
HFSP: Size-based Scheduling for Hadoop
Mario Pastorelli∗, Antonio Barbuzzi∗, Damiano Carra†, Matteo Dell’Amico∗ and Pietro Michiardi∗

∗ EURECOM – Campus SophiaTech, France
Email: pastorel@eurecom.fr,barbuzzi@eurecom.fr,della@linux.it,michiard@eurecom.fr

† University of Verona, Italy
Email: damiano.carra@univr.it

Abstract—Size-based scheduling with aging has, for long,
been recognized as an effective approach to guarantee fairness
and near-optimal system response times. We present HFSP,
a scheduler introducing this technique to a real, multi-server,
complex and widely used system such as Hadoop.

Size-based scheduling requires a priori job size information,
which is not available in Hadoop: HFSP builds such knowledge
by estimating it on-line during job execution.

Our experiments, which are based on realistic workloads
generated via a standard benchmarking suite, pinpoint at a
significant decrease in system response times with respect to
the widely used Hadoop Fair scheduler, and show that HFSP
is largely tolerant to job size estimation errors.

I. INTRODUCTION

The advent of large-scale data analytics, fostered by parallel
processing frameworks such as MapReduce [1], has created
the need to manage the resources of compute clusters that
operate in a shared, multi-tenant environment. Within the
same company, many users share the same cluster because
this avoids redundancy (both in physical deployments and
in data storage) and may represent enormous cost savings.
Initially designed for few and very large batch processing
jobs, data-intensive scalable computing frameworks such as
MapReduce are nowadays used by many companies for pro-
duction, recurrent and even experimental data analysis jobs.
This heterogeneity is substantiated by recent studies [2], [3]
that analyze a variety of production-level workloads.

An important fact that emerges from previous works is
that there exists a stringent need for short system response
times. Data exploration, preliminary analyses and algorithm
tuning on small datasets often involve interactivity, in the
sense that there is a human in the loop seeking answers
with a trial-and-error process. In addition, workflow schedulers
such as Oozie [4] contribute to workload heterogeneity by
generating a number of small “orchestration” jobs. Interac-
tive and orchestration jobs should not wait too long before
being served, even if larger production jobs are in execution.
Commonly, the task of a cluster administrator involves the
manual setup of a number of “pools” to dedicate resources to
different job categories, and the fine-tuning of the parameters
governing resource allocation. This process is tedious, error
prone, and cannot adapt easily to changes in the workload
composition. In addition, it is often the case for clusters to be
over-dimensioned [2]: this simplifies resource allocation (with
abundance, managing resources is less critical), but has the
downside of costly deployments that are left unused for long.

We address the problem of job scheduling, that is how to
allocate the resources of a cluster to a number of concurrent
jobs, and focus on Hadoop [5], the most widely adopted open-
source implementation of MapReduce. We proceed with the
design of a new scheduling protocol that caters both to a fair
and efficient utilization of cluster resources, while striving to
achieve short response times. Our approach satisfies both the
interactivity requirements of “small” jobs and the performance
requirements of “large” jobs, which can thus coexist in a
cluster without requiring manual setups and complex tuning.

Our solution implements a size-based, preemptive schedul-
ing discipline. The scheduler allocates cluster resources such
that job size information – which is not available a-priori – is
inferred while the job makes progress toward its completion.
Scheduling decisions use the concept of virtual time, in which
jobs make progress according to an aging function: cluster
resources are “focused” on jobs according to their priority,
computed through aging. This ensures that neither small nor
large jobs suffer from starvation. The outcome of our work
materializes as a full-fledged scheduler implementation that
integrates seamlessly in Hadoop: we called our scheduler
HFSP, to acknowledge an influential theoretic work [6] in the
size-based scheduling literature.

The contribution of our work can be summarized as follows:
• We design and implement the system architecture of

HFSP (Section III), including a (pluggable) component
to estimate job sizes and a dynamic resource allocation
mechanism that strives at efficient cluster utilization.
HFSP is available as an open-source project.1

• Our scheduling discipline is based on the concepts of
virtual time and job aging. These techniques are con-
ceived to operate in a multi-server system, with tolerance
to failures, scale-out upgrades, and multi-phase jobs – a
peculiarity of MapReduce.

• We reason about the implications of job sizes not being
available a-priori, both from an abstract (Section II) and
from an experimental (Section IV) point of view. Our
results indicate that size-based scheduling is a realistic
option for Hadoop clusters, because HFSP sustains even
rough approximations of job sizes.

• We perform an extensive experiment campaign, where
we compare the HFSP scheduler to a prominent sched-
uler used in production-level Hadoop deployments: the

1https://bitbucket.org/bigfootproject/hfsp



Hadoop Fair Scheduler. For the experiments, we use
PigMix, a standard benchmarking suite that performs real
data analysis jobs. Our results show that HFSP represents
a sensible choice for a variety of workloads, catering both
to interactivity and efficiency requirements.

II. SIZE-BASED SCHEDULING FOR DATA-INTENSIVE
SYSTEMS

Next, we outline the principles of size-based scheduling, in
view of our goal to bring its benefits to a system like Hadoop
MapReduce. In addition, we discuss on the feasibility of such
an approach to job scheduling, when job sizes are not known
a priori, but can only be evaluated approximately.

A. Scheduling

First Come First Serve (FCFS) and Processor Sharing (PS)
are arguably the two most simple and ubiquitous scheduling
disciplines in use in many systems; for instance, the FIFO
and FAIR schedulers in Hadoop are inspired by these two
approaches. In FCFS, jobs are scheduled in the order of their
submission, while in PS resources are divided evenly so that
each active jobs keeps progressing. In loaded systems, these
disciplines have severe shortcomings: in FCFS, large running
jobs can delay very significantly small ones that are waiting to
be executed; in PS, each additional job delays the completion
of all the others.

