
2014-ENST-0009

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Davide CANALI
le 12 Février 2014

Plusieurs Axes d’Analyse

de sites web compromis et malicieux

Directeur de thèse : Davide BALZAROTTI

Jury
M. Levente BUTTYÁN, Professeur, CrySyS Lab, Budapest University of Technology and Economics Rapporteur
M. Michael Donald BAILEY, Professeur, Network and Security Research Group, University of Michigan Rapporteur
M. Guillaume URVOY-KELLER, Professeur, Laboratoire I3S, Université de Nice Examinateur
M. Marc DACIER, Professeur Associé, Département Réseaux et Sécurité, EURECOM Examinateur
M. William ROBERTSON, Maitre de Conferences, Systems Security Lab, Northeastern University Examinateur
M. Refik MOLVA, Professeur, Département Réseaux et Sécurité, EURECOM Examinateur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

2014-ENST-0009

EDITE - ED 130

ParisTech Ph.D.

Ph.D. Thesis

to obtain the degree of Doctor of Philosophy issued by

TELECOM ParisTech

Specialisation in « Computer Science and Networking »

Publicly presented and discussed by

Davide CANALI
February 12th, 2014

A Multidimensional Analysis

of Malicious and Compromised Websites

Advisor : Davide BALZAROTTI

Committee in charge
Levente BUTTYÁN, Associate Professor, CrySyS Lab, Budapest University of Technology and Economics Reporter
Michael Donald BAILEY, Associate Professor, Network and Security Research Group, University of Michigan Reporter
Guillaume URVOY-KELLER, Professor, Laboratoire I3S, Université de Nice Examiner
Marc DACIER, Associate Professor, Département Réseaux et Sécurité, EURECOM Examiner
William ROBERTSON, Assistant Professor, Systems Security Lab, Northeastern University Examiner
Refik MOLVA, Professor, Département Réseaux et Sécurité, EURECOM Examiner

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Acknowledgments

I would like to acknowledge the following people, for their help and support
during all the course of my PhD studies.

First, a big thank you goes to my advisor, Davide Balzarotti, for his support
and availability at all times during my doctoral studies. He has been much more
than an advisor during these three years.

I am grateful to all my present and past colleagues for their inspiration and
encouragements, for all the brainstorming sessions and random chats we had dur-
ing (coffee) breaks, as well as for all the experiences, hacking competitions and
projects we completed over these years. I would like to thank Andrea, Andrei, Au-
rélien, Giancarlo, Jelena, Jonas, Leyla, Luca, Mariano, my papers’ co-authors, my
fellow Eurecom colleagues, and the good master students I’ve had the pleasure to
work with: Marco, Maurizio, Roberto.

I would also like to thank professors Michael Bailey, Levente Buttyán, Guil-
laume Urvoy-Keller, Marc Dacier, Will Robertson, and Refik Molva, for agreeing
to be reporters and examiners for my Ph.D. dissertation.

Another special thought goes to the members of my family who unfortunately
have left us during the last year: zio Bruno, nonno Felice, nonna Angelina, and
Crapouille, who has been such a nice and sweet home companion during the last
two and a half years.

A very special thank you goes to Elodie, for all her love, support and patience.
Thanks finally to my parents for their constant support and encouragement dur-

ing my studies: this work is dedicated to them.

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
n° 257007.

v

Abstract

The World Wide Web has become necessary to the lives of hundreds of millions
of people, has allowed society to create new jobs, new marketplaces, new leisure
activities as well as new ways of sharing information and money. Unfortunately,
however, the web is also attracting more and more criminals who see it as a new
means of making money and abusing people’s property and services for their own
benefit.

The World Wide Web is today a very complex ecosystem: for this reason, also
attacks that take place on the Internet can be very complex in nature, and different
from each other. In general, however, web attacks involve four main actors, namely
the attackers, the vulnerable websites hosted on the premises of hosting providers,
the web users who end up being victims of attacks, and the security companies and
researchers who are involved in monitoring the Internet and in trying to spot and
fight malicious or compromised websites.

