
Degrees-of-Freedom Region of the MISO Broadcast
Channel with General Mixed-CSIT

Jinyuan Chen and Petros Elia
Mobile Communications Department

EURECOM
Sophia Antipolis, France

Email: {chenji,elia}@eurecom.fr

Abstract—In the setting of the two-user broadcast channel,
recent work by Maddah-Ali and Tse has shown that knowledge
of prior channel state information at the transmitter (CSIT) can
be useful, even in the absence of any knowledge of current CSIT.
Very recent work by Kobayashi et al., Yang et al., and Gou and
Jafar, extended this to the case where, instead of no current CSIT
knowledge, the transmitter has partial knowledge, and where
under a symmetry assumption, the quality of this knowledge is
identical for the different users’ channels.

Motivated by the fact that in multiuser settings, the quality
of CSIT feedback may vary across different links, we here
generalize the above results to the natural setting where the
current CSIT quality varies for different users’ channels. For this
setting we derive the optimal degrees-of-freedom (DoF) region,
and provide novel multi-phase broadcast schemes that achieve
this optimal region. Finally this generalization incorporates and
generalizes the corresponding result in Maleki et al. which
considered the broadcast channel with one user having perfect
CSIT and the other only having prior CSIT.

I. INTRODUCTION

In many multiuser wireless communications scenarios,
having sufficient CSIT is a crucial ingredient that facilitates
improved performance. While being useful, perfect CSIT is
also hard and time-consuming to obtain, hence the need for
communication schemes that can utilize partial or delayed
CSIT knowledge (see [1]–[6]). In this context of multiuser
communications, we here consider the broadcast channel
(BC), and specifically focus on the two-user multiple-input
single-output (MISO) BC, where a two-antenna transmitter
communicates to two single-antenna receivers. In this setting,
the channel model takes the form

y
(1)
t = hT

txt + z
(1)
t (1a)

y
(2)
t = gT

txt + z
(2)
t , (1b)

where for any time instant t, ht, gt ∈ C2×1 represent the
channel vectors for user 1 and 2 respectively, where z(1)

t , z
(2)
t

represent unit power AWGN noise, where xt is the input signal
with power constraint E

(
‖xt‖2

)
≤ P , and where in this case,

P also takes the role of the signal-to-noise ratio (SNR). It
is well known that in this setting, the presence of full CSIT
allows for the optimal 1 degree-of-freedom (DoF) per user,
whereas the complete absence of CSIT causes a substantial

degradation to just 1/2 DoF per user1.
An interesting scheme that bridges this performance gap by

utilizing partial CSIT knowledge, was recently presented in [1]
which showed that delayed CSIT knowledge can still be useful
in improving the DoF region of the broadcast channel. In
the above described two-user MISO BC setting, and under
the assumption that at time t, the transmitter knows the
delayed channel states (h, g) up to time t− 1, the work in [1]
showed that each user can achieve 2/3 DoF, providing a clear
improvement over the case of no CSIT.

This result was later generalized in [7]–[9] which considered
the natural extension where, in addition to the aforementioned
perfect knowledge of prior CSIT, the transmitter also had
imperfect knowledge of current CSIT; at time t the transmitter
had estimates ĥt, ĝt of ht and gt, with estimation errors

h̃t = ht − ĥt, g̃t = gt − ĝt (2)

having i.i.d. Gaussian entries with power

1

2
E
(
‖h̃t‖2

)
=

1

2
E
(
‖g̃t‖2

)
= P−α,

for some non-negative parameter α that described the quality
of the estimate of the current CSIT. In this setting of ‘mixed’
CSIT (perfect prior CSIT and imperfect current CSIT), and
for d1, d2 denoting the DoF for the first and second user over
the aforementioned two-user BC, the work in [7]–[9] showed
the optimal DoF region to take the form,

{d1 ≤ 1; d2 ≤ 1; 2d1 +d2 ≤ 2 +α; 2d2 +d1 ≤ 2 +α} (3)

corresponding to a polygon with corner points
{(0, 0), (1, 0), (1, α), ( 2+α

3 , 2+α
3 ), (α, 1), (0, 1)}, nicely

bridging the gap between the case of α = 0 explored in [1],
and the case of α = 1 (and naturally α > 1) corresponding to
perfect CSIT.

A. Notation and conventions

Throughout this paper, (•)−1, (•)T, (•)H, respectively denote
the inverse, transpose, and conjugate transpose of a matrix,
while (•)∗ denotes the complex conjugate, and || • || denotes
the Euclidean norm. | • | denotes the magnitude of a scalar,

1We remind the reader that for an achievable rate pair (R1, R2), the
corresponding DoF pair (d1, d2) is given by di = limP→∞

Ri
logP

, i = 1, 2.
The corresponding DoF region is then the set of all achievable DoF pairs.



and diag(•) denotes a diagonal matrix. Logarithms are of
base 2. o(•) comes from the standard Landau notation, where
f(x) = o(g(x)) implies limx→∞ f(x)/g(x) = 0. We also use
.
= to denote exponential equality, i.e., we write f(P )

.
= PB to

denote lim
P→∞

log f(P )

logP
= B. Finally, in the spirit of [7]–[9] we

consider a unit coherence period, as well as perfect knowledge
of channel state information at the receivers (perfect CSIR).

II. THE GENERALIZED MIXED-CSIT BROADCAST CHANNEL

Motivated by the fact that in multiuser settings, the quality
of CSIT feedback may vary across different links, we extend
the approach in [7]–[9] to consider unequal quality of current
CSIT knowledge for ht and gt. Specifically under the same
set of assumptions mentioned above, and in the presence of
perfect prior CSIT, we now consider the case where at time t,
the transmitter has estimates ĥt, ĝt of the current ht and gt,
with estimation errors

h̃t = ht − ĥt, g̃t = gt − ĝt (4)

having i.i.d. Gaussian entries with power

1

2
E
(
‖h̃t‖2

)
= P−α1 ,

1

2
E
(
‖g̃t‖2

)
= P−α2 ,

for some non-negative parameters α1, α2 that describe the
generally unequal quality of the estimates of the current CSIT
for the two users’ links.

We proceed to describe the optimal DoF region of the general
mixed-CSIT two-user MISO BC (two-antenna transmitter). The
optimal schemes are presented in Section III, parts of the proof
of the schemes’ performance are presented in Appendix V,
while the outer bound proof is placed in Appendix VI.

A. DoF region of the MISO BC with generalized mixed-CSIT

Without loss of generality, the rest of this work assumes that

1 ≥ α1 ≥ α2 ≥ 0. (5)

Theorem 1: The DoF region of the two-user MISO BC with
general mixed-CSIT, is given by

d1 ≤ 1, d2 ≤ 1 (6a)
2d1 + d2 ≤ 2 + α1 (6b)
d1 + 2d2 ≤ 2 + α2 (6c)

where the region is a polygon which, for 2α1 − α2 < 1 has
corner points

{(0,0),(1,0),(1,α1),(
2+2α1−α2

3
,
2+2α2−α1

3
),(α2,1),(0,1)},

and otherwise has corner points

{(0, 0), (1, 0), (1,
1 + α2

2
), (α2, 1), (0, 1)}.