Essentially, size-based scheduling adopts the idea of giving
priority to small jobs: as such, they will not be slowed down by
large ones. The Shortest Remaining Processing Time (SRPT)
policy, which prioritizes jobs that need the least amount of
work to complete, is the one that minimizes the mean sojourn
time (or response time), that is the time that passes between a
job submission and its completion [7]. Policies like SRPT may
however incur in starvation: if smaller jobs are continuously
submitted, larger ones may never get scheduled. In order to
avoid starvation, a common solution is to perform job aging:
virtually decreasing the size of jobs waiting in the queue, in
order to make sure that they will be eventually scheduled.

Figure 1 compares PS with the SRPT scheduling discipline
with an illustrative example: in this case, two small jobs – j2
and j3 – are submitted while a large job j1 is running. While
in PS the three jobs run (slowly) in parallel, in a size-based
discipline j1 is preempted: the result is that j2 and j3 complete
earlier. It is worth noting that, in this case, the completion time
of j1 does not suffer from preemption: somewhat counter to
intuition, this is often the case for SRPT-based scheduling [8].

B. Impact of Size Estimation Errors

In MapReduce, job size distribution is very skewed, ranging
from few seconds to several hours [2], [3]. These sizes are
difficult to obtain a priori, even though various recent works
tackle the task of estimating MapReduce job sizes [9]–[13]
(we discuss them in more detail in Section V); in addition,
Lu et al. evaluate the impact of estimation errors on size-
based scheduling for synthetic traces [14]. Unfortunately, the
combination of these works is not sufficient to understand

100
usage (%)

cluster

50

10 15 37.5 42.5 50

time
(s)

100
usage (%)

cluster

10 5020 30

50

time
(s)

job 1

job 2

job 3

job 1 job 3job 2 job 1

Fig. 1. Comparison between PS (top) and SRPT (bottom).

which level of estimation errors would be acceptable for size-
based scheduling in our context of extremely diverse job sizes.

To evaluate, at an abstract level, the interplay between esti-
mation errors and performance, we first use a simulation-based
approach. The simulator, which is available as free software,2

abstracts from the details of a full-fledged MapReduce system:
it assumes that jobs can utilize the full cluster capacity, and
that they can be preempted istantaneously. Thus, a job is only
characterized by its submission time and the amount of time
it would need to complete if utilizing the full cluster capacity;
we will lift these assumptions by evaluating our real system
implementation in Section IV. In our simulation, we replay a
24-hour trace made available with the SWIM tool [15], which
comprises 24,442 production jobs at Facebook in 2010, and
has been used to validate other works [16], [17].

We consider estimation errors to be log-normally dis-
tributed: in our simulator, a job having size of s will be
estimated as ŝ = sX , where X is a random variable with
distribution Log-N (0, σ2): the choice of the log-normal dis-
tribution reflects the intuition that an under-estimation ŝ = s/t
(t > 1) is as likely as an over-estimation ŝ = ts; in
Section IV-C, we show experimentally that our estimation
errors are indeed well approximated by such distribution. We
report results for the default simulator settings, which reflect
a heavily-loaded system where aggregated disk bandwidth is
larger than network bandwidth. Details on the simulator and
its parameter space are available in a technical report [18].

Figure 2(b) shows box-plots (that is, the most important
percentiles of a cumulative distribution function) for the mean
sojourn times achieved by SRPT with 100 simulation runs
for each value of σ, comparing it with mean sojourn times
using PS and SRPT without estimation errors. Notice that,
because of the large variance in sojourn times, we plot
them on a logarithmic scale. Since the trace is fixed, what
changes between simulation runs are only estimation errors;
for reference, log-normal distributions with different values
of σ are shown in Figure 2(a). Clearly, in situations of high
load, a FCFS policy performs poorly (results are outside of the
plotted graphs, with a mean sojourn time of 1934 s). Instead,

2https://bitbucket.org/bigfootproject/schedsim



0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
PD

F

σ = 0.125
σ = 0.25
σ = 0.5
σ = 1

(a) Log-normal distributions Log-N (0, σ2).

0 0.125 0.25 0.5 1
σ

101

102

m
ea

n
so

jo
ur

n
tim

e
(s

)

PS
SRPT (no error)

(b) SRPT.

0 0.125 0.25 0.5 1
σ

101

102

m
ea

n
so

jo
ur

n
tim

e
(s

)

PS
SRPT (no error)

(c) SRVT.

Fig. 2. Impact of job size estimation errors on the performance achieved by size-based scheduling disciplines. Given a reference error distribution: i)
size-based scheduling is robust to approximate job sizes; and ii) job aging further mitigates the impact of such errors.

the performance of SRPT is strongly dependent on the error
distribution. When σ = 0.25, where more than half of the
estimations are wrong by a factor of 20% or more, SRPT
largely outperforms PS. For higher values of σ, however,
estimation errors impact scheduling choices, and the sojourn
time dramatically increases.

We find that aging policies effectively counter these short-
comings: even a bad scheduling choice – caused, for example,
by overestimating the size of a job – is, in the long run,
“corrected” by decreasing job size through aging. We verify
our claim by implementing a common aging policy, where
the remaining processing time is decreased by the amount
of work performed in a virtual PS scheduler [6], [19], [20].
This technique, which we label Shortest Remaining Virtual
Time (SRVT), results (in the absence of estimation errors) in
scheduling jobs in series, following the order in which they
would complete with the virtual PS. As shown in Figure 2(c),
the mean sojourn time of SRVT is slightly worse than that
of SRPT in the absence of errors. However, when errors are
present, aging is vastly preferable.