In this dissertation, we perform a multidimensional analysis of attacks involv-
ing malicious or compromised websites. In particular, the focus of our work is to
observe the phenomenon of compromised and malicious websites from the point
of view of the four actors that are involved in web attacks: attackers, hosting pro-
viders, web users and security companies.
Although the study of malicious code on the web is a rather common subject in
contemporary computer security literature, our approach based on observing the
phenomenon from the points of view of its multiple actors is totally novel, and had
never been adopted before.

In particular, we first analyze web attacks from a hosting provider’s point of
view, showing that current state-of-the-art security measures should allow most
providers to detect simple signs of compromise on their customers’ websites. How-
ever, as we will show in this dissertation, most hosting providers appear to fail in
applying even these basic security practices.
Second, we switch our point of view on the attackers, by studying their modus
operandi and their goals in a large distributed experiment involving the collection
of attacks performed against hundreds of vulnerable web sites.
Third, we observe the behavior of victims of web attacks, based on the analysis of
web browsing habits of the customers of a big security company. This allows us
to understand if it would be feasible to build risk profiles for web users, somehow
similarly to what car insurance companies do for their customers.

vii

Finally, we adopt the point of view of security researchers and focus on finding a
solution to the problem of efficiently detecting web attacks that typically spread on
compromised websites, and infect thousands of web users every day.

viii

Contents

1 Introduction 1
1.1 Malicious Code on the Web . 1
1.2 Attack Model . 3
1.3 Goals . 7
1.4 Contributions . 8

2 Related Work 11
2.1 Web Attacks and Hosting Providers 11
2.2 Behavior of Web Attackers . 13
2.3 The User Point of View . 16

2.3.1 User-based Risk Analysis 16
2.3.2 User Profiling . 18

2.4 Detection of Drive-by-Download Attacks 18
2.4.1 Dynamic approaches . 18
2.4.2 Static approaches . 19
2.4.3 Alternative approaches 21

3 Web Attacks From a Provider’s Point of View 23
3.1 Introduction . 24
3.2 Setup and Deployment . 25

3.2.1 Test Cases . 26
3.2.2 Attack Detection Using State-of-the-Art

Tools . 30
3.2.3 Test Scheduling and Provider Solicitation 32

3.3 Evaluation . 33
3.3.1 Sign-up Restrictions and Security

Measures . 34
3.3.2 Attack and Compromise Detection 36
3.3.3 Solicitation Reactions 39
3.3.4 Re-Activation Policies 42
3.3.5 Security Add-on Services 43

3.4 Lessons Learned, Conclusions 45

ix

Contents

4 Web Attacks From the Attacker’s Point of View 47
4.1 Introduction . 47
4.2 HoneyProxy . 49

4.2.1 Containment . 50
4.2.2 Data Collection and Analysis 51

4.3 System Deployment . 53
4.3.1 Installed Web Applications 54
4.3.2 Data Collection . 55

4.4 Exploitation and Post-Exploitation Behaviors 55
4.4.1 Discovery . 57
4.4.2 Reconnaissance . 60
4.4.3 Exploitation . 60
4.4.4 Post-Exploitation . 63

4.5 Attackers Goals . 65
4.5.1 Information gathering 66
4.5.2 Drive-by Downloads . 67
4.5.3 Second Stages . 67
4.5.4 Privilege Escalation . 68
4.5.5 Scanners . 68
4.5.6 Defacements . 69
4.5.7 Botnets . 70
4.5.8 Phishing . 71
4.5.9 Spamming and message flooding 71
4.5.10 Link Farming & Black Hat SEO 72
4.5.11 Proxying and traffic redirection 72
4.5.12 Custom attacks . 73
4.5.13 DOS & Bruteforcing tools 73

