For simplicity, we

assume djt and tjN . Assuming perfect decision feedback, the

system can be modeled as a set of t parallel Gaussian channels,

with SNR �1; : : : ; �t. The symbols of x are cyclically sent to

the channels 1; 2; : : : ; t. All symbols sent to channel ` are

grouped in the code subsequence x`, of length N=t. Then, the

transmission of x can be compactly written as

y` = �`x` + �` for ` = 1; : : : ; t

where �` = N
C
(0; I). Consider the pairwise error event

fx ! x0g that the decoder chooses the sequence x0 6= x,

given that x was transmitted, as if x and x0 were the only two

possible decoder outcomes. Straightforward calculation yields

the conditional pairwise-error probability (PEP) in the form

P (x! x
0
j�1; : : : ; �t) = Q

0@
vuut1

2

tX
`=1

�`jd`j2

1A (9)

where Q(x) = 1p
2�

R1
x

e�y
2=2dy is the Gaussian tail function,

and where d` = x` � x0` is the vector of the componentwise

di�erences for symbols sent to channel `.

By using the integral form

Q(x) =
1

�

Z �=2

0

e
�x2=(2 sin2 �)

d� x � 0 (10)

the conditional PEP can be written as

P (x! x
0
j�1; : : : ; �t) =

1

�

Z �=2

0

tY
`=1

exp

�
�
�`w`

sin2 �

�
d� (11)

where we de�ne the normalized squared Euclidean weights

w` = jd`j
2=4.

Next, we de�ne an equivalent super-trellis by considering

L = t=d steps of the original trellis at once. Every branch of

the super-trellis carries t symbols. We de�ne P (ej�1; : : : ; �t)

to be the conditional error event probability of a Viterbi al-

gorithm working on the super-trellis, i.e., the probability that

the chosen path diverges form the correct one at a given step

of the super-trellis. We can upperbound the conditional error

event probability by the union bound

P (ej�1; : : : ; �t) �
X
x
0 6=x

P (x! x
0
j�1; : : : ; �t)

=
1

�

Z �=2

0

f (�; �1; : : : ; �t) d� (12)

where we de�ne the multivariate weight enumerator

T (W1; : : : ;Wt) =
X
w1

� � �
X
wt

A(w1; : : : ; wt)

tY
`=1

W
w`
` (13)

and where we de�ne

f(�; �1; : : : ; �t) = T (e
��1= sin

2 �
; : : : ; e

��t= sin2 �) (14)

A(w1; : : : ; wt) in(13) is the number of code words x
0 diverg-

ing from x at a given step of the super-trellis and remerging

after some step, having normalized squared Euclidean weights

w1; : : : ; wt.

The conditional frame error rate (FER) Pw(ej�1; : : : ; �t)

can be upperbounded by [3] Pw(ej�1; �t) �

(N=t)P (ej�1; : : : ; �t). Finally, by following the approach

of [8], an upper bound on the FER averaged over the joint

statistics of the SINRs �1; : : : ; �t, is obtained as

Pw(e) � E

"
min

(
1;
N

�t

Z �=2

0

f (�; �1; : : : ; �t)d�

)#
(15)

Remark 3. Strictly speaking, (15) is an approxima-

tion rather than a true upper bound, since we made the

assumption of perfect decision feedback. Moreover, in the

case of MMSE forward �lter, we approximated the residual

interference+noise term as Gaussian, even if it is not.

Remark 4. In (15), averaging with respect to the joint

statistics of the �`'s is normally done by Monte Carlo integra-

tion. The integral with respect to � can be calculated as a

�nite Riemann sum and converges very quickly.

A Multivariate weight enumerators

We consider a TCM code based on a linear binary convo-

lutional encoder followed by a signal mapper [2]. The linear

binary convolutional encoder is de�ned by the di�erence equa-

tions over F 2�
c[i]

�[i]

�
=

�
E F

G H

��
b[i]

�[i� 1]

�
where c[i];b[i];�[i] are the binary vectors de�ning output,

input and state of the encoder, and E;F;G;H are binary

matrices of the appropriate dimension, de�ning the output

and the state equations.

A very simple technique for the computation of the multi-

variate weight enumerator of the super-trellis code, suited for

automated computer implementation, is the following. First,

we obtain the L-step super-trellis di�erence equations in the

same form as above, with matrices

EL =

26666664

E 0 � � � 0

FG E 0 � � �
...