We can conclude that size-based scheduling appears largely
beneficial to systems like Hadoop MapReduce, even in the
presence of large estimation errors; we attribute this to the
fact that job sizes vary by several orders of magnitude in
characteristic workloads, and that this eases the task of a
scheduler that only has to distinguish between jobs having
very different sizes. In addition, job aging mitigates estimation
errors. These findings inspire us in the design of our system,
which is described next.

III. SYSTEM IMPLEMENTATION

Implementing a size-based scheduling protocol in Hadoop
raises a number of challenges. A few of them come from
the fact that MapReduce jobs are scheduled at the lower
granularity of tasks, and that they consist of two separate
phases – MAP and REDUCE – which are scheduled indepen-
dently (Sec. III-A). In addition, job size is in general unknown
a priori: to evaluate it, we develop an estimation module
(Sec III-D) that provides, at first, a coarse estimation of job
size upon submission, and then refines it after the first few

sample tasks have been run. Estimations are used by an aging
module (Sec. III-C) which outputs job priorities; finally the
scheduler (Sec. III-B) uses such priorities to allocate resources
while ensuring that sample tasks are allocated quickly, to
converge rapidly to a more accurate job size estimation. Next,
we introduce existing Hadoop schedulers; we then describe
the components of our system.

A. Hadoop MapReduce

MapReduce, popularized by Google [1] and by Hadoop [5],
is both a programming model and an execution framework.
In MapReduce, a job consists of three phases and accepts
as input a dataset, appropriately partitioned and stored in
a distributed file system. In the first phase, called MAP, a
user-defined function is applied in parallel to input partitions
to produce intermediate data stored on the local file system
of each machine of the cluster; intermediate data is sorted
and partitioned when written to disk. Then, a REDUCE phase
begins. It comprises a SHUFFLE sub-phase, where intermediate
data is pulled by the reducers: data from multiple mappers is
sorted and aggregated to produce output data.

Hadoop Scheduling: In Hadoop, the JOBTRACKER co-
ordinates the worker machines, called TASKTRACKERs. The
scheduler resides in the JOBTRACKER and allocates TASK-
TRACKER resources to running tasks: MAP and REDUCE tasks
are granted independent slots on each machine.3 The scheduler
is called whenever one or more task slots become free, and it
decides which tasks to allocate on those slots.

When a single job is submitted to the cluster, the scheduler
assigns a number of MAP tasks equal to the number of
partitions of the input data. The scheduler tries to assign MAP
tasks to slots available on machines in which the underlying
storage layer holds the input intended to be processed, a
concept called data locality. Also, the scheduler may need
to wait for a portion of MAP tasks to finish before scheduling
subsequent mappers, that is, the MAP phase may execute in

3HFSP is currently implemented for Hadoop version 1, which is currently
the most widely used in production settings [21]; Hadoop version 2 (“YARN”)
uses a different architecture. As we further detail in Section V, we believe
that porting HFSP to YARN would mostly be an implementation effort rather
than a research accomplishment.



multiple “waves”, especially when processing very large data.
Similarly, REDUCE tasks are scheduled once intermediate data,
output from mappers, is available.4 When multiple jobs are
submitted to the cluster, the scheduler allocates available task
slots across jobs.

In this work we consider the Hadoop Fair Scheduler, which
we call FAIR. FAIR groups jobs into “pools” (generally
corresponding to users or groups of users) and assigns each
pool a guaranteed minimum share of cluster resources, which
are split up among the jobs in each pool. In case of excess
capacity (because the cluster is over dimensioned with respect
to its workload, or because the workload is lightweight), FAIR
splits it evenly between jobs. When a slot becomes free and
needs to be assigned a task, FAIR proceeds as follows: if there
is any job below its minimum share, it schedules a task of that
particular job. Otherwise, FAIR schedules a task that belongs
to the job that has received less resources.

B. The Job Scheduler

In our architecture, the scheduler operates on a set of job
priorities that are output by the aging module (Sec. III-C),
which uses job size information provided by the estimation
module (Sec. III-D). Next, we highlight the main issues that
we encountered while implementing our scheduler, and we
motivate our design choices.

Job Preemption: Unlike the abstract protocols shown
in Section II, which schedule full jobs, here scheduling is
performed at the task granularity. From an abstract point of
view, when the priority of a running job is lower than the one
of a waiting task, the running job should be preempted to free
resources for the other. In Hadoop, this can be implemented
either by killing the running tasks of the preempted job, or
by simply waiting for those tasks to complete. Note that
scheduling choices are more critical in situations of high load,
and that the choice of killing running tasks may result in
increasing load even more, because the work done by killed
tasks should be performed again. As such, in this work, we
opt for wait-based preemption.

Job Phases: In MapReduce, a job is composed by a MAP
phase followed (optionally) by a REDUCE phase. We estimate
job size by observing the time needed to compute the first
few tasks of each phase; for this reason we cannot estimate
the length of the REDUCE phase when scheduling MAP tasks.
For the purpose of scheduling choices we consider MAP and
REDUCE phases as two separate jobs. For ease of exposition,
we thus refer to both MAP and REDUCE phases as “jobs”
in the remainder of this section. As we experimentally show
in Section IV, the good properties of size-based scheduling
ensure shorter mean response time for both the MAP and the
REDUCE phase, resulting in better response times overall.

Priority to Training: Initially, the estimation module
provides a rough estimate for the size of new jobs. This
estimate is then updated after the first s sample tasks of a
job are executed. To guarantee that job size estimates quickly

4More precisely, a “slowstart” setting indicates the fraction of mappers that
are required to finish before reducers are awarded execution slots.

converge to more accurate values, the scheduler gives priority
to sample tasks across jobs – up to a threshold of t% of
the total number of slots. Such threshold avoids starvation of
“regular” jobs in case of a bursty job arrival pattern.