4.6 Conclusions . 74

5 Web Attacks from the User’s Side 75
5.1 Introduction . 75
5.2 Dataset and Experiments Setup 77

5.2.1 Data Labeling . 78
5.2.2 Risk Categories . 78

5.3 Geographical and Time-based Analysis 80
5.3.1 Daily and Weekly Trends 80
5.3.2 Geographical Trends . 81

5.4 Feature Extraction for User Profiling 82
5.5 Evaluation . 86

5.5.1 Feature Correlations . 87
5.5.2 Predictive Analysis . 88

5.6 Discussion and Lessons Learned 89
5.7 Conclusions . 91

x

Contents

6 Detection of Malicious Web Pages by Companies and Researchers 93
6.1 Introduction . 94
6.2 Approach . 96

6.2.1 Features . 96
6.2.2 Discussion . 104

6.3 Implementation and setup . 106
6.4 Evaluation . 108
6.5 Conclusions . 114

7 Conclusions and Future Work 115

8 Résumé 119
8.1 Introduction . 119

8.1.1 Code Malveillant sur le Web 120
8.1.2 Modèle d’Attaque . 122
8.1.3 Objectifs . 126
8.1.4 Contributions . 127

8.2 Fournisseurs d’Hébergement . 128
8.2.1 Introduction . 129
8.2.2 Résultats . 130

8.3 Attaquants . 131
8.3.1 Introduction . 132
8.3.2 Résultats . 133

8.4 Les Utilisateurs . 134
8.4.1 Introduction . 135
8.4.2 Résultats . 136

8.5 Entreprises de Sécurité et Chercheurs 137
8.5.1 Introduction . 138
8.5.2 Résultats . 140

8.6 Conclusions . 141

xi

Contents

xii

List of Figures

1.1 Google Safebrowsing warnings shown to web users every week [35] 2
1.2 A general web attack model . 4
1.3 Biggest publicly documented data breaches since 2004 [46] 6
1.4 Points of view adopted in this dissertation 7

4.1 Architecture of the system - high level. 49
4.2 Architecture of the system - detail. 49
4.3 Overview of the four phases of an attack 56
4.4 Volume of HTTP requests received by our honeypots during the

study. 57
4.5 Amount of requests, by issuing country. 58
4.6 Normalized time distribution for attack sessions 62
4.7 Attack behavior, based on unique files uploaded 66

5.1 Global daily distribution of URL hits. The percentage of malicious
hits is expressed as a fraction of the total hits on the same day. . . 81

5.2 Hourly trends for, respectively, all the hits (upper) and malicious
hits (lower) in our dataset. Malicious hits are expressed as percent-
age of the total hits for the same category of users, in the given
hour. 82

5.3 Hourly global trends for all hits and malicious hits in our dataset,
showing also trends for the two separate sources of malicious hits 83

5.4 Spearman’s Correlation Coefficient between user profile features
and being at risk. 86

5.5 ROC Curve of the risk class classifier applied to the entire dataset 89
5.6 ROC Curve of the risk class classifier applied to the Japanese users

only . 90
5.7 Decile plot for at risk users with respect to the percentage of hits

on adult web sites. 91
5.8 Decile plot for at risk users with respect to the number of different

TLDs visited. 92

6.1 Architecture of the system. 107

xiii

List of Figures

6.2 Analysis of the evaluation dataset. On average, 1,968 pages every
day were confirmed as malicious by Wepawet. 112

8.1 Avertissements de navigation montrées aux internautes chaque se-
maine par Google SafeBrowsing [35] 121

8.2 Un modèle général d’attaque Web 123
8.3 Les vols de données les plus connus et documentés publiquement

depuis 2004 [46] . 125
8.4 Points de vue adoptés dans cette thèse 126

xiv

List of Tables

3.1 Attacks detection using freely available state-of-the-art security
scanning tools. Legend: . 31

3.2 Account verification times. Values represent the percentage of ver-
ification requests on the number of accounts we registered for each
provider. “Before payment” means during the registration process.
“Before activation” means once the client’s billing account is cre-
ated, but the hosting service is not yet active. “After activation”
indicates when the hosting account is active and a website has pos-
sibly already been installed. 35

3.3 The results of our study. Legend: 38
3.4 Results of our evaluation of third party security services. Symbols

and their meanings are the same as in Table 3.3. 44

4.1 Applications installed on the honeypot virtual machines, together
with a brief description and a list of their known and exploitable
vulnerabilities. 55

