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Abstract

In this paper we improve a human detector by means
of crowd density information. Human detection is espe-
cially challenging in crowded scenes which makes it im-
portant to introduce additional knowledge into the detec-
tion process. We compute crowd density maps in order
to estimate the spatial distribution of people in the scene
and show how it is possible to enhance the detection re-
sults of a state-of-the-art human detector using this infor-
mation. The proposed method applies a self-adaptive, dy-
namic parametrization and as an additional contribution
uses scene-adaptive learning of the human aspect ratio in
order to reduce false positive detections in crowded areas.
We evaluate our method on videos from different datasets
and demonstrate how our system achieves better results
than the baseline algorithm.

1. Introduction

Automatic detection and tracking of people in video data
is a common task in the research area of Video Surveillance
and its results lay the foundations for a number of more
complex applications such as mugging detection, sports
analysis or traffic safety. Many tracking algorithms use
the “Tracking-by-detection” paradigm which estimates the
tracks of individual objects based on a previously computed
set of object detections. Tracking methods based on these
techniques are manifold and include e.g. graph-based ap-
proaches ([11], [15]), particle filtering frameworks ([3]) and
methods using Random Finite Sets ([6]).

Although there are different approaches to the tracking
problem, all of them rely on efficient detectors which have
to identify the position of persons in the scene while pre-
venting to generate too many false detections (clutter) in ar-
eas without people. Techniques based on background sub-

traction such as [10] are widely applied thanks to their sim-
plicity and effectiveness but fail in crowded scenes where
individual people cannot be distinguished from each other.

While significant recent improvements have been made
in the field of object detection and human recognition,
crowded scenes remain particularly challenging because of
the partial occlusions between individuals. Recent works
therefore typically focus on exploiting global level con-
straints to improve detection or tracking results in crowded
scenes [16, 2, 17]. For example, in [2], information about
the crowd flow and the scene layout are used to impose con-
straints for the tracking algorithm.

Similarly, crowd density measures can provide valuable
and additional information to enhance person detection in
crowded scenes. For instance, in [12], the number of per-
sons is introduced as prior information to the detection step
which is formulated as a clustering problem with a known
number of clusters. But counting people is by itself a com-
plex task in presence of crowds and occlusions. Besides,
using the number of people as a crowd measure has the limi-
tation of giving only global information for the entire image
and discarding local information about the crowd.

We therefore resort to crowd information at a local level
by computing crowd density maps. This solution is indeed
more appropriate as it enables both the detection and the
location of potentially crowded areas. To the best of our
knowledge, only one work [17] has investigated this idea
using an energy formulation. However, the authors use the
confidence scores from person detection as input to the den-
sity estimation which does not introduce complimentary in-
formation into the process. In addition, a learning step with
a given set of human-annotated ground truth detections is
required, which makes the system not fully automatic.

In contrast to the previous work, we intend to demon-
strate in this paper the effectiveness of an automatic crowd
description provided by crowd density maps in order to en-
hance human detection results. The proposed crowd density
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Figure 1. Exemplary human detections using the part-based model
from [7]: Blue boxes describe object parts which also contribute
to the overall detection (red).

map is typically based on using local features as an obser-
vation of a probabilistic crowd function. A feature tracking
step is involved in the crowd density process to alleviate the
effects of feature components irrelevant to the crowd. For
person detection, we apply a part-based model that has been
proposed in [7]. Since in crowded scenes, occlusions can
occur which hamper the detector’s accuracy, we show how
the estimated crowd density can overcome this problem. As
another contribution of this paper, we design a correction
filter based on the aspect ratio of a person in order to deal
with false positive detections of wrong size.

The remainder of the paper is organized as follows: In
the next section, we introduce the human detector we use.
Details on our crowd density framework are given in Sec-
tion 3 while Section 4 explains how we use this information
together with an aspect ratio-based correction filter in order
to improve detection results. A detailed evaluation of our
work follows in Section5. Finally, we briefly conclude and
give an outlook on possible future works.

2. Human Detection

Human detection is a common problem in Computer Vi-
sion as it is a key technology to provide a semantic under-
standing of video data. Accordingly, it has been studied in-
tensively and different approaches have been proposed ([5]
[7]) which are often gradient-based.