Data locality: For performance reasons, it is important
to make sure that MAP tasks work on local data. For this
reason, we use the delay scheduling strategy [16], which
postpones scheduling tasks operating on non-local data for a
fixed amount of attempts; in those cases, tasks of jobs with
lower priority are scheduled instead.

Scheduling Policy: As a result of all the choices described
above, our scheduling policy – which is called whenever a task
slot frees up – behaves as follows:

1) Select eligible jobs: those with tasks waiting to be sched-
uled that conform to the delay scheduling constraints;

2) Sort them according to the priorities obtained from the
aging module;

3) Check if sample tasks are running on less than t% of the
slots, and if one or more eligible jobs need to execute
sample tasks:

a) If so, schedule a sample task from the highest
priority of such jobs;

b) Otherwise, schedule a task from the highest priority
eligible job.

C. Aging Module

The aging module takes as input job size estimates produced
by the estimation module, and outputs a priority for each active
job, which is used by the scheduling module described above.

To do that, we adopt the notion of virtual time, a technique
used in many practical implementations of well-known sched-
ulers [6], [19], [20]. Essentially, we keep track of the amount
of remaining work for each job in a virtual “fair” system,
and update it every time the scheduler is called; job priorities
are then output sorted by amount of remaining work. While
the remaining work does not necessarily reflect accurately the
completion time for queued jobs, the order in which those
jobs complete in virtual time is all that matters for size-based
scheduling to work. As shown at the abstract level in Section II
and experimentally in Section IV, this technique is robust
against inaccurate job size.

Job aging avoids starvation, achieves fairness, and it requires
minimal computational load, since the virtual time does not
incur in costly updates for jobs already in queue [6], [19].

Max-Min Fairness: The estimation module outputs job
sizes in a “serialized form”, that is the sum of runtimes of
each task. As such, the physical configuration of the cluster
does not influence estimated size. In the virtual time, instead,
this becomes a factor: for example, a job requiring only a few
tasks cannot occupy the whole virtual cluster, which has the
same number of compute slots of the real one. We simulate
a Max-Min Fairness criterion to take into account jobs that
request less compute slots than their fair share (i.e., 1/n-th of
the slots if there are n active jobs): a round-robin mechanism
allocates virtual cluster slots, starting from small jobs (in terms
of the number of tasks). As such, small jobs are implicitly



given priority, which reinforces the idea of scheduling small
jobs as soon as possible.

Job Aging: Each job arrival or task completion triggers a
call to the job aging function, which decreases the remaining
amount of work for each job according to the virtual allocation
described above and to the time that has passed from the last
invocation of the aging function. The priorities output by the
module correspond to the remaining amount of work per job,
so that jobs with the least remaining work in the virtual time
will be scheduled first.

Failures: The aging module is robust with respect to
failures, and supports cluster size upgrades: the max-min
fairness allocation uses the information about the number
of slots in the system which is provided by the Hadoop
framework; once Hadoop detects a failure, job aging will be
slower. Conversely, adding nodes will result in faster job aging.

Job Priority and QoS: Our scheduler does not currently
implement a concept of job priority; however, the aging
function can be easily modified to simulate a Generalized
Processor Sharing discipline, leading to a scheduling policy
analogous to Weighted Fair Queuing [22].

D. Job Size Estimation

Size-based scheduling requires knowledge of job size. In
Hadoop, such information is unavailable until a job completes;
however, a first rough estimate of job size can use job
characteristics known a priori such as the number of tasks;
after the first sample tasks have executed, the estimation can
be updated based on their running time.

The estimation component has been designed to result in
minimized response time rather than coming up with perfectly
accurate estimates of job length; this is the reason why sample
tasks should not be too many (our default is s = 5), and
they are scheduled quickly. We stress that the computation
performed by the sample tasks is not thrown away: the results
computed by sample tasks are used to complete a job exactly
as those of regular tasks.

1) Initial Estimation: In Hadoop, the number of MAP
and REDUCE tasks each job needs is known a priori. In
turn, each MAP task processes an input split: data essentially
residing on a single, fixed-size, HDFS block. Our first job size
approximation is therefore directly proportional to the number
of tasks per job.

The size of a MAP (resp. REDUCE) job with k tasks is,
at first, estimated as ξ · k · l, where l is the average size
of past MAP (resp. REDUCE) tasks, and ξ ∈ [1,∞) is a
tunable parameter that represents the propensity the system
has to schedule jobs of unknown size. At the extreme ξ = 1,
new jobs are scheduled quite aggressively based on the initial
estimate, with the possible drawback of scheduling particularly
large jobs too early. More conservative choices of ξ > 1 avoid
this problem, but might result in increased response times by
scheduling jobs later. We note that particularly small jobs, with
s or less tasks, are scheduled immediately and finish in the
training phase.

2) MAP Phase Size: It has been observed, across a variety
of jobs, that MAP task execution times are generally stable
and short [16], [17]. It is thus reasonable to perform job size
estimation using only s sample tasks, albeit runtime skew may
induce inaccurate size estimation. We recall here that the aging
module described above does not require perfect accuracy.

Our estimation uses a measure of the execution time σi,j
for each sample task j of job i. For each job, we obtain an
estimate of the MAP phase size by multiplying the average
(sample) task runtime by k, which is the number of MAP
tasks for the estimated job.

Data Locality: A MAP sample task could perform worse
than normal due to network latencies if operating on non-local
data. However, since the sample tasks are between the first to
be scheduled, there is a larger choice of blocks to process,
making the need of operating on remote data less likely. In
combination with the delay scheduling strategy described in
Section III-B, we found that data locality issues on sample
tasks, as a result, are negligible.

3) REDUCE Phase Size: The REDUCE phase can be broken
down in two parts: SHUFFLE time – needed to move and merge
data from mappers to reducers – and the execution time of the
REDUCE function, which can only start when the SHUFFLE
phase has completed.