4.2 Results of clustering . 65

5.1 Average values of different indicators, for users in the three risk
categories. 79

5.2 Average values of several indicators, for users in the top 13 coun-
tries appearing in our dataset. 84

5.3 Comparison of the average values of certain features for safe and
at risk users. Only features having a percentage difference greater
than 25% are shown. 87

6.1 Comparison of the features, divided in four different feature classes,
considered by our work and by the related approaches. 97

6.2 Datasets used for our experiments. 108
6.3 False Negatives (FN) and False Positives (FP) ratios for the tested

classifiers. The class of features related to the URL and host in-
formation has been tested against fewer classifiers because most of
them do not support date attributes. 109

6.4 Results on the validation dataset. 111

xv

List of Tables

6.5 Comparison between Prophiler and previous work. *These are, re-
spectively, models built using only the top 3 and top 5 features ap-
pearing in the decision trees of Prophiler’s original machine learn-
ing models. 113

xvi

List of Publications

The results of this dissertation have been published in peer-reviewed confer-
ences. One of these works is currently under review. The list of contributions is
the following:

– Davide Canali, Marco Cova, Giovanni Vigna, Christopher Kruegel. Pro-
philer: A Fast Filter for the Large-Scale Detection of Malicious Web Pages.
Proceedings of the 20th International World Wide Web Conference (WWW
2011), March 28-April 1, 2011, Hyderabad, India.

– Davide Canali, Davide Balzarotti. Behind the Scenes of Online Attacks: an
Analysis of Exploitation Behaviors on the Web. Proceedings of the 20th
Annual Network & Distributed System Security Symposium (NDSS 2013),
February 24-27, 2013, San Diego, CA, USA.

– Davide Canali, Davide Balzarotti, Aurélien Francillon. The Role of Web
Hosting Providers in Detecting Compromised Websites. Proceedings of the
22nd International World Wide Web Conference (WWW 2013), May 13-17,
2013, Rio de Janeiro, Brazil. (Best paper nominee).

– Davide Canali, Leyla Bilge, Davide Balzarotti. On The Effectiveness of Risk
Prediction Based on Users Browsing Behavior. To appear in Proceedings of
the 9th ACM Symposium on Information, Computer and Communications
Security (ASIACCS 2014), June 4-6, 2014, Kyoto, Japan.

xvii

xviii

Chapter 1

Introduction

In the last few years, the World Wide Web (WWW) has drastically changed
society and the way people live and behave on a daily basis. It evolved from a
set of static hypertext documents serving a restricted community of scientists, as
it was at its birth in 1991, to a worldwide, interconnected network of computing
devices providing sophisticated services, generating content dynamically, and al-
lowing people to communicate, share knowledge, data and money from anywhere
in the world. A large number of online services are now available, allowing people
to make a more efficient and cost-effective use of their time and resources. As a
result, many businesses and services are now available online only, and they often
shrink and even close their retail points of sale in favor of creating better online
shops that cost less and allow for a larger customer base to reach and purchase
their services. By shifting to a web-oriented business model, organizations can
reduce the costs of services by limiting indirect costs and reducing the number of
employees and resources needed, compared to normal shops and agencies. This
often has the advantage of reducing companies’ ecological footprints too (e.g., by
reducing their paper consumption and waste production).

Emails, online banking, online shopping, online tax declarations, and even on-
line voting are only few examples of services that, during the last decade, have
revolutionized the way in which people live, do business, interact with each other
and with institutions. Even if these changes are contributing to improve the quality
of life of the increasing number of people using the web, the Internet is also posing
a number of threats to its users. Specifically, the popularity of the web has also
attracted miscreants who continuously attempt to abuse its services and users to
make illegal profits. This makes any individual, organization, and government a
potential target of different kinds of attacks that can originate from the web.

1.1 Malicious Code on the Web

Along with the increasing popularity of online services, criminals and mali-
cious users are looking with interest at the WWW. In fact, an increasing number of

1

1.1. Malicious Code on the Web

2011 / 01 2011 / 07 2012 / 01 2012 / 07 2013 / 01 2013 / 07
0

100,000,000

200,000,000

300,000,000

Figure 1.1: Google Safebrowsing warnings shown to web users every week [35]

Internet users means to them an increasing number of potential victims, and thus
profits.