The above corner points, and consequently the entire DoF
inner bound, will be attained by the schemes to be described
later on. The result generalizes the results in [7]–[9] as well as
the result in [10] which considered the case of (α1 = 1, α2 =
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d1
0

C
A

B
1

1

d2

d1
0

C

B
1

1

D

(b) Case 2:(a) Case 1:

2

2 1
22 

2

2 1
22 

221 22  dd

112 22  dd 112 22  dd

221 22  dd

12 21  12 21 

Fig. 1. DoF region when 2α1 − α2 < 1 (case 1) and when 2α1 − α2 ≥ 1
(case 2). The corner points take the following values: A = (1, 1+α2

2
), B =

(α2, 1), C = ( 2+2α1−α2
3

, 2+2α2−α1
3

) and D = (1, α1).

0), where one user had perfect CSIT and the other only prior
CSIT.

Figure 1 depicts the general DoF region for the case where
2α1 − α2 < 1 (case 1) and the case where 2α1 − α2 ≥ 1
(case 2).

We proceed to describe the communication schemes.

III. DESIGN OF COMMUNICATION SCHEMES FOR THE
TWO-USER GENERAL MIXED-CSIT MISO BC

As stated, without loss of generality, we assume that 1 ≥
α1 ≥ α2 ≥ 0. We describe the three schemes X1, X2 and X3

that achieve the optimal DoF region (in conjunction with time-
division between these same schemes). Specifically scheme
X1 achieves C = ( 2+2α1−α2

3 , 2+2α2−α1

3 ) (case 1), scheme X2

achieves DoF points D = (1, α1) (case 1) and A = (1, 1+α2

2 )
(case 2), and scheme X3 achieves B = (α2, 1) (case 1 and
case 2). The scheme description is done for 1 > α1 > α2 ≥ 0,
and for rational α1, α2. The cases where α1 = 1, or α1 = α2,
or where α1, α2 are not rational, can be readily handled with
minor modifications. We proceed to describe the basic notation
and conventions used in our schemes.

The schemes are designed with S phases (S varies from
scheme to scheme), where the sth phase consists of Ts channel
uses, s = 1, 2, · · · , S. The vectors hs,t and gs,t will denote the
channel vectors seen by the first and second user respectively
during timeslot t of phase s, while ĥs,t and ĝs,t will denote
the estimates of these channels at the transmitter during the
same time, and h̃s,t = hs,t − ĥs,t, g̃s,t = gs,t − ĝs,t will
denote the estimation errors.

Furthermore as,t and a
′

s,t will denote the independent
information symbols that may be sent during phase-s, timeslot-
t, and which are meant for user 1, while symbols bs,t and
b
′

s,t are meant for user 2. Vectors us,t and vs,t are the unit-
norm beamformers for as,t and bs,t respectively, chosen so
that us,t is orthogonal to ĝs,t, and so that vs,t is orthogonal to



ĥs,t. Furthermore u
′

s,t,v
′

s,t are the randomly chosen unit-norm
beamformers for a

′

s,t and b
′

s,t respectively.
Another notation that will be shared between schemes

includes

c̄
(b)
s,t , h̃T

s,tvs,tbs,t+h
T

s,tv
′

s,tb
′

s,t,

c̄
(a)
s,t , g̃T

s,tus,tas,t+g
T

s,tu
′

s,ta
′

s,t, t = 1, · · · , Ts (7)

that denotes the interference seen by user 1 and user 2
respectively, during timeslot t of phase s. For {c̄(a)

s,t , c̄
(b)
s,t}

Ts
t=1

being the accumulated interference to both users during
phase s, we will let {ĉ(a)

s,t , ĉ
(b)
s,t}

Ts
t=1 be a quantized version

of {c̄(a)
s,t , c̄

(b)
s,t}

Ts
t=1, and we will consider the mapping where

the total information in {ĉ(a)
s,t , ĉ

(b)
s,t}

Ts
t=1 is split evenly across

symbols {cs+1,t}Ts+1

t=1 transmitted during the next phase. In
addition we use ws+1,t to denote the randomly chosen unit-
norm beamformer of cs+1,t.

Furthermore, unless stated otherwise,

xs,t = ws,t cs,t︸︷︷︸
P

(c)
s

+us,t as,t︸︷︷︸
P

(a)
s

+u
′

s,t a
′
s,t︸︷︷︸

P
(a′)
s

+vs,t bs,t︸︷︷︸
P

(b)
s

+v
′

s,t b
′
s,t︸︷︷︸

P
(b′)
s

(8)
will be the general form of the transmitted vector at timeslot t
of phase s. As noted above under each summand, the average
power that is assigned to each symbol, throughout a specific
phase, will be denoted as follows:

P
(c)
s , E|cs,t|2, P

(a)
s , E|as,t|2, P

(a′)
s , E|a′s,t|2

P
(b)
s , E|bs,t|2, P

(b′)
s , E|b′s,t|2.

Furthermore each of the above symbols carries a certain amount
of information, per timeslot, where this amount may vary across
different phases. Specifically we use r(a)

s to mean that, during
phase s, each symbol as,t, t = 1, · · · , Ts, carries r(a)

s logP +

o(logP ) bits. Similarly we use r(a′)
s , r

(b)
s , r

(b′)
s , r

(c)
s to describe

the prelog factor of the number of bits in a
′

s,t, bs,t, b
′

s,t, cs,t
respectively, again for phase s.

Finally the received signals during phase s for the first and
second user, are respectively denoted as y(1)

s,t and y(2)
s,t , where

generally the signals take the following form

y
(1)
s,t = hT

s,txs,t + z
(1)
s,t ,

y
(2)
s,t = gT

s,txs,t + z
(2)
s,t , t = 1, · · · , Ts. (9)

A. Scheme X1 achieving C = ( 2+2α1−α2

3 , 2+2α2−α1

3 ) (case 1)

As stated, scheme X1 has S phases, where the phase
durations T1, T2, · · · , TS are chosen to be integers such that

T2 = T1ξ, Ts=Ts−1µ=T1ξµ
s−2,∀s ∈ {3, 4, · · · , S−1},

TS = TS−1γ = T1ξµ
S−3γ, (10)

where ξ = 2−α1−α2

1−α1−∆ , µ = α1−α2+2∆
1−α1−∆ , γ = α1−α2+2∆

1−α2
, and

where ∆ is any constant such that 0 < ∆ < 1−2α1+α2

3 .

1) Phase 1: During phase 1 (T1 channel uses), the transmit
signal is

x1,t=u1,ta1,t+u
′

1,ta
′

1,t+v1,tb1,t+v
′

1,tb
′

1,t, (11)

while the power and rate are set as

P
(a)
1

.
= P, P

(a′)
1

.
= P 1−α2 , P

(b)
1

.
= P, P

(b′)
1

.
= P 1−α1

r
(a)
1 = 1, r

(a′)
1 = 1− α2, r

(b)
1 = 1, r

(b′)
1 = 1− α1.

(12)
The received signals at the two users then take the form

y
(1)
1,t =hT

1,tu1,ta1,t︸ ︷︷ ︸
P

+hT

1,tu
′

1,ta
′

1,t︸ ︷︷ ︸
P 1−α2

+

c̄
(b)
1,t︷ ︸︸ ︷

h̃T

1,tv1,tb1,t︸ ︷︷ ︸
P 1−α1

+hT

1,tv
′

1,tb
′

1,t︸ ︷︷ ︸
P 1−α1

+z
(1)
1,t︸︷︷︸
P 0

,

y
(2)
1,t =

c̄
(a)
1,t︷ ︸︸ ︷

g̃T

1,tu1,ta1,t︸ ︷︷ ︸
P 1−α2

+gT

1,tu
′

1,ta
′

1,t︸ ︷︷ ︸
P 1−α2

+gT

1,tv1,tb1,t︸ ︷︷ ︸
P

+gT

1,tv
′

1,tb
′

1,t︸ ︷︷ ︸
P 1−α1

+z
(2)
1,t︸︷︷︸
P 0

,

(13)

where under each term we noted the order of the summand’s
average power.