Size of SHUFFLE: As soon as a REDUCE task is sched-
uled, it starts pulling data from the mappers; once data from
all mappers is available, a global sort is performed by merging
all the mappers’ output. Since each mapper output is already
locally sorted, a linear-time merge step is sufficient.

Thus, an approximate duration of the SHUFFLE phase can be
computed as follows. For each of the s sample REDUCE tasks
of a job, we measure the time required for their SHUFFLE
phase to complete. This is given by the difference between
the moment a task executes the REDUCE function, and the
moment the same task was scheduled in the training module.
The estimated SHUFFLE time of the entire REDUCE phase is
then the weighted average of the individual SHUFFLE times of
the sample tasks multiplied by the total number of REDUCE
tasks of the job, where the weights are the normalized input
data size to each sample task.

Execution Time: The execution time of the REDUCE
phase is evaluated analogously to the MAP phase described
before. However, REDUCE tasks can be orders of magnitude
longer than MAP tasks, therefore we aim at providing an
estimate of the duration of the sample tasks before their
completion. In particular, we set a timeout ∆. If a sample
task j of job i is not completed by the timeout, its estimated
execution time will be σ̃i,j = ∆

pi,j
, where pi,j is the progress

done during the execution stage. The progress of a task is
computed as the fraction of data processed by a REDUCE task
over the total amount of its input data.

Once we obtain the size (or an estimation of it) for each
sample task, we compute the total execution time using the
same procedure described in Section III-D2. The final estimate
of the whole REDUCE phase is obtained by adding the
estimated SHUFFLE time to this estimated execution time.



IV. EXPERIMENTS

This Section focuses on a comparative analysis between
the FAIR and HFSP schedulers. After evaluating the global
performance of the two schedulers, we focus on the estimation
error as output by our size estimation module.

A. Experimental Setup

We used a cluster composed by 36 TASKTRACKER ma-
chines with 4 CPUs and 8 GB of RAM each. We configured
Hadoop according to advised best practises [23], [24]: the
HDFS block size is 128 MB, with replication factor of 3;
each TASKTRACKER has 2 map slots with 1 GB of RAM
dedicated to each and 1 reduce slots with 2 GB of RAM. In
total, our cluster has 72 MAP slots and 36 REDUCE slots. The
slowstart factor is configured to start the REDUCE phase for a
job when 95% of its MAP tasks are completed.

HFSP operates with the following parameters: the sample
set size s for both MAP and REDUCE tasks is set to 5; the
∆ timeout to estimate REDUCE task size is set to 10 seconds;
we schedule aggressively jobs that are in the training phase,
setting ξ = 1 and t = 100%. The FAIR scheduler has been
configured with a single job pool.

Workloads: We generate workloads using PigMix [25],
a benchmarking suite used to test the performance of Apache
Pig releases. PigMix is appealing to us because, much like
its standard counterparts for traditional DB systems such as
TPC [26], it generates realistic datasets with properties such
as data skew, and defines queries inspired by real-world data
analysis tasks.

We generated four datasets of sizes respectively 1 GB, 10
GB, 40 GB and 100 GB. Job arrival follows a Poisson process,
and jobs are generated by choosing uniformly at random a
query between the 17 defined in PigMix, and applying it to
one of the datasets according to a workload-defined probability
distribution. We evaluate two workloads:

• SMALL: this workload is inspired by the Facebook 2009
trace observed by Chen et al. [17], where a majority
of jobs are very small. The mean interval between job
arrivals is µ = 30 s.

• LARGE: this workload is predominantly composed of
relatively heavy-duty jobs. In this case, the mean interval
between jobs is µ = 120 s.

In Table I, we report the probability distribution for choos-
ing a particular dataset size; we remark that PigMix queries
operate on different subsets of the generated datasets, resulting
in a variable number of MAP/REDUCE tasks. Each workload
is composed of 100 jobs, and both HFSP and FAIR have been
evaluated using the same jobs, the same inputs and the same
submission schedule.

We have additional results – not included here for lack of
space – that confirm our results on different platforms (Ama-
zon EC2 and the Hadoop Mumak emulator), and with different
workloads (synthetic traces generated by SWIM [17]). They
are available in a technical report [27].

TABLE I
JOB SIZES IN OUR EXPERIMENTAL WORKLOADS.

Dataset size Map tasks Workload
SMALL LARGE

1 GB < 5 65% 0%
10 GB 10− 50 20% 10%
40 GB 50− 150 10% 60%

100 GB > 150 5% 30%

TABLE II
MEAN SOJOURN TIME (MST) AND MEAN LOAD.

Workload MST (s) Mean Load
FAIR HFSP FAIR HFSP

SMALL 63 53 2.26 1.99
LARGE 2,291 544 16.80 4.60

B. Macro Benchmarks

In order to evaluate the overall performance of our system,
we compare FAIR with HFSP on sojourn time – the interval
between a job’s submission and its completion – and load,
in terms of number of pending jobs (i.e., those that have
been submitted and not yet completed). Table II shows mean
sojourn time (across all jobs) and mean load (over the duration
of the experiment) for our two workloads.

In the SMALL workload, HFSP decreases the mean sojourn
time by around 16%. By observing the empirical cumulative
distribution function (ECDF) of sojourn times in Figure 3(a),
we notice larger differences between FAIR and HFSP for jobs
with longer sojourn times (note the logarithmic scale on the
x axis). In this workload, the system is on average loaded
with around 2 pending jobs (see Table II); since these jobs are
often small, the system is generally able to allocate all tasks of
pending jobs, resulting in analogous scheduling choices (and
therefore sojourn time) for both FAIR and HFSP. However,
when system load is higher, HFSP outperforms FAIR.