In our work we use the well-known part-based model
from [7]. It is based on histograms of oriented gradients
(HoG) [5] and marks the current state-of-the-art. The de-
tector uses a feature vector over multiple scales and a num-
ber of smaller parts within the region of interest (RoI) to get
additional cues about an object (see Figure 1). A pyrami-
dal extension identifies in a early stage which regions of an
image are likely to contain a person and which areas can be
discarded in order to speed-up the detection process. In this
work we use the implementation from [8] which is trained
on samples of the INRIA and PASCAL Person datasets.

The output of the detector is a set of RoIs for a given de-
tection threshold. These are processed by an additional non-
maxima suppression (NMS) step. In the baseline method,
regions with high detection scores are kept while detections

overlapping with these more than a certain degree are re-
moved.

While this detector works generally well, as other meth-
ods it has weaknesses in crowded scenes with occlusions.
In order to adapt the detector to these situations, it is impor-
tant to include additional information about crowds in the
scene. In the following, we present details on our proposed
approach on crowd density estimation.

3. Crowd Density Map Estimation
An illustration of the density map modules is shown in

Figure 2. The remainder of this section describes each of
these system components.

3.1. Local features extraction

One of the key aspects of crowd density measurements
is crowd feature extraction. Under the assumption that re-
gions of low density crowd tend to present less dense lo-
cal features compared to a high-density crowd, we propose
to extract local feature points as a description measure of
the crowd. In our work, we test different types of features
for their performance: Features from Accelerated Segment
Test (FAST) [19], Scale-Invariant Feature Transform (SIFT)
[14], and Good Features to Track (GFT) [21].

FAST was proposed for corner detection in a reliable
way. It has the advantage of being able to find small regions
which are outstandingly different from their surrounding
pixels. Besides, the use of this feature is motivated by the
derived results in [4], showing reliable detection of crowded
regions from aerial images using FAST. SIFT is another
well-known texture descriptor which defines interest point
locations as maxima/minima of the difference of Gaussians
in scale-space. Under this respect, SIFT is rather indepen-
dent on the perceived scale of the considered object which
makes it interesting for crowd measurements. These two
aforementioned features are compared to the classic “Good
Features to Track” feature detector [21], which is based on
the detection of corners containing high frequency informa-
tion in two dimensions.

3.2. Local features tracking

Using the extracted features directly to estimate the
crowd density map without a feature selection process
might incur at least two problems: firstly the high number of
local features increases the computation time of the crowd
density. Secondly and more important, the local features
contain components irrelevant for crowd density (e.g. back-
ground). To reduce this effect, motion information is used.

Motion estimation is performed using the Robust Local
Optical Flow (RLOF) [20], which computes very accurate
sparse motion fields by means of a robust norm1.

1download at www.nue.tu-berlin.de/menue/forschung/projekte/rlof
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Figure 2. Illustration of the proposed crowd density map estimation using local features extraction: (a) Exemplary frame, (b) Local feature
points (in this case by FAST algorithm), (c) Feature tracks, (d) Distinction of moving (green) and static (red) features - red features at the
lower left corner are due to text overlay in the video, (e) Estimated crowd density map

However, a common problem in local optical flow esti-
mation is the choice of feature points to be tracked. Depend-
ing on texture and local gradient information, these points
often do not lie on the center of an object but rather at its
borders and can thus be easily affected by other motion pat-
terns or by occlusion. While RLOF handles these noise ef-
fects better than the standard KLT feature tracker from [23],
it still is not prone against all errors. This is why motion in-
formation is aggregated to form longterm trajectories.

In every time step, the overall mean motion mt of a
trajectory t is compared to a certain threshold β which is
set according to image resolution and camera perspective.
Moving features are then identified by the relation mt > β
while the others are considered as part of the static back-
ground. The advantage of using trajectories instead of com-
puting the motion vectors only between two consecutive
frames is that the estimate is more robust to noise and the
overall motion information is more accurate. As a result,
the number and position of the tracked features undergo an
implicit temporal filtering step which improves consistency.