At this point, and after the end of the first phase, the trans-
mitter can use its knowledge of delayed CSIT to reconstruct
{c̄(a)

1,t , c̄
(b)
1,t}

T1
t=1 (cf.(7)), and quantize each term as

c̄
(a)
1,t = ĉ

(a)
1,t +c̃

(a)
1,t , c̄

(b)
1,t= ĉ

(b)
1,t+c̃

(b)
1,t , t = 1, 2, · · · , T1,

where ĉ
(a)
1,t , ĉ

(b)
1,t are the quantized values, and where

c̃
(a)
1,t , c̃

(b)
1,t are the quantization errors. Noting that E|c̄(a)

1,t |2
.
=

P 1−α2 , E|c̄(b)1,t |2
.
= P 1−α1 , we choose a quantization rate

that assigns each ĉ
(a)
1,t a total of (1 − α2) logP + o(logP )

bits, and each ĉ
(b)
1,t a total of (1 − α1) logP + o(logP ) bits,

thus allowing for E|c̃(a)
1,t |2

.
= E|c̃(b)1,t |2

.
= 1 ( [11]). At this

point the T1(2− α1 − α2) logP + o(logP ) bits representing
{ĉ(a)

1,t , ĉ
(b)
1,t}

T1
t=1, are distributed evenly across the set {c2,t}T2

t=1

which will be sequentially transmitted during the next phase.
This transmission of {c2,t}T2

t=1 will help each of the users
cancel the interference from the other user, and it will also
serve as an extra observation that allows for decoding of all
private information of that same user.

2) Phase 2: During phase 2 (T2 channel uses), the transmit
signal takes the exact form in (8)

x2,t = w2,tc2,t+u2,ta2,t+u
′

2,ta
′

2,t+v2,tb2,t+v
′

2,tb
′

2,t (14)

where we set power and rate as

P
(c)
2

.
= P, r

(c)
2 = 1− α1 −∆

P
(a)
2

.
= Pα1+∆, r

(a)
2 = α1 + ∆

P
(a′)
2

.
= Pα1−α2+∆, r

(a′)
2 = α1 − α2 + ∆

P
(b)
2

.
= Pα1+∆, r

(b)
2 = α1 + ∆

P
(b′)
2

.
= P∆, r

(b′)
2 = ∆,

(15)

and where we note that r(c)
2 satisfies T2r

(c)
2 = T1(2−α1−α2).



Fig. 2. Received power levels at user 1 (phase 2).

The received signals during this phase are given as

y
(1)
2,t =hT

2,tw2,tc2,t︸ ︷︷ ︸
P

+hT

2,tu2,ta2,t︸ ︷︷ ︸
Pα1+∆

+hT

2,tu
′

2,ta
′

2,t︸ ︷︷ ︸
Pα1−α2+∆

+h̃T

2,tv2,tb2,t︸ ︷︷ ︸
P∆

+hT

2,tv
′

2,tb
′

2,t︸ ︷︷ ︸
P∆

+z
(1)
2,t︸︷︷︸
P 0

, (16)

y
(2)
2,t =gT

2,tw2,tc2,t︸ ︷︷ ︸
P

+g̃T

2,tu2,ta2,t︸ ︷︷ ︸
Pα1−α2+∆

+gT

2,tu
′

2,ta
′

2,t︸ ︷︷ ︸
Pα1−α2+∆

+ gT

2,tv2,tb2,t︸ ︷︷ ︸
Pα1+∆

+ gT

2,tv
′

2,tb
′

2,t︸ ︷︷ ︸
P∆

+ z
(2)
2,t︸︷︷︸
P 0

, (17)

for t=1, 2,· · ·,T2, where under each term we noted the order
of the summand’s average power.

At this point, based on (16),(17), each user decodes c2,t by
treating the other signals as noise. After decoding {c2,t}T2

t=1

and fully reconstructing {ĉ(a)
1,t , ĉ

(b)
1,t , }

T1
t=1, user 1 goes back one

phase and subtracts ĉ(b)1,t from y
(1)
1,t to remove (up to bounded

noise) the interference corresponding to c̄(b)1,t . The same user
will also use the estimate ĉ(a)

1,t of c̄(a)
1,t as an extra observation

which, together with the observation y(1)
1,t , present the user with

a 2×2 MIMO channel that allows for decoding of both a1,t and
a
′

1,t. Similarly user 2, after fully reconstructing {ĉ(a)
1,t , ĉ

(b)
1,t , }

T1
t=1,

subtracts ĉ(a)
1,t from y

(2)
1,t , to remove (up to bounded noise) the

interference corresponding to c̄(a)
1,t , and also uses the estimate

ĉ
(b)
1,t of c̄(b)1,t as an extra observation which, together with the

observation y
(2)
1,t , allow for decoding of both b1,t and b

′

1,t.
Further exposition to the details regarding the achievability of
the mentioned rates, can be found in Appendix V.

Consequently after the end of the second phase, the transmit-
ter can use its knowledge of delayed CSIT to reconstruct
{c̄(a)

2,t , c̄
(b)
2,t}

T2
t=1, and quantize each term to ĉ

(a)
2,t , ĉ

(b)
2,t . With

E|c̄(a)
2,t |2

.
= Pα1−α2+∆, E|c̄(b)2,t |2

.
= P∆, we choose a quantiza-

tion rate that assigns each ĉ(a)
2,t a total of (α1−α2 +∆) logP +

o(logP ) bits, and each ĉ
(b)
2,t a total of ∆ logP + o(logP )

bits, thus allowing for E|c̃(a)
2,t |2

.
= E|c̃(b)2,t |2

.
= 1. Then

the T2(α1 − α2 + 2∆) logP + o(logP ) bits representing
{ĉ(a)

2,t , ĉ
(b)
2,t}

T2
t=1, are split evenly across the set {c3,t}T3

t=1 which
will be sequentially transmitted in the next phase so that user 1
can eventually decode {a2,t, a

′

2,t}
T2
t=1, and user 2 can decode

{b2,t, b
′

2,t}
T2
t=1.

We now proceed with the general description of phase s.
3) Phase s, 3 ≤ s ≤ S−1: Phase s (Ts = Ts−1

α1−α2+2∆
1−α1−∆

channel uses) is almost identical to phase 2, with one difference

being the different relationship between Ts and Ts−1. The
transmit signal takes the same form as in phase 2 (cf. (8),(14)),
the rates and powers of the symbols are the same (cf. (15)) and
the received signals y(1)

s,t , y
(2)
s,t (t = 1, · · · , Ts) take the same

form as in (16),(17).
Most of the actions are also the same, where based on

(16),(17) (corresponding now to phase s), each user decodes
cs,t by treating the other signals as noise, and then goes back
one phase and reconstructs {ĉ(a)

s−1,t, ĉ
(b)
s−1,t, }

Ts−1

t=1 . As before,
user 1 then subtracts ĉ

(b)
s−1,t from y

(1)
s−1,t to remove, up to

bounded noise, the interference corresponding to c̄(b)s−1,t. The
same user also employs the estimate ĉ(a)

s−1,t of c̄(a)
s−1,t as an

extra observation which, together with the observation y(1)
s−1,t−

hT
s−1,tws−1,tcs−1,t − ĉ

(b)
s−1,t obtained after decoding cs−1,t,

allow for decoding of both as−1,t and a
′

s−1,t. Similar actions
are performed by user 2.