Our results are strikingly different for the LARGE workload
(Figure 3(b)), where the mean sojourn time with HFSP is less
than a quarter of the one with FAIR. In this workload, most
jobs require several task slots, and complete more quickly
since HFSP awards them the entire cluster (if needed) when
they are scheduled. Instead, the sharing strategy of FAIR has
the drawback of increasing the sojourn time of all jobs. MAP
phases of most jobs complete earlier in HFSP, making it
possible to schedule REDUCE phases sooner than with FAIR.
As a result, with HFSP, 30% of jobs complete within 100
seconds from their submission, while in the same time window
FAIR only completes 2% of them; after 1,000 seconds from
submission, 90% of jobs are completed with HFSP while only
15% are completed with FAIR.

Scheduling choices are more critical when the cluster is
loaded by jobs that require many resources, and the difference
between the SMALL and LARGE workloads exemplifies this
clearly. Figure 3(c) shows the evolution of load run on the
LARGE workload: even if the job submission schedule for
HFSP and FAIR is the same, load is promptly decreased in
HFSP by focusing resources on single jobs. The fact that



101 102 103

Sojourn Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
E

C
D

F

HFSP
FAIR

(a) Sojourn time for the SMALL workload.

101 102 103 104

Sojourn Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

HFSP
FAIR

(b) Sojourn time for the LARGE workload.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time (h)

0

5

10

15

20

25

30

35

L
oa

d
(p

en
di

ng
jo

bs
)

HFSP
FAIR

(c) Cluster load for the LARGE workload.

Fig. 3. Macro benchmark results.

scheduling becomes more critical in situations of high load
is indeed confirmed by our simulation results [18].

These results allow us to conclude that HFSP performs bet-
ter than FAIR in two very different workloads; the advantage is
more pronounced when the job and workload size is large with
respect to the cluster size. In that case, scheduling decisions
become critical, and the inefficiencies of simple fair sharing
become apparent.

C. Estimation Errors and Sojourn Times

We have shown that HFSP outperforms FAIR, in particular
when applied to clusters with high load and heavy jobs.
Next, we characterize estimation errors we measured in our
experiments and discuss their impact on job sojourn times,
in light of our initial analysis of scheduling performance,
discussed in Section II-B.

In our experiments, task times are clearly skewed. Figure 4
shows the distribution of task times measured for all our
experiments: most tasks complete within few tens of seconds,
but around 10% of REDUCE tasks and a non-negligible number
of MAP tasks need orders of magnitude more time to com-
plete. As such, we now characterize the job size estimation
errors induced by our sampling-based technique. As done in
Section II-B, when si is the real size of the job and ŝki the
estimated size obtained using k sample tasks, we define the
estimation error as εki = ŝki /si: ε

k
j < 1 means that job size is

under-estimated, whereas εkj > 1 in case of over-estimation.
Figure 5 shows the ECDF of estimation errors across all

our experiments, for our setting of k = 5 sample tasks.
The empirically observed error distribution maps well to
the log-normal distribution we use in Section II-B. Using a
maximum likelihood fitting method, we approximate the error
distribution as Log-N (µ, σ2): for MAP, µ = 0.0976 and
σ = 0.411; for REDUCE, µ = 0.0878 and σ = 0.228. The
Kolmogorov-Smirnov goodness of fit test does not reject the
fitting at a significance level of 0.05.

It is impossible to evaluate HFSP in a real deployment and
in the complete absence of estimation errors, since execution
time of a given job in Hadoop varies at each run, according
to complex and rather unpredictable system properties [12],
[28]. To isolate the impact of errors on scheduling and sojourn

100 101 102 103 104

Task Time

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

MAP

REDUCE

Fig. 4. Task time distribution.

0.25 0.5 1 2 4
Error

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

MAP

REDUCE

Fig. 5. Estimation error εki for k = 5.

time, we thus turn to our simulation results on SRVT which is
a size-based scheduler with aging induced by fair sharing in
virtual time. It thus can be seen as a model for HFSP which
abstracts from the intricacies of a real system deployment.

In our observed errors, the estimation module tends to
slightly over-estimate job sizes (i.e., µ > 0 and error distribu-
tions are not exactly centered on 1): this results in marginally
slower job aging with respect to the µ = 0 case. Moreover, the
σ values suggest that the impact of size estimation errors on
sojourn time are small: as shown in Figure 2(c) on page 3, for
log-normal error distributions with σ < 0.5, SRVT achieves a
mean sojourn time which is close to the one obtained with no
estimation errors.

We believe that HFSP is likely to be similarly tolerant
to such errors. Indeed, the main difference between SRVT
and HFSP is that the latter operates in an environment that



has to deal with the constraints imposed by Hadoop, such as
data locality, task granularity, and dependencies between MAP
and REDUCE phases (see Section III-B). These constraints
limit the degrees of freedom available to the scheduler, and
result in cases where HFSP will take the same scheduling
choices regardless of estimation errors. With analogous error
distributions and more possibility to deviate from optimal
behavior, SRVT achieves near-optimal mean sojourn time: this
suggests that, while HFSP could certainly benefit from more
sophisticated and accurate size estimation methods, further
improvements in sojourn times are likely to be marginal.

V. RELATED WORK

MapReduce in general and Hadoop in particular have re-
ceived considerable attention recently, both from the industry
and from academia. Since we focus on job scheduling, we
consider here the literature pertaining to this domain.

Theoretical Approaches: Several theoretical works tackle
scheduling in multi-server systems – a recent example is the
work by Moseley and Fox [29]. These works, which are
elegant and important contributions to the domain, provide
performance bounds and optimality results based on simpli-
fying assumptions on the execution system (e.g., jobs with a
single phase). Some works provide interesting approximability
results applied to simplified models of MapReduce [30], [31].
In contrast, we focus on the design and implementation of a
scheduling mechanism taking into account all the details and
intricacies of a real system.