3.3. Kernel density estimation

After generating feature tracks to filter out static points,
we define the crowd density map as a kernel density esti-
mate based on the positions of local features. Starting from
the assumption of a similar distribution of feature points on
the objects, the observation can be made that the closer local
features come towards each other, the higher crowd density
is perceived. For this purpose, a probability density func-
tion (pdf) is estimated using a Gaussian kernel density. If
we consider a set of K local features extracted from a given
image at their respective locations {(xi, yi), i ∈ {1..K}}
the density C(x, y) is defined as follows:

C(x, y) =
1√
2πσ

K∑
i=1

exp−(
(x− xi)2 + (y − yi)2

2σ2
) (1)

where σ is the bandwidth of the 2D Gaussian kernel. The
resulting density function is then the crowd density map we
will use for further processing.

4. Improving human detection performance

In this section we propose two extensions for the used
human detector in order to improve its performance in
crowds. Apart from introducing crowd density information,
in Section 4.2 we present an adaptive filtering step which
additionally enhances the results.

4.1. Integration of Crowd Density information

The usage of detection thresholds in many human detec-
tors can cause difficulties in real-world applications. Be-
forehand it is not always clear to the user how to adapt the
algorithm to a new scene and how to choose the threshold
value. While lower values will usually increase the number
of detections and allow recognizing more persons, they will
also increase the number of false positives. On the other
hand, higher thresholds will only detect more reliable can-
didate regions and might cause the detector to miss people
in the scene.

This is especially difficult in heterogeneous scenes with
crowded areas where lower thresholds would be suitable
due to occlusions. However, higher values reduce the num-
ber of false positives in less crowd spaces. It is therefore
desirable to find a way of automatically setting the detec-
tion threshold τ according to the probability that people are
present in a certain position of the image. As shown in Sec-
tion 3, crowd density maps provide exactly this information.
We propose therefore to use them to adjust the detection
threshold according to the local crowd density.

After the detection step, we obtain a set of candidate
RoIs for a given threshold τ : D(τ) = {d1, d2, ..., dn},
di = {x, y, w, h}, where x, y denotes the position of the
RoI and w, h the respective width and height.

Using a pre-defined range of detection thresholds given
by an upper / lower boundary τmax/τmin, we apply the fol-
lowing method of computing a suitable value automatically:

τdyn = τmin + (τmax − τmin) · Ĉ(Di), (2)
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Figure 3. Effects of the proposed correction filter on a frame of the
PETS 2009 dataset [9]: (a) detections without filtering, (b) filtering
according to aspect ratio. While the unfiltered detections might
include too large candidates (red) and also detections comprising
several persons at correct height (yellow), the aspect ratio allows
removing most of them in a simple and elegant manner.

with

Ĉ(Di) =

hi−1∑
j=0

wi−1∑
k=0

C(xi + j, yi + k)

wi · hi
(3)

as the average crowd density value for detection di.
The implementation of this procedure can be effec-

tively done as follows: Firstly, a set of candidate RoIs
Dmin(τmin) is computed for the minimal detection thresh-
old. This set contains all possible detections which can be
extracted for the given threshold range.

To obtain the dynamic threshold τdyn for every candidate
RoI inDmin, the average crowd density Ĉ(Di) is computed
as in (3) for all regions and inserted into (2). Thresholding
using these values then gives a set of result detections which
is post-processed by the same consecutive non-maxima sup-
pression step as in the standard method.

4.2. Filtering detections according to aspect ratio

Due to the part-based nature of the used human detector,
it is possible that certain human parts which actually lie on
different persons are matched together in one candidate RoI
which then comprises all of the objects (highlighted in yel-
low in Figure 3 (a)) or that a region is chosen even though it
is obviously too large to contain a human (shown in red in
Figure 3 (a)). If the score of such a detection is higher than
the scores of the individual objects’ detections, the NMS
step will keep it instead of the correct individual detections
which might otherwise also be recognized. In this case a
false positive detection is thus generated while also a num-
ber of potentially avoidable missed detections decreases the
detection performance. We propose a filtering step in order
to cope with such detections of wrong size:

Given a set of candidate RoIs D = {d1, d2, ..., dn}, we
define:

r = median(
width(di)

height(di)
), i ∈ 1..n (4)

which is computed over all accepted detections. New
detection candidates are only accepted if they deviate less
than a given threshold ∆r (in our experiments, ∆r = 0.15).

As the used NMS step is greedy and overlap-oriented, it
is now possible to filter out an unlikely large region and to
detect smaller objects in the same area which would have
been suppressed otherwise. An example of this correction
filter can be seen in Figure 3 (b).