As before, after the end of phase s, the transmitter can use
its knowledge of delayed CSIT to reconstruct {c̄(a)

s,t , c̄
(b)
s,t}

Ts
t=1,

and quantize each term to ĉ(a)
s,t , ĉ

(b)
s,t with the same rate as in

phase 2 ((α1−α2 +∆) logP +o(logP ) bits for each ĉ(a)
s,t , and

∆ logP + o(logP ) bits for each ĉ(b)s,t ). Finally the accumulated
Ts(α1 − α2 + 2∆) logP + o(logP ) bits representing all the
quantized values {ĉ(a)

s,t , ĉ
(b)
s,t}

Ts
t=1, are distributed evenly across

the set {cs+1,t}Ts+1

t=1 which will be sequentially transmitted in
the next phase. More details can be found in Appendix V.

4) Phase S: During the last phase (TS = TS−1
α1−α2+2∆

1−α2

channel uses), the transmit signal is

xS,t = wS,tcS,t + uS,taS,t + vS,tbS,t (18)

where we set power and rate as

P
(c)
S

.
= P, r

(c)
S = 1− α2

P
(a)
S

.
= Pα2 , r

(a)
S = α2

P
(b)
S

.
= Pα2 , r

(b)
S = α2.

(19)

The received signals are

y
(1)
S,t=hT

S,twS,tcS,t︸ ︷︷ ︸
P

+hT

S,tuS,taS,t︸ ︷︷ ︸
Pα2

+h̃T

S,tvS,tbS,t︸ ︷︷ ︸
Pα2−α1

+z
(1)
S,t︸︷︷︸
P 0

,

y
(2)
S,t=gT

S,twS,tcS,t︸ ︷︷ ︸
P

+ g̃T

S,tuS,taS,t︸ ︷︷ ︸
P 0

+gT

S,tvS,tbS,t︸ ︷︷ ︸
Pα2

+ z
(2)
S,t︸︷︷︸
P 0

, (20)

for t=1, 2,· · ·, TS .
At this point, as before, the power and rate allocation

of the different symbols allow both users to decode cS,t
by treating the other signals as noise. Consequently user 1
can remove hT

S,twS,tcS,t from y
(1)
S,t and decode aS,t, and

similarly user 2 can remove gT

S,twS,tcS,t from y
(2)
S,t and decode

bS,t. Finally each user goes back one phase and reconstructs
{ĉ(a)
S−1,t, ĉ

(b)
S−1,t, }

TS−1

t=1 , which allows for decoding of aS−1,t

and a
′

S−1,t at user 1 and of bS−1,t and b
′

S−1,t at user 2, all as
described for the previous phases (see Appendix V for more
details).



Table I summarizes the parameters of scheme X1. The use
of symbol ⊥ is meant to indicate precoding that is orthogonal
to the channel estimate (rather than random). The table’s last
row indicates the prelog factor of the quantization rate.

TABLE I
SUMMARY OF SCHEME X1 .

Phase 1 Phase 2 Ph. s (3≤s≤S−1) Phase S
Duration T1 T1ξ T1ξµs−2 T1ξµS−3γ

r(a) 1 α1+∆ α1+∆ α2

r(a′) 1−α2 α1−α2+∆ α1−α2+∆ -
r(b) 1 α1+∆ α1+∆ α2

r(b′) 1−α1 ∆ ∆ -
r(c) - 1−α1−∆ 1−α1−∆ 1−α2

P (a)⊥ P Pα1+∆ Pα1+∆ Pα2

P (a′) P 1−α2 Pα1−α2+∆ Pα1−α2+∆ -
P (b)⊥ P Pα1+∆ Pα1+∆ Pα2

P (b′) P 1−α1 P∆ P∆ -
P (c) - P P P

Quant. 2−α1−α2 α1−α2+2∆ α1−α2+2∆ 0

a) DoF calculation for scheme X1: We proceed to add up
the total amount of information transmitted during this scheme.

In accordance to the declared pre-log factors r(a)
s , r

(a
′
)

s and
phase durations (see Table I), we have that

d1 =(T1(2−α2)+

S−1∑
i=2

Ti(2α1−α2+2∆)+TSα2)/(

S∑
i=1

Ti)

= (

S−1∑
i=2

(Ti(1−α1−∆)+Ti(α1+∆))+TS(1−α2)

+TSα2 + T1α1 −∆

S−1∑
i=2

Ti)/(

S∑
i=1

Ti) (21)

= (1−∆) +
T1(α1 + ∆− 1) + TS∆∑S

i=1 Ti
, (22)

where (21) considers the phase durations seen in (10). Con-
sidering that 0 < µ < 1 (see (10) for case 1), that∑S−3
i=0 µi = 1−µS−2

1−µ , and given an asymptotically high S,
we see that

d1 = (1−∆) +

T2

ξ (α1 + ∆− 1) + T2µ
S−3γ∆

T2

ξ + T2( 1
1−µ + µS−3(γ − µ

1−µ ))
(23)

= (1−∆) +

1
ξ (α1 + ∆− 1)

1
ξ + 1

1−µ

= (1−∆)− 1 + α2 − 2α1 − 3∆

3
=

2 + 2α1 − α2

3
.

(24)

Similarly, considering the values for r(b)
s , r

(b
′
)

s , we have that

d2 =
T1(2− α1) +

∑S−1
i=2 Ti(α1 + 2∆) + TSα2∑S

i=1 Ti

=α1+2∆+
T1(2−2α1−2∆)+TS(α2−α1−2∆)∑S

i=1 Ti

=α1+2∆+

T2

ξ (2−2α1−2∆)+T2µ
S−3γ(α2 − α1 − 2∆)

T2

ξ + T2( 1
1−µ + µS−3(γ − µ

1−µ ))

which, in the high S limit, gives

d2 = α1 + 2∆ +

1
ξ (2− 2α1 − 2∆)

1
ξ + 1

1−µ

=α1+2∆+
2(1+α2−2α1−3∆)

3
=

2+2α2−α1

3
. (25)

In conclusion, scheme X1 achieves DoF pair C =
( 2+2α1−α2

3 , 2+2α2−α1

3 ) (case 1).

B. Scheme X2 achieving D = (1, α1) (case 1), and A =
(1, 1+α2

2 ) (case 2)

Scheme X2 is designed with S phases, with phase durations
T1, T2, · · · , TS chosen to be integers such that

T2 = T1τ, Ts=Ts−1β=T1τβ
s−2,∀s ∈{3, 4, · · · , S−1},

TS = TS−1η = T1τβ
S−3η, (26)

where τ = 1−α2

1−α1
, β = α1−α2

1−α1
, η = α1−α2

1−α2
.

The scheme is similar to X1, but with a different power and
rate allocation, and a different input structure since now user 2
only receives a single private information symbol.