Big online services and websites are nowadays storing personal information
of several millions of users: gaining access to such data can prove very profitable
for any criminal [95] and cause serious financial loss or even bankruptcy for the
organization targeted by the attack [106].

In parallel with criminal activities, also governments are starting to exploit
the weaknesses of Internet users and services as a means to gain intelligence, for
defense purposes [32, 59], but also to attack or disrupt services and facilities of
enemy countries [36]. This is often referred to as Cyber Warfare.

In this context, we refer to malicious code as a broad term to describe any
script, system, piece of software or code that can potentially cause undesired ef-
fects on a computing device, by attacking any of its “security attributes”: confi-
dentiality, integrity and availability (often abbreviated “CIA” in the Information
Security community). Examples of such undesired effects can be damaging a sys-
tem, stealing information, disrupting services, or taking full or partial control over
a device.

The web is today the place of choice for malicious code to spread, because
the interconnected nature of the Internet allows to instantly reach large vulnera-
ble attack surfaces and perform large scale attacks that would not be possible in
other scenarios. Also, it often allows skilled attackers to cover their tracks quite
effectively.

This trend is well visible in Figure 1.1, which shows that the number of browser
warnings raised by the SafeBrowsing [105] service – employed by the most pop-
ular browsers on the market (namely Google Chrome, Mozilla Firefox, and Apple
Safari) – had almost a 10-fold increase between January 2012 and September 2013.
This is supported also by reports from security firms, such as Websense, that in its
2013 Threat Report announced a nearly 600% increase in the number of malicious
websites on the Internet [126].

Even more interestingly, according to the Websense report, 85% of websites
hosting malicious code were compromised legitimate hosts. Similar increases in
the number of malicious domains are reported also by Symantec’s 2013 Internet

2

Chapter 1. Introduction

Security Threat Report [117]. Unfortunately, as the report shows, the increase was
not only in the number of malicious domains, but also in the number of vulnerabil-
ities targeting the top five browsers, which raised from 351 in 2011 to a whopping
891 reported total vulnerabilities in 2012.

This explains why, in the last few years, vulnerabilities in web applications and
in web clients have become the most common and successful vector for criminals
to spread malicious code on the web.

At the same time, security companies and big Internet service providers are
spending more and more energies in trying to stop malicious actors from spread-
ing malicious code on the web. Good security practices and resources are often
brought to the attention of users through awareness campaigns, by schools, banks
and national or international initiatives (e.g., the National Cyber Security Aware-
ness Month [23, 27]). Companies typically employ Intrusion Detection (IDS) and
Intrusion Prevention Systems (IPS) [81,102] in order to detect or block the spread-
ing of malicious code on their networks, while service providers and search engines
protect their users by employing blacklists or more sophisticated threat detection
methods (e.g., [13, 105, 120]). Nonetheless, every security measure comes at a
cost, and effectively and efficiently protecting people and organizations from In-
ternet threats is still an open problem. We are facing a cat and mouse game: as
security companies and researchers come up with advanced techniques to detect
and block malicious code, criminals are able to develop increasingly sophisticated
malware, capable of bypassing state-of-the-art protection systems.

1.2 Attack Model

As explained in the beginning of this chapter, the World Wide Web has become
a very complex ecosystem. Its distributed nature, and the wide variety of services
and entities acting in it make it very difficult to enumerate all the possible attack
types that can happen on the web. However, there is a very common attack model
that can be applied to a wide variety of today’s web attacks. We will refer to
this as the web attack model, and we will have the opportunity of analyzing it
in deep detail during the course of this dissertation. Our web attack model takes
into consideration four main actors: attackers, vulnerable websites hosted on the
premises of hosting providers, web users who end up being victim of attacks, and,
finally, security companies and researchers who constantly monitor the Internet in
order to spot malicious or compromised websites.