Fairness and QoS: Several works take a system-based
approach to scheduling on MapReduce. For instance, the FAIR
scheduler and its enhancement with a delay scheduler [16]
is a prominent example to which we compare our results.
Several other works [32]–[35] focus on resource allocation
and strive at achieving fairness across jobs, but do not aim
at optimizing sojourn times. Sandholm and Lai [36] study the
resource assignment problem through the lenses of a bidding
system to achieve a dynamic priority system and implement
quality of service for jobs. Kc and Anyanwu [37] address the
problem of scheduling jobs to meet user-provided deadlines,
but assume job runtime to be an input to the scheduler.

Flex [38] is a size-based scheduler for Hadoop which
is available as a proprietary commercial solution. In Flex,
“fairness” is defined as avoiding job starvation and guaranteed
by allocating a part of the cluster according to Hadoop’s
FAIR scheduler; size-based scheduling (without aging) is then
performed only on the remaining set of nodes. In contrast,
by using aging our approach can guarantee fairness while
allocating all cluster resources to the highest priority job, thus
completing it as soon as possible.

Job Size Estimation: Various recent approaches [9]–[12]
propose techniques to estimate query sizes in recurring jobs.
Agarwal et al. [11] report that recurring jobs are around
40% of all those running in Bing’s production servers. Our
estimation module, on the other hand, works on-line with any
job submitted to a Hadoop cluster, but it has been designed

so that the estimator module can be easily plugged with other
mechanisms, benefitting from advanced and tailored solutions.

Complementary approaches: Task size skew is a problem
in general for MapReduce applications, since larger tasks delay
the completion of a whole job; skew also makes job size
estimation more difficult. The approach of SkewTune [39]
greatly mitigates the issue of skew in task processing times
with a plug-in module that seamlessly integrates in Hadoop,
which can be used in conjunction with HFSP. Tian et al. [13]
propose a mechanism where IO-bound and CPU-bound jobs
run concurrently, benefitting from the absence of conflicts on
resources between them. We remark that also in this case it
is possible to benefit from size-based scheduling, as it can
be applied separately on the IO- and CPU-bound queues.
Tan et al. [40], [41] propose strategies to adaptively start
the REDUCE phase in order to avoid starving jobs; also this
technique is orthogonal to the rest of scheduling choices and
can be integrated in our approach. Hadoop offers a Capacity
Scheduler [42], which is designed to be operated in multi-
tenant clusters where different organizations submit jobs to
the same clusters in separate queues, obtaining a guaranteed
amount of resources. We remark that also this idea is comple-
mentary to our proposal, since jobs in each queue could be
scheduled according to a size-based policy such as HFSP, and
reap according benefits.

Framework Schedulers: Recent works have pushed the
idea of sharing cluster resources at the framework level, for
example to enable MapReduce and Spark [43] “applications”
to run concurrently. Monolithic schedulers such as YARN [44]
and Omega [45] use a single component to allocate resources
to each framework, while two-level schedulers [46], [47] have
a single manager that negotiates resources with independent,
framework-specific schedulers. We believe that such frame-
work schedulers impose no conceptual barriers for size-based
scheduling, but the implementation would require very careful
engineering. In particular, size-based scheduling should only
be limited to batch applications rather than streaming or
interactive ones that require continuous progress.

VI. CONCLUSION

Our work was motivated by the realization that MapReduce
has evolved to the point where shared clusters are used for
a wide range of workloads, which include a non-negligible
fraction of interactive data processing tasks. As a consequence,
we have witnessed the raise of deployment best practices
in which long sojourn times – due to a fair sharing of
resources among competing jobs – were compensated by over-
dimensioned Hadoop clusters. In addition, we remarked that
an efficient cluster utilization could be approximated through
a tedious manual exercise, involving the creation of static
resource pools to accommodate workload diversity and an
important tuning effort.

To overcome such limitations, in this work we set off to
study the benefits of a new scheduling discipline that targets
at the same time short sojourn times and fairness among jobs.
We thus proposed a size-based approach to scheduling jobs



in Hadoop, which we called HFSP. Our work brought up
several challenges: evaluating job size on-line without wasting
resources, avoiding job starvation both on small and large jobs,
and guaranteeing short sojourn time despite estimation errors
were the most noteworthy. We solved these problems in the
context of a multi-server system using virtual time and aging,
that is built to be tolerant to failures, scale-out upgrades, and
supports the composite job structure of MapReduce.

We showed that a size-based discipline such as HFSP
performs very well, and that a precise job size information is
not essential for the scheduler to function properly. Our experi-
mental results, in which we compared HFSP to the widely used
FAIR scheduler, indicate that both interactivity and efficiency
requirements were largely met: both small and large jobs do
not starve, and the job sojourn time distribution is consistently
in favor of HFSP. Our work has practical consequences as
well: HFSP is simple to configure, and allows resource “pools”
to be consolidated because workload diversity is intrinsically
accounted for by the size-based discipline.

Our future work is related to job preemption. We are
currently investigating a novel technique to fill the gap between
killing running tasks and waiting for tasks to finish. Indeed,
killing a task too late is a huge waste of work, and waiting
for a task to complete when it just started is detrimental as
well. Our next goal is thus to provide a new set of primitives
to suspend and resume tasks to achieve better preemption.

ACKNOWLEDGEMENTS

This work has been partially supported by the EU projects
BigFoot (FP7-ICT-223850) and mPlane (FP7-ICT-318627).

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. of USENIX OSDI, 2004.

[2] Y. Chen, S. Alspaugh, and R. Katz, “Interactive query processing in
big data systems: A cross-industry study of MapReduce workloads,” in
Proc. of VLDB, 2012.

[3] K. Ren et al., “Hadoop’s adolescence: An analysis of Hadoop usage in
scientific workloads,” in Proc. of VLDB, 2013.