1) Phase 1: During phase 1 (T1 channel uses), the trans-
mitter sends

x1,t = u1,ta1,t + u
′

1,ta
′

1,t + v1,tb1,t,

with power and rate set as

P
(a)
1

.
= P, P

(a′)
1

.
= P 1−α2 , P

(b)
1

.
= Pα1

r
(a)
1 = 1, r

(a′)
1 = 1− α2, r

(b)
1 = α1.

The received signals take the form

y
(1)
1,t = hT

1,tu1,ta1,t︸ ︷︷ ︸
P

+hT

1,tu
′

1,ta
′

1,t︸ ︷︷ ︸
P 1−α2

+ h̃T

1,tv1,tb1,t︸ ︷︷ ︸
P 0

+ z
(1)
1,t︸︷︷︸
P 0

,

y
(2)
1,t =

c̄
(a)
1,t︷ ︸︸ ︷

g̃T

1,tu1,ta1,t︸ ︷︷ ︸
P 1−α2

+ gT

1,tu
′

1,ta
′

1,t︸ ︷︷ ︸
P 1−α2

+ gT

1,tv1,tb1,t︸ ︷︷ ︸
Pα1

+ z
(2)
1,t︸︷︷︸
P 0

.

After the end of the first phase, the transmitter reconstructs
{c̄(a)

1,t }
T1
t=1 (cf.(7)), and quantizes each term as

c̄
(a)
1,t = ĉ

(a)
1,t +c̃

(a)
1,t , t = 1, 2, · · · , T1.

Noting that E|c̄(a)
1,t |2

.
= P 1−α2 , we choose a quantization rate

that assigns each ĉ(a)
1,t a total of (1−α2) logP + o(logP ) bits,

thus allowing for E|c̃(a)
1,t |2

.
= 1. Then the T1(1 − α2) logP +

o(logP ) bits representing {ĉ(a)
1,t }

T1
t=1 are distributed evenly

across the set {c2,t}T2
t=1 which will be transmitted in the next

phase. As before, transmission of {c2,t}T2
t=1 aims to help user 2

cancel out interference, as well as aims to provide user 1 with
an extra observation which will allow for decoding of the user’s
private information.



2) Phase 2: During phase 2 (T2 channel uses), the trans-
mitter sends

x2,t = w2,tc2,t + u2,ta2,t + u
′

2,ta
′

2,t + v2,tb2,t

with power and rate set as

P
(c)
2

.
= P, r

(c)
2 = 1− α1

P
(a)
2

.
= Pα1 , r

(a)
2 = α1

P
(a′)
2

.
= Pα1−α2 , r

(a′)
2 = α1 − α2

P
(b)
2

.
= Pα1 , r

(b)
2 = α1,

(28)

where we note that r(c)
2 satisfies T2r

(c)
2 = T1(1− α2).

The received signals in this phase are

y
(1)
2,t=hT

2,tw2,tc2,t︸ ︷︷ ︸
P

+hT

2,tu2,ta2,t︸ ︷︷ ︸
Pα1

+hT

2,tu
′

2,ta
′

2,t︸ ︷︷ ︸
Pα1−α2

+h̃T

2,tv2,tb2,t︸ ︷︷ ︸
P 0

+z
(1)
2,t︸︷︷︸
P 0

(29)

y
(2)
2,t=gT

2,tw2,tc2,t︸ ︷︷ ︸
P

+ g̃T

2,tu2,ta2,t︸ ︷︷ ︸
Pα1−α2

+gT

2,tu
′

2,ta
′

2,t︸ ︷︷ ︸
Pα1−α2

+gT

2,tv2,tb2,t︸ ︷︷ ︸
Pα1

+z
(2)
2,t︸︷︷︸
P 0

(30)

for t=1, 2,· · ·,T2.
Then, based on (29),(30), each user decodes c2,t by treating

the other signals as noise, and then proceeds to reconstruct
{ĉ(a)

1,t }
T1
t=1. User 1 combines each ĉ(a)

1,t with its corresponding
observation y

(1)
1,t , to introduce T2 independent 2 × 2 MIMO

channels that allow for decoding of all a1,t and a
′

1,t. At the
same time, user 2 subtracts ĉ(a)

1,t from y
(2)
1,t to remove (up to

bounded noise) the interference corresponding to c̄(a)
1,t , which

in turn allows for decoding of b1,t.
Consequently after the end of the second phase, the trans-

mitter can use its knowledge of delayed CSIT to reconstruct
{c̄(a)

2,t }
T2
t=1, and quantize each term to ĉ

(a)
2,t . With E|c̄(a)

2,t |2
.
=

Pα1−α2 , we choose a quantization rate that assigns each ĉ(a)
2,t

a total of (α1−α2) logP + o(logP ) bits, a choice that allows
for E|c̃(a)

2,t |2
.
= 1. Then the T2(α1 − α2) logP + o(logP ) bits

representing {ĉ(a)
2,t }

T2
t=1, are distributed evenly across the set

{c3,t}T3
t=1 which will be transmitted in the next phase.

3) Phase s, 3 ≤ s ≤ S − 1: Phase s (Ts = Ts−1
α1−α2

1−α1

channel uses) is almost identical to phase 2, except for the
relationship between Ts and Ts−1. Specifically the transmit
signal takes the same form as in phase 2

xs,t = ws,t cs,t︸︷︷︸
P

(c)
s

+us,t as,t︸︷︷︸
P

(a)
s

+u
′

s,t a
′
s,t︸︷︷︸

P
(a′)
s

+vs,t bs,t︸︷︷︸
P

(b)
s

,

the rates and powers of the symbols are the same (cf. (28)),
and the received signals y(1)

s,t , y
(2)
s,t (t = 1, · · · , Ts) take the

same form as in (29),(30).
The actions are also the same, where based on (29),(30)

(corresponding now to phase s), each user decodes cs,t by
treating the other signals as noise, and then goes back one phase
and reconstructs {ĉ(a)

s−1,t}
Ts−1

t=1 . As before, user 1 then employs
the estimate ĉ(a)

s−1,t of c̄(a)
s−1,t as an extra observation which,

together with the observation y
(1)
s−1,t − hT

s−1,tws−1,tcs−1,t

attained after decoding cs−1,t, allow for decoding of both
as−1,t and a

′

s−1,t. At the same time, user 2 subtracts ĉ(a)
s−1,t

from y
(2)
s−1,t to remove (up to bounded noise) the interference

corresponding to c̄(a)
s−1,t, which allows for decoding of bs−1,t.

Again as before, after the end of phase s, the transmitter
can use delayed CSIT to reconstruct {c̄(a)

s,t }
Ts
t=1, and quantize

each term to ĉ
(a)
s,t with the same rate as in phase 2 ((α1 −

α2) logP + o(logP ) bits per channel use). Finally the total of
the Ts(α1−α2) logP+o(logP ) bits representing the quantized
values {ĉ(a)

s,t }
Ts
t=1 is split evenly to the set {cs+1,t}Ts+1

t=1 which
will be transmitted in the next phase.

4) Phase S: During the last phase (TS = TS−1
α1−α2

1−α2

channel uses), the transmitter sends

xS,t = wS,tcS,t + uS,taS,t + vS,tbS,t (31)

with power and rates set as

P
(c)
S

.
= P, r

(c)
S = 1− α2

P
(a)
S

.
= Pα2 , r

(a)
S = α2

P
(b)
S

.
= Pα2 , r

(b)
S = α2.