FHG FG E

...
. . .

. . . 0

FHL�2G � � � FHG FG E

37777775

FL =

26664
F

FH

...

FHL�1

37775
GL =

�
HL�1G � � � HG G

�
HL = H

L

Notice that even if the original TCM code has no parallel

transitions, the L-step trellis might, depending on the rank of

the matrix [GL;HL]. However, the number of states of the

super-trellis is the same of the original trellis.

Next, from the super-encoder equations de�ned by the

above matrices and from the signal mapper we derive the

modi�ed state diagram of the encoder, whose edges are la-

beled by monomials. Since each edge (or trellis branch) of



the super-encoder trellis carries t symbols, the corresponding

labeled is a monomial in the indeterminatesW1; : : : ;Wt, with

exponents given by the normalized squared Euclidean weights

of the symbols on the edge. Edges corresponding to parallel

transitions can be merged into a single edge with polynomial

label given by the sum of all monomials of the parallel transi-

tions.

Finally, we split state 1 (the reference state, corresponding

to the all-zero sequence) into two states, 1 and 10. We de�ne

the vector of state variables V = (V2; : : : ; VS)
T , where S is

the number of states, we let X and Y be the state variables for

state 1 and 10, respectively, and we write the node equations

V = AV+BX

Y = CV+DX

where A is the (S � 1) � (S � 1) polynomial matrix with

elements [A]i;j equal to the label of edge from state j to state

i, for i; j = 2; : : : ; S, B is the polynomial (S � 1) � 1 vector

with elements [B]i equal to the label between state 1 to state

i > 1, C is the polynomial 1 � (S � 1) vector with elements

[C]j equal to the label between state j > 1 to state 10, and D

is the polynomial label of the transition between state 1 and

state 10. The desired weight enumerator is obtained as the

formal graph transfer function

T (W1; : : : ;Wt) =
Y

X
� 1 = C[I�A]

�1
B+D � 1 (16)

where the term �1 eliminates the contribution of the correct

path, with Euclidean weight zero.

Remark 5. Unless t and S are very small, closed form

computation of T (W1; : : : ;Wt) via a symbolic manipulator is

too complex, and (16) is more e�ciently evaluated by �rst

substituting the values of the indeterminates W` and then

evaluating the resulting numerical matrix expression.

Example. The multivariate weight enumerator of the bi-

nary convolutional code with generators (5; 7) (octal notation)

interleaved over t = 2 channels is given by

T (W1;W2) =
W 2

1W
3
2 +W 4

1W
2
2 �W 2

1W
4
2

1� 2W2 +W 2
2 �W 2

1

�

IV. Results

With space-time coding large spectral e�ciencies can be

achieved by increasing the number of antennas, rather than by

increasing the size of the modulation alphabet X. Therefore,

coded BPSK is an attractive solution because of its simplicity,

especially for PSP implementation.

We considered the performance of the proposed scheme

with binary linear convolutional codes with rate R = 1=2

bit/symbol and BPSK modulation. Fig. 2 shows the approx-

imated union bound (15), denoted by \AUB", and some sim-

ulation points for the (5; 7) code with t = r = 2; 4 and 8

antennas, with the ZF and MMSE front-end. Simulations are

in good agreement with the AUB. This shows that the e�ect

of wrong decisions on the PSP receiver is minimal, and that

(15) provides an e�ective method for evaluating the FER. In

all examples, the FER is calculated for block length N = 256.

In the case of ZF it is not necessary to compute the SINRs

�` via the QR factorization of C. In fact, the joint statistics

of the �`'s is given by the following:

Proposition 1. If C has i.i.d. complex circularly-

symmetric Gaussian elements, the SINRs f�` : ` = 1; : : : ; tg

resulting from the ZF front-end are statistically independent

and �` is central Chi-squared with 2(r� `+1) degress of free-

dom. �

The fact that each �` is individually Chi-squared dis-

tributed is well-known (see [15] and references therein). The

novelty is that the �`'s are also statistically independent, even

though they are all functions of the same channel matrix C.