The typical scenario representing the web attack model we adopt in this thesis
is represented in Figure 1.2. The model involves the four different actors we men-
tioned; however, it is a general representation we can use to describe a number of
specific attack scenarios on the web. In each of these scenarios, all the actors, or
only part of them, interact in a specific manner, that may be completely different
from case to case.

3

1.2. Attack Model

Web user

Attacker

Security Company

Hosting provider

Websites

Figure 1.2: A general web attack model

For example, the attack model depicted in Figure 1.2 can be used to describe
drive-by download attacks. These attacks are today one of the most effective
mechanisms for cyber criminals to infect web users on the Internet. In a typical
drive-by download scenario, attackers host exploits targeting common browsers on
malicious (or legitimate compromised) websites. In particular, drive-by-download
attacks install malware on victim machines by exploiting vulnerabilities in the
user’s browser or in one of the browser’s plugins. In order for this to work, the
attacker usually injects malicious scripting code (typically JavaScript), into a web
page. When a victim visits the malicious page crafted by the attacker, the mali-
cious code is executed, and, if the victim’s browser is vulnerable, the browser is
compromised, typically installing malware on the victim’s machine. This kind of
attacks have become pervasive over the last few years [33, 34].

This kind of attacks allow criminals to install malicious software on a multi-
tude of hosts, with relatively little effort, and to make easy money by selling the
information stolen by these means to other criminals.

Once a victim machine is infected, the malware program connects to a com-
mand and control (C&C) server under the attacker’s control and, typically, waits
for instructions, while stealing private information from the victim. In this fashion,
the infected hosts form a botnet, which is a network of machines under the direct
control of cyber criminals. As recent studies have shown [110, 114], a botnet can
contain hundreds of thousands of compromised hosts, and it can generate signifi-
cant income for the botmaster who controls it. This kind of attacks will be studied

4

Chapter 1. Introduction

in detail in Chapter 6.

Another very common kind of attack that can be modeled by the web attack
model adopted in this dissertation is phishing. In a phishing attack, a criminal sets
up a website or a set of pages that resemble in every detail a target website typ-
ically holding sensitive private user information, such as an online bank, a social
networking website or a web email provider. If a user is successfully tricked into
submitting his or her private information, such as login credentials and credit card
numbers, to the fake website set up by the attacker, the criminal can easily collect
the stolen data and sell it on underground markets.

Both phishing and drive-by download attacks are typically set up by attackers
on compromised websites. In general, the website compromise is itself another
case of web attack, typically consisting in the attacker gaining access to the ma-
chine hosting the website through a vulnerability in a web application (e.g., input
validation vulnerability), or through other means such as stolen credentials. Both
types of attacks can be modeled by our web attack model, by considering only two
actors: the attacker and the provider hosting the target website.

Website compromises are themselves a very general case of web attacks, and
as mentioned, can be carried out through different means. There can be different
reasons pushing criminals to compromise websites. One of these, as explained
before, is to use the compromised infrastructure to mount further attacks against the
visitors of the website (as in the case of drive-by downloads and phishing). In other
cases, though, the attack may be aimed at directly stealing sensitive information
from the compromised host.

Indeed, stealing sensitive data is today one of the most common reasons behind
web attacks. Information, and especially confidential documents or private data
from users and companies, is a very sought after bounty that can be sold at high
prices on black markets or to companies and governments interested in stealing
industrial or military secrets.

Big data breaches always hit the news because of their global reach, typically
affecting accounts and user information at national or worldwide scales.

As Figure 1.3 shows, an incredibly high number of personal records have been
stolen from companies and organizations in the last 9 years. The total number of
stolen records already passed the billion, and this only by taking into account the
biggest data breaches that hit important news channels. Apart from the high num-
ber of data records stolen every year, the last three years have been marked by an
increasing number of attacks exfiltrating very highly sensitive information (shown
in darker colors in the picture), such as email address and password or full credit
card and bank account information. Numbers shown in the graph are, of course,
only a lower bound for the real amount of data that has been leaked from organiza-
tions in the last years, as it takes into account only incidents that have been publicly
reported. Moreover, the graph does not take into account the massive amount of

5

1.2. Attack Model

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

50

100

150

200

250

300

N
um

be
ro

fs
to

le
n

re
co

rd
s

(in
M

ill
io

ns
)

Data breaches by year

Severity of the breach
(by kind of stolen information)

1
2
3
4
5

Figure 1.3: Biggest publicly documented data breaches since 2004 [46]

data that criminals steal from individuals every day, by luring them through phish-
ing and social engineering attacks, or by infecting their computers with malware.