(32)

resulting in received signals of the form

y
(1)
S,t=hT

S,twS,tcS,t︸ ︷︷ ︸
P

+hT

S,tuS,taS,t︸ ︷︷ ︸
Pα2

+h̃T

S,tvS,tbS,t︸ ︷︷ ︸
Pα2−α1

+z
(1)
S,t︸︷︷︸
P 0

,

y
(2)
S,t=gT

S,twS,tcS,t︸ ︷︷ ︸
P

+ g̃T

S,tuS,taS,t︸ ︷︷ ︸
P 0

+gT

S,tvS,tbS,t︸ ︷︷ ︸
Pα2

+ z
(2)
S,t︸︷︷︸
P 0

,

(t=1,· · ·, TS).
As before, both receivers decode cS,t by treating all other

signals as noise. Consequently user 1 removes hT

S,twS,tcS,t

from y
(1)
S,t and decodes aS,t, and user 2 removes gT

S,twS,tcS,t

from y
(2)
S,t and decodes bS,t. Finally each user goes back one

phase and reconstructs {ĉ(a)
S−1,t}

TS−1

t=1 , which in turn allows for
decoding of aS−1,t and a

′

S−1,t at user 1 and of bS−1,t at user 2,
all as described in the previous phases. The DoF achievability
details follow those of scheme X1 (Appendix V).

Table II summarizes the parameters of scheme X2. The last
row indicates the prelog factor of the quantization rate.

TABLE II
SUMMARY OF SCHEME X2 .

Phase 1 Phase 2 Ph.s (3≤s≤S−1) Phase S
Duration T1 T1τ T1τβs−2 T1τβS−3η

r(a) 1 α1 α1 α2

r(a′) 1−α2 α1−α2 α1−α2 -
r(b) α1 α1 α1 α2

r(c) - 1−α1 1−α1 1−α2

P (a)⊥ P Pα1 Pα1 Pα2

P (a′) P 1−α2 Pα1−α2 Pα1−α2 -
P (b)⊥ Pα1 Pα1 Pα1 Pα2

P (c) - P P P
Quant. 1−α2 α1−α2 α1−α2 0



a) DoF calculation for scheme X2: We proceed to add up
the total amount of information transmitted during this scheme.

In accordance to the declared pre-log factors r(a)
s , r

(a
′
)

s and
phase durations (see Table II), and irrespective of whether
α1, α2 fall under case 1 or case 2, we have that

d1=(T1(2−α2)+

S−1∑
i=2

Ti(2α1−α2)+TSα2)/(

S∑
i=1

Ti)

=(T1+T1(1−α2)+

S−1∑
i=2

(Tiα1+Ti(α1−α2))+TSα2)/(

S∑
i=1

Ti)

=(T1+

S−1∑
i=2

(Ti(1−α1)+Tiα1)+TS(1−α2)+TSα2)/(

S∑
i=1

Ti)

(34)

=
T1 + T2 + T3 + · · ·+ TS−1 + TS

T1 + T2 + · · ·+ TS
= 1 (35)

where (34) is due to (26).
Regarding the second user and the declared r(b)

s , for case 1
(2α1 − α2 < 1) we see that

d2 =

∑S−1
i=1 Tiα1 + TSα2∑S

i=1 Ti
= α1 −

TS(α1 − α2)∑S
i=1 Ti

= α1 −
T1τβ

S−3η(α1 − α2)

T1 + T1τ
∑S−3
i=0 βi + T1τβS−3η

(36)

= α1 −
βS−3η(α1 − α2)

1
τ +

∑S−3
i=0 βi + βS−3η

(37)

= α1 −
βS−3η(α1 − α2)

1
τ + 1−βS−2

1−β + βS−3η

= α1 −
βS−3η(α1 − α2)

1
τ + 1

1−β + βS−3(η − β
1−β )

= α1, (38)

where we have used (26) to get (36), where we have used that
2α1 − α2 < 1 implies β < 1, and where we have considered
an asymptotically large S.

When 2α1 − α2 > 1 (β > 1), then (37) gives that

d2 = α1 −
βS−3η(α1 − α2)

1
τ + 1

1−β + βS−3(η − β
1−β )

= α1 −
η(α1 − α2)

1−β+τ
βS−3τ(1−β)

+ (η − β
1−β )

which, in the high S regime, gives

d2 = α1 −
η(α1 − α2)

η − β
1−β

=α1+
1−2α1+α2

2
=

1+α2

2
. (39)

When 2α1 − α2 = 1 (β = 1), then (37) gives that d2 =
α1 − η(α1−α2)

1
τ +S−2+η

which, for large S, gives

d2 = α1 =
1 + α2

2
. (40)

In conclusion, scheme X2 achieves DoF pair D = (1, α1)
(case 1), else it achieves A = (1, 1+α2

2 ).

C. Scheme X3 achieving B = (α2, 1)

This is the simplest of all three schemes, and it consists
of a single channel use2 (S = 1, T1 = 1) during which the
transmitter sends

x = wc+ ua+ vb,

where u is orthogonal to ĝ, v is orthogonal to ĥ, and where
the power and rates are set as

P (c) .
= P, r(c) = 1− α1

P (a) .
= Pα2 , r(a) = α2

P (b) .
= Pα1 , r(b) = α1,

(41)

resulting in received signals of the form

y(1) = hTx + z(1) = hTwc︸ ︷︷ ︸
P

+hTua︸ ︷︷ ︸
Pα2

+ h̃Tvb︸ ︷︷ ︸
P 0

+ z(1)︸︷︷︸
P 0

,

y(2) = gTx + z(2) = gTwc︸ ︷︷ ︸
P

+ g̃Tua︸ ︷︷ ︸
P 0

+ gTvb︸︷︷︸
Pα1

+ z(2)︸︷︷︸
P 0

.

After transmission, both receivers first decode c by treating
the other signals as noise, and then user 1 utilizes its knowledge
of {h, g, ĥ, ĝ} to reconstruct hTwc and remove it from y(1),
thus being able to decode a, while after decoding c, user 2
removes gTwc from y(2), and decodes b. The details for the
achievability of r(a), r(b), r(c) follow closely the exposition in
Appendix V. Consequently the DoF point (d1 = α2, d2 =
1) can be achieved by associating c to information intended
entirely for the second user.

IV. CONCLUSIONS

The work provided analysis and communication schemes for
the setting of the two-user MISO BC with general mixed CSIT.
The work can be seen as a natural extension of the result in
[10] and of the recent results in [1], [7]–[9], to the case where
the CSIT feedback quality varies across different links.
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V. APPENDIX - DETAILS OF ACHIEVABILITY PROOF

We will here focus on achievability details for scheme X1.
The clarifications of the details carry over easily to the other
two schemes.

Regarding r
(c)
s (2 ≤ s ≤ S − 1 - see (15)), we recall that

during phase s, both users decode cs,t (from y
(1)
s,t , y

(2)
s,t , t =

1, · · · , Ts - see (29),(30) ) by treating all other signals as noise.
Consequently for H,{hi,j , gi,j , ĥi,j , ĝi,j ,∀i, j}, we note that

I(cs,t; y
(1)
s,t ,H) = I(cs,t; y

(2)
s,t ,H)

= (1− α1 −∆) logP + o(logP ),

2We will henceforth maintain the same notation as before, but for simplicity
we will remove the phase and time index.



to get

r(c)
s =

1

logP
min{I(cs,t; y

(1)
s,t ,H), I(cs,t; y

(2)
s,t ,H)}

= 1− α1 −∆.