Figs. 3, 4 and 5 show the AUB for the opti-

mal rate 1=2 binary convolutional codes with generators

(5; 7); (15; 17); (23; 35); (53; 75) and (171; 133), with t = r =

2; 4 and 8 antennas. We notice that the code performance

is not directly related to its minimum Hamming distance for

small t, while as t grows, Hamming distance becomes more

and more important. In fact, as observed in [7], the diversity

order D of a code of rate R bit/symbol, based on the signal

set X and interleaved over t parallel channels must satisfy

D � 1 +

�
t

�
1�

R

log2 jXj

��
The code diversity order for a given t can be calculated from

its multivariate weight enumerator. In fact, the code diversity

is the maximum integer D for which T (W1; : : : ;Wt) = 0 in all�
t

D�1

�
points (W1; : : : ;Wt) 2 f0; �gt with Hamming weight

D � 1, where 0 < � < 1 is a su�ciently small constant cho-

sen such that T (W1; : : : ;Wt) is always de�ned in the points

f0; �gt. Again, the weight enumerator can be evaluated nu-

merically via (16), and there is no need for time-consuming

symbolic manipulation.

Example. By the above method it is immediate to check

that for t = 8 the 4- and 8-state codes achieve diversity D = 4,

while the 16-,32- and 64-states codes achieve the maximum

diversity D = 5. The large performance gap between these

codes suggests that when the number of antennas is not too

small, codes optimized for the Gaussian channel are good also

for the proposed space-time scheme. Then, it is meaningful

to consider powerful codes. On the other hand, for t = 2 the

maximum diversity D = 2 is achieved by all codes considered,

and the simple 4-state code performs roughly as well as the

others. �

Remark 6. Very small FER is achieved for low Eb=N0, and

for constant Eb=N0 the FER decreases for increasing t and r.

For given transmit power P, constant Eb=N0 implies constant

bit-rate Rb = P=Eb. Then, the system bandwidth decreases

as 1=t. In other papers, di�erent systems are compared for

constant , i.e., for constant symbol-rate. Then, the system

bandwidth is constant and the bit-rate increases linearly with

t.

Remark 7. Our results show that the MMSE front-end

outperform the ZF front-end by some dB. This is a quite coun-

terintuitive behavior, since it can be expected that, for a �xed

matrix C, the performance of the two front-ends are asymp-

totically equivalent for large Eb=N0. We interpret this fact

as an e�ect of averaging over the ensemble of random chan-

nel matrices. The FER is dominated by the occurrence of

very \bad" channel realizations (outages). In these cases, the

MMSE front-end provides a considerable advantage over the

ZF front-end, which incurs in the noise-enhancement e�ect

typical of ZF equalizers.



V. Conclusions

We proposed a low-complexity space-time architecture

based on diagonal interleaving of a single trellis code and on a

PSP receiver that makes use of predecisions on the surviving

paths of the Viterbi algorithm in a decision-feedback scheme.

Forward and backward �lters of the decision-feedback front-

end are designed either according to the ZF or to the MMSE

criterion. We developed an approximated union-bound semi-

analythic performance analysis technique based on multivari-

ate weight enumerators, by assuming perfect decisions in the

feedback. The FER evaluated in this way is in very good

agreement with computer simulations of the true PSP scheme,

thus showing that the degradation due to non-perfect decision

feedback is negligible with the PSP approach. Results show

that binary codes of rate 1/2 with t = r = 8 antennas, yielding

spectral e�ciency � = 4 bit/s/Hz, can achieve FER between

� 10�4 and � 10�6 at Eb=N0 = 0 dB (block length N = 256

coded bits) on a block-fading Rayleigh channel. Interestingly,

powerful codes should be considered when the number of an-

tennas is large, while simple codes are good enough when the

number of antennas is small. Finally, contrarily to what stated

in most papers on multiple antennas (e.g., [5, 4]), the MMSE

front-end provides an advantage of some dB over the ZF front-

end in terms of Eb=N0.
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Figure 2: FER vs. Eb=N0 for the convolutional code (5; 7)
with 2, 4 and 8 antennas, ZF and MMSE PSP receivers.
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Figure 3: FER vs. Eb=N0 for binary convolutional codes
of rate 1=2 with t = r = 2 antennas.
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Figure 4: FER vs. Eb=N0 for binary convolutional codes
of rate 1=2 with t = r = 4 antennas.
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Figure 5: FER vs. Eb=N0 for binary convolutional codes
of rate 1=2 with t = r = 8 antennas.