5. Experimental results
For evaluation, we test our method on videos of the fol-

lowing datasets: PETS 2009 [9], UCF dataset[1] and IN-
RIA dataset[18]. As metrics we use the CLEAR metrics
proposed in [22]. These are split in two parts: the Multi-
Object Detection Accuracy (MODA, N-MODA) and the
Multi-Object Detection Precision (MODP, N-MODP).

The first step in computing the metrics for a set of de-
tection RoIs D = {d1, d2, ..., dn} and the corresponding
ground truth detections G = {g1, g2, ..., gn} is to match
both sets in order to identify which ground truth detections
have been found by the detector. Taking a spatial overlap
ratio between all pairs as input, we use the well-known hun-
garian algorithm [13] for this assignment. As proposed in
[22], a threshold of 0.2 for the overlap ratio prevents assign-
ments between badly matching pairs.

Once the assignment for all frames is done, MODP (t) is
computed as the summed and normalized overlap ratio be-
tween all assigned pairs in the image while N-MODP gives
normalized localization results for the entire sequence.

The N-MODA metric measures the accuracy aspect of
the system’s performance over the video sequence and is
essentially a normalized sum of false positives and missed
detections. Both N-MODP and N-MODA illustrate best
performance results by a value of one while lower values
indicate a worse performance.

For evaluation, the test videos were annotated by hand
(UCF 879 annotation comprises the first 200 frames, INRIA
879-38 I annotation the first 300 frames). Results are given
in table 1. For the baseline algorithm [7], two detection
thresholds (as τmin and τmax) are tested while the proposed
method uses a dynamically chosen threshold between these
values according to the crowd density. Additional tests were
conducted to assess the impact of the correction filter using
the aspect ratio of the detections.

In most cases, the automatic choice of the detection
threshold already gives better results than both configura-
tions of the baseline method but the proposed system using
a dynamically chosen detection threshold and correction by
aspect ratio gives best results for almost all test videos. The
choice of the feature detector in general does not seem crit-
ical with regard to the performance.

Although the PETS2009 sequences provide all the same
view (View 1), they still pose different problems to the de-
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Figure 4. Exemplary visual results show how a crowd-sensitive threshold increases the detection performance compared to the baseline
method while the proposed algorithm using an additional correction filter enhances the results further: (a) baseline algorithm at τmin, (b)
baseline algorithm at τmax, (c) dynamically chosen τ , (d) Proposed method using dynamically chosen τ and correction filter according
to aspect ratio. From Top to bottom: Frames from PETS 2009, UCF 879[1] and INRIA 879-38 I[18]. For PETS and UCF, the proposed
method generates more accurate detections and less clutter compared to the baseline method. Results for INRIA are also visibly better but
due to the camera view, the effect of the correction filter is small.

tector. Changing lighting conditions, shadows and different
crowd densities between the test sequences are challenging
and in all cases, the proposed method improves the detec-
tion results over the baseline method. Due to the higher
crowd density and the tilted camera view, the UCF 879 se-
quence is even more challenging. Accordingly, the abso-
lute detection results do not reach the values for PETS but
the proposed method still enhances the detection consid-
erably compared to the baseline method. For the INRIA
879-38 I sequence, the camera view is almost completely
downward and people are walking very close to the cam-
era which makes their aspect ratio change considerably for
different positions. Additionally, for this special perspec-
tive, many detection candidates comprising the head of one
person and the body of another are generated. As the cor-
rection filter does not apply a-priori knowledge about the
shape of a person but is only trained on previous detections,
it is misled in this situation. Accordingly, in this special
case its contribution is smaller.

Figure 4 shows exemplary visual results which also indi-
cate the performance increase by the proposed method. As
an advantage of our method the proposed extensions do not
need a previous learning phase and can be applied on-line.

6. Conclusion

In this paper we present a strategy of exploiting crowd
density information to enhance human detection. By means
of automatically estimated crowd density maps, the detec-
tion threshold of a human detector can be adjusted accord-
ing to the scene crowd context. In order to cope with false
positive detections of inappropriate size, a dynamically-
learning correction filter exploiting the aspect ratio of de-
tections is proposed. None of the proposed extensions need
a training phase and both can be applied on-line. An exten-
sive evaluation on several datasets shows the effectiveness
of our method. Future works will include enhancements on
crowd density estimation in order to get more accurate den-
sity values which will in return also increase the effect of
the proposed method.
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