Similarly for the last phase S (see (18),(19),(20)), we note that

I(cS,t; y
(1)
S,t ,H)=I(cS,t; y

(2)
S,t ,H)=(1−α2) logP+o(logP ),

to get

r
(c)
S =

1

logP
min{I(cS,t; y

(1)
S,t ,H), I(cS,t; y

(2)
S,t ,H)} = 1− α2.

Regarding achievability for r(a)
1 = 1, r(a

′
)

1 = 1−α2, r(b)
1 = 1

and r
(b
′
)

1 = 1 − α1 (see (11),(12),(13)), we note that each
element in {c2,t}T2

t=1 has enough bits (recall that r(c)
2 = 1 −

α1 −∆), to match the quantization rate of {ĉ(a)
1,t , ĉ

(b)
1,t}

T1
t=1 that

is necessary in order to have a bounded quantization noise.
Consequently going back to phase 1, user 1 is presented with
T1 linearly independent 2× 2 equivalent MIMO channels of
the form[

y
(1)
1,t−ĉ

(b)
1,t

ĉ
(a)
1,t

]
=

[
hT

1,t

gT
1,t

][
u1,t u

′

1,t

][a1,t

a
′

1,t

]
+

[
z

(1)
1,t +c̃

(b)
1,t

−c̃(a)
1,t

]
(t = 1, 2, · · · , T1), where again we note that the described
quantization rate results in a bounded equivalent noise, which

then immediately gives that r(a)
1 = 1 and r

(a
′
)

1 = 1 − α2

are achievable. Similarly for user 2, the presented T1 linearly
independent 2× 2 equivalent MIMO channels[

ĉ
(b)
1,t

y
(2)
1,t−ĉ

(a)
1,t

]
=

[
hT

1,t

gT
1,t

][
v1,t v

′

1,t

][b1,t
b
′

1,t

]
+

[
−c̃(b)1,t

z
(2)
1,t +c̃

(a)
1,t

]
(t = 1, 2, · · · , T1), allow for decoding at a rate corresponding

to r(b)
1 = 1 and r(b

′
)

1 = 1− α1.

Regarding achievability for r(a)
s = α1 + ∆, r(a

′
)

s = α1 −
α2 + ∆, r(b)

s = α1 + ∆ and r
(b
′
)

s = ∆, (2 ≤ s ≤ S − 1 -
see (8),(14), (15)), we note that during phase s, both users can
decode cs,t, and as a result user 1 can remove hT

s,tws,tcs,t

from y
(1)
s,t , and user 2 can remove gT

s,tws,tcs,t from y
(2)
s,t (t =

1, · · · , Ts). As a result user 1 is presented with Ts linearly
independent 2× 2 equivalent MIMO channels of the form[
y

(1)
s,t − hT

s,tws,tcs,t−ĉ(b)s,t
ĉ
(a)
s,t

]
=

[
hT
s,t

gT
s,t

][
us,t u

′

s,t

][as,t
a
′

s,t

]
+

[
z

(1)
s,t +c̃

(b)
s,t

−c̃(a)
s,t

]
(t = 1, · · · , Ts). Given that the rate associated to {cs+1,t}Ts+1

t=1 ,
matches the quantization rate for {ĉ(a)

s,t , ĉ
(b)
s,t}

Ts
t=1, allows for

a bounded variance of the equivalent noise, and in turn for
decoding of {as,t, a

′

s,t}
Ts
t=1 at a rate corresponding to r(a)

s =

α1 +∆ and r(a
′
)

s = α1−α2 +∆. Similarly user 2 is presented
with Ts independent 2× 2 MIMO channels of the form[

ĉ
(b)
s,t

y
(2)
s,t − gT

s,tws,tcs,t−ĉ(a)
s,t

]
=

[
hT
s,t

gT
s,t

][
vs,t v

′

s,t

][bs,t
b
′

s,t

]
+

[
−c̃(b)s,t

z
(2)
s,t +c̃

(a)
s,t

]

allowing for decoding of {bs,t, b
′

s,t}
Ts
t=1 (t = 1, · · · , Ts) at rates

corresponding to r(b)
s = α1 + ∆ and r(b

′
)

s = ∆.

Regarding achievability for r
(a)
S = α2 and r

(b)
S = α2

(see (18),(19),(20)), we note that, after decoding cS,t, user 1
can remove hT

S,twS,tcS,t from y
(1)
S,t , and user 2 can remove

gT

S,twS,tcS,t from y
(2)
S,t , (t = 1, · · · , TS). Consequently during

this phase, user 1 sees TS linearly independent SISO channels
of the form

ỹ
(1)
S,t,y

(1)
S,t−h

T

S,twS,tcS,t=hT

S,tuS,taS,t+h̃T

S,tvS,tbS,t+z
(1)
S,t

(t = 1, · · · , TS) which can be readily shown to support r(a)
S =

α2. A similar argument gives achievability for r(b)
S = α2. �

VI. APPENDIX - PROOF OF OUTER BOUND

We here adopt the outer bound approach in [9] to the
asymmetric case of α1 6= α2. As in [9], we first linearly
convert the original BC in (1a),(1b) to an equivalent BC
(see (43a),(43b)) having the same DoF region as the original
BC (cf. [9]), and we then consider the degraded version
of the equivalent BC in the absence of delayed feedback,
which matches in capacity the degraded BC with feedback
(for the memoryless case), and which exceeds the capacity
of the equivalent BC. The final step considers the compound
and degraded version of the equivalent BC without delayed
feedback, whose DoF region will serve as an outer bound on
the DoF region of the original BC.

b) The equivalent degraded compound BC: Towards the
equivalent BC, directly from (1a),(1b) we have that

y
(1)
t = hT

txt + z
(1)
t

= hT

t

√
PQt

1√
P
Q−1
t xt + z

(1)
t

= hT

t

√
PQtx

′

t + z
(1)
t

=
√
PhT

tutx
1
t +
√
P h̃T

tvtx
2
t + z

(1)
t (43a)

y
(2)
t = gT

txt + z
(2)
t

= gT

t

√
PQtx

′

t + z
(2)
t

=
√
P g̃T

tutx
1
t +
√
PgT

tvtx
2
t + z

(2)
t , (43b)

where

x
′

t , [x1
t x

2
t ]
T ,

1√
P
Q−1
t xt,

where Qt , [ut vt] ∈ C2×2 is, with probability 1, an invertible
matrix, where ut is chosen to be of unit norm and orthogonal
to ĝt, and where vt is chosen to be of unit norm and orthogonal



to ĥt. Furthermore each receiver normalizes to get

y
′(1)
t =

y
(1)
t

hT
tut

=
√
Px1

t +

√
P h̃T

tvtx
2
t

hT
tut

+
z

(1)
t

hT
tut

=
√
Px1

t +
√
P 1−α1h

′

tx
2
t + z

′(1)
t , (44a)

y
′(2)
t =

y
(2)
t

gT
tvt

=
√
Px2

t +

√
P g̃T

tutx
1
t

gT
tvt

+
z

(2)
t

gT
tvt

=
√
Px2

t +
√
P 1−α2g

′

tx
1
t + z

′(2)
t , (44b)

where z
′(1)
t =

z
(1)
t

hT
tut

, h
′

t =
√
Pα1 h̃T

tvt
hT
tut

, z
′(2)
t =

z
(2)
t

gT
t vt

, g
′

t =
√
Pα2 g̃T

tut
gT
t vt

. Consequently
√
Pα1h̃t and

√
Pα2 g̃t have identity

covariance matrices, and the average power of h
′

t, g
′

t, z
′(1)
t and

z
′(2)
t does not scale with P , i.e., in the high-SNR region this

power is of order P 0. With the same CSIT knowledge mapped
from the original BC, it can be shown (see [9]) that the DoF
region of the equivalent BC in (44a)(44b) matches the DoF
region of the original BC in (1a)(1b).