[4] Apache, “Oozie Workflow Scheduler,” http://oozie.apache.org/.
[5] ——, “Hadoop: Open source implementation of MapReduce,” http://

hadoop.apache.org/.
[6] E. Friedman and S. Henderson, “Fairness and efficiency in web server

protocols,” in Proc. of ACM SIGMETRICS, 2003.
[7] L. E. Schrage and L. W. Miller, “The queue m/g/1 with the shortest

remaining processing time discipline,” Operations Research, vol. 14,
no. 4, 1966.

[8] M. Harchol-Balter et al., “Size-based scheduling to improve web per-
formance,” ACM TOCS, vol. 21, no. 2, 2003.

[9] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic resource
inference and allocation for MapReduce environments,” in Proc. of
ICAC, 2011.

[10] ——, “Two sides of a coin: Optimizing the schedule of MapReduce
jobs to minimize their makespan and improve cluster performance,” in
Proc. of IEEE MASCOTS, 2012.

[11] S. Agarwal et al., “Re-optimizing Data-Parallel Computing,” in Proc. of
USENIX NSDI, 2012.

[12] A. D. Popescu et al., “Same queries, different data: Can we predict
query performance?” in Proc. of SMDB, 2012.

[13] C. Tian et al., “A dynamic MapReduce scheduler for heterogeneous
workloads,” in Proc. of IEEE GCC, 2009.

[14] D. Lu, H. Sheng, and P. Dinda, “Size-based scheduling policies with
inaccurate scheduling information,” in Proc. of IEEE MASCOTS, 2004.

[15] Y. Chen et al., “Statistical workload injector for MapReduce,” https:
//github.com/SWIMProjectUCB/SWIM.

[16] M. Zaharia et al., “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. of ACM EuroSys,
2010.

[17] Y. Chen, A. Ganapathi, R.Griffith, and R. Katz, “The case for evaluating
MapReduce performance using workload suites,” in Proc. of IEEE
MASCOTS, 2011.

[18] M. Dell’Amico, “A simulator for data-intensive job scheduling,” EURE-
COM, Tech. Rep. RR-13-282, 2013.

[19] J. Nagle, “On packet switches with infinite storage,” Communications,
IEEE Transactions on, vol. 35, no. 4, 1987.

[20] S. Gorinsky and C. Jechlitschek, “Fair efficiency, or low average delay
without starvation,” in Proc. of IEEE ICCCN, 2007.

[21] Apache, “Hadoop wiki, powered by,” http://wiki.apache.org/hadoop/
PoweredBy.

[22] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM TON, vol. 6, no. 5,
1998.

[23] Apache, “Hadoop fair scheduler,” http://hadoop.apache.org/docs/stable/
fair scheduler.html.

[24] ——, “Hadoop MapReduce JIRA 1184,” https://issues.apache.org/jira/
browse/MAPREDUCE-1184.

[25] ——, “PigMix,” https://cwiki.apache.org/PIG/pigmix.html.
[26] TPC, “Tpc benchmarks,” http://www.tpc.org/information/benchmarks.

asp.
[27] M. Pastorelli et al., “Practical size-based scheduling for MapReduce

workloads,” CoRR, vol. abs/1302.2749, 2013.
[28] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce

clusters using mantri,” in Proc. of USENIX OSDI, 2010.
[29] K. Fox and B. Moseley, “Online scheduling on identical machines using

SRPT,” in In Proc. of ACM-SIAM SODA, 2011.
[30] H. Chang et al., “Scheduling in MapReduce-like systems for fast

completion time,” in Proc. of IEEE INFOCOM, 2011.
[31] B. Moseley et al., “On scheduling in map-reduce and flow-shops,” in In

Proc. of ACM SPAA, 2011.
[32] T. Sandholm and K. Lai, “MapReduce optimization using regulated

dynamic prioritization,” in Proc. of ACM SIGMETRICS, 2009.
[33] M. Isard et al., “Quincy: fair scheduling for distributed computing

clusters,” in Proc. of ACM SOSP, 2009.
[34] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of multiple

resources types,” in Proc. of USENIX NSDI, 2011.
[35] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing

in the data center,” in Proc. of USENIX NSDI, 2011.
[36] T. Sandholm and K. Lai, “Dynamic proportional share scheduling in

Hadoop,” in Proc. of JSSPP, 2010.
[37] K. Kc and K. Anyanwu, “Scheduling Hadoop jobs to meet deadlines,”

in Proc. of CloudCom, 2010.
[38] J. Wolf et al., “FLEX: A slot allocation scheduling optimizer for

MapReduce workloads,” in Proc. of ACM MIDDLEWARE, 2010.
[39] Y. Kwon et al., “Skewtune: mitigating skew in MapReduce applications,”

in Proc. of ACM SIGMOD, 2012.
[40] J. Tan, X. Meng, and L. Zhang, “Delay tails in MapReduce scheduling,”

in Proc. of ACM SIGMETRICS, 2012.
[41] ——, “Performance analysis of coupling scheduler for MapRe-

duce/Hadoop,” in Proc. of IEEE INFOCOM, 2012.
[42] Apache, “Hadoop capacity scheduler,” http://hadoop.apache.org/docs/

stable/capacity scheduler.html.
[43] M. Zaharia et al., “Resilient distributed datasets: a fault-tolerant ab-

straction for in-memory cluster computing,” in Proc. of USENIX NSDI,
2012.

[44] Apache, “Hadoop nextgen MapReduce (yarn),” http://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[45] M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters,” in Proc. of EuroSys, 2013.

[46] B. Hindman et al., “Mesos: a platform for fine-grained resource sharing
in the data center,” in Proc. of USENIX NSDI, 2011.

[47] Apache, “Hadoop on demand,” http://hadoop.apache.org/docs/stable/
hod scheduler.html.