Towards designing the degraded version of the above
equivalent BC, we supply the second user with knowledge
of y

′(1)
t , and towards designing the compound version of the

above degraded equivalent BC, we add two extra users (user 3
and 4). In this compound version, the received signals for the
first two users are as in (44a)(44b), while the received signals
of the added (virtual) users are given by

y
′′(1)
t =

√
Px1

t +
√
P 1−α1h

′′

t x
2
t + z

′′(1)
t , (45a)

y
′′(2)
t =

√
Px2

t +
√
P 1−α2g

′′

t x
1
t + z

′′(2)
t . (45b)

We here note that by definition, h
′′

t and g
′′

t are statistically
equivalent to the original h

′

t and g
′

t respectively, and that z
′′(1)
t

and z
′′(2)
t are statistically equivalent to the original z

′(1)
t and

z
′(2)
t . Furthermore we note that user 3 is interested in the

same message as user 1, while user 4 is interested in the same
message as user 2. Also we recall that in the specific degraded
compound BC, user 1 knows y

′(1)
t , user 2 knows y

′(2)
t and

y
′(1)
t , user 3 knows y

′′(1)
t , and user 4 knows y

′′(2)
t and y

′′(1)
t .

Finally we remove delayed feedback - a removal known to not
affect the capacity of the degraded BC without memory [12].

We now proceed to calculate an outer bound on the DoF
region of this degraded compound BC which at least matches
the DoF of the previous degraded BC and which serves as an
outer bound on the DoF region of the original BC.

c) Outer bound: We consider communication over the
described equivalent degraded compound BC, letting n be the
large number of fading realizations over which communication
takes place, and letting R1, R2 be the rates of the first and
second user. We also let H[n] , {ht, gt, ĥt, ĝt}nt=1, y

′(i)
[n] ,

{y
′(i)
t }nt=1 and y

′′(i)
[n] , {y

′′(i)
t }nt=1 for i = 1, 2.

Using Fano’s inequality, we have

nR1≤I(W1; y
′(1)
[n] |H[n]) + no(n)

≤n logP+no(logP )−h(y
′(1)
[n] |W1,H[n])+no(n), (46)

as well as

nR1≤I(W1; y
′′(1)
[n] |H[n]) + no(n)

≤n logP+no(logP )−h(y
′′(1)
[n] |W1,H[n])+no(n), (47)

which is added to (46) to give

2nR1 ≤ 2n logP + 2no(logP )− h(y
′(1)
[n] |W1,H[n])

− h(y
′′(1)
[n] |W1,H[n]) + 2no(n)

≤ 2n logP + 2no(logP )

− h(y
′(1)
[n] , y

′′(1)
[n] |W1,H[n]) + 2no(n). (48)

Let

ȳ1 , diag(1,
√
Pα1)

[
1 h

′

t

1 h
′′

t

]−1
[
y
′(1)
t

y
′′(1)
t

]

=

[√
Px1

t√
Px2

t

]
+

 z
′(1)
t h

′′
t −z

′′(1)
t h

′
t

h
′′
t −h

′
t√

Pα1
z
′′(1)
t −z

′(1)
t

h
′′
t −h

′
t


=

[√
Px1

t√
Px2

t

]
+

[
z̄t
0

]
+

[
0
zt

]
(49)

where z̄t =
z
′(1)
t h

′′
t −z

′′(1)
t h

′
t

h
′′
t −h

′
t

, zt =
√
Pα1

z
′′(1)
t −z

′(1)
t

h
′′
t −h

′
t

, and let

z[n] , {zt}nt=1. Consequently

nR1 + nR2 = h(W1,W2)

= I(W1,W2; y
′(1)
[n] , y

′′(1)
[n] , z[n]|H[n])

+ h(W1,W2|y
′(1)
[n] , y

′′(1)
[n] , z[n],H[n])

= I(W1,W2; y
′(1)
[n] , y

′′(1)
[n] , z[n]|H[n])

+ no(logP ) + no(n) (50)

= I(W1; y
′(1)
[n] , y

′′(1)
[n] , z[n]|H[n])

+ I(W2; y
′(1)
[n] , y

′′(1)
[n] , z[n]|H[n],W1)

+ no(logP ) + no(n), (51)

where the transition to (50) uses the fact that the high SNR
variance of z̄t and zt scales as P 0 and Pα1 respectively, which
in turn means that knowledge of {y

′(1)
t , y

′′(1)
t , zt,H[n]}nt=1,

implies knowledge of W1,W2 and of {x1
t , x

2
t}nt=1, up to

bounded noise level.
Furthermore

nR1=h(W1)

=I(W1; y
′(1)
[n] , y

′′(1)
[n] ,z[n]|H[n])+h(W1|y

′(1)
[n] , y

′′(1)
[n] ,z[n],H[n])

=I(W1; y
′(1)
[n] , y

′′(1)
[n] , z[n]|H[n])+no(logP )+no(n), (52)

since again knowledge of {y
′(1)
t , y

′′(1)
t , zt,H[n]}nt=1 provides

for W1 up to bounded noise level.



Now combining (51) and (52), gives

nR2 =I(W2; y
′(1)
[n] , y

′′(1)
[n] , z[n]|H[n],W1)+no(logP )+no(n)

= I(W2; y
′(1)
[n] , y

′′(1)
[n] |H[n],W1)

+I(W2; z[n]|y
′(1)
[n] , y

′′(1)
[n] ,H[n],W1)+no(logP )+no(n)

=h(y
′(1)
[n] , y

′′(1)
[n] |H[n],W1)−h(y

′(1)
[n] , y

′′(1)
[n] |H[n],W1,W2)︸ ︷︷ ︸
no(logP )

− h(z[n]|y
′(1)
[n] , y

′′(1)
[n] ,H[n],W1,W2)︸ ︷︷ ︸
no(logP )

+ h(z[n]|y
′(1)
[n] , y

′′(1)
[n] ,H[n],W1)︸ ︷︷ ︸

≤h(z[n])

+no(logP ) + no(n)

≤h(y
′(1)
[n] , y

′′(1)
[n] |H[n],W1)+h(z[n])+no(logP )+no(n)

≤h(y
′(1)
[n] , y

′′(1)
[n] |W1,H[n]) + nα1 logP

+ no(logP ) + no(n),

which is combined with (48) to give

2nR1 + nR2 ≤ 2n logP + nα1 logP + no(logP ) + no(n),
(53)

which in turn proves the outer bound

2d1 + d2 ≤ 2 + α1, (54)

as described in (6b). Finally interchanging the roles of the two
users and of α1, α2, gives

d1 + 2d2 ≤ 2 + α2. (55)

Naturally the single antenna constraint gives that d1 ≤ 1, d2 ≤
1. �
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