Publicizing web attacks, and especially data breaches, is another trend of some
of today’s cyber attacks. Organizations such as Anonymous [128], for example,
publicly advertise their attacks, sometimes even before the attack takes place. This
is generally for the purpose of hitting the news and diffuse ethical slogans, as the
alleged reason for most of the group’s attacks is “fighting censorship and promot-
ing transparency and freedom of information”. A new word has been defined to
describe such events, hacktivism, from hacker and activism. It has to be noted that,
in contrast with the early days of “old school” hacking, being an hacktivist is not
an elite role, reserved to a few “elected” of members. Instead, anyone can join
hacktivist chats and operations [6] and use free tools to anonymize his own traces
while launching attacks as part of the group.

Finally, as the picture representing our web attack model shows, security com-
panies (or researchers), even if not directly involved in the attacks as the other
actors, are typically present behind the scenes of all web attacks. When not di-
rectly trying to stop attackers or helping out hosting providers and their users, in
fact, these companies continuously monitor the moves of known attackers, scan
websites looking for malicious code and collect information from their clients in
order to timely detect and analyze new Internet threats.

6

Chapter 1. Introduction

Attackers Web users

Hosting providers Researchers
and Security
Companies

Figure 1.4: Points of view adopted in this dissertation

1.3 Goals

Over the last few years, we have been witnessing a rise in the number of web
attacks and compromised websites set up by criminals in order to spread malicious
code. Unfortunately, this trend is not likely to stop, and companies and govern-
ments, now more than ever, are spending a high amounts of money and resources
in trying to combat malicious activities on the Internet.

A successful attack prevention plan starts from a good understanding of the
ecosystem that is subject to the attack – the web, in our case.

This is why, in this dissertation, we tackle the problem of compromised web-
sites and malicious code on the web from four distinct perspectives. These per-
spectives allow us to study the phenomenon of web attacks from the point of view
of each actor that is typically involved in web attacks: the attackers, the web host-
ing providers hosting attacked or infected machines, the researchers or security
companies trying to detect and prevent the attacks, and the users, who represent
the victims of web attacks. Figure 1.4 graphically shows the four points of view
we adopt in this dissertation. Each of them corresponds to a distinct chapter in this
dissertation.

Although the study of malicious code on the web is a rather common subject in
contemporary computer security literature, very few works have studied this topic
by observing it from the points of view of its multiple actors.

The goal of this work is, thus, to provide the reader with a comprehensive view
of the phenomenon of compromised websites and malicious code on the web, and

7

1.4. Contributions

to dive deeper into it from the four different points of view, or “angles” described
above. This will have the benefit of giving a full view of the ecosystem, by observ-
ing it from its different faces. In particular, we will analyze how attackers find their
targets on the Internet, how they exploit them and what are their objectives once
they gain access to a compromised system. Second, we will adopt the point of view
of web hosting providers, the companies actually hosting the websites that typically
end up being infected by criminals. In this case, we will study how they act with
regard to preventing malicious uses of their systems, how they detect compromised
customer accounts, and how they handle incidents and abuse notifications. Third,
we will study how researchers and security companies can proactively scan the In-
ternet and find web pages hosting malicious code, thus, possibly contributing in
shutting down malicious sites before they are able to infect victims. Finally, we
focus our analysis on the behavior of web users, to understand if certain categories
of users are more at risk than others when surfing the web, and, if so, how we can
predict it by looking at their behavior.

1.4 Contributions

This dissertation analyzes the spreading of malicious code on the web during
the last few years, focusing in particular on compromised web sites. Our research
approach allows us to study this phenomenon from the points of view of all the
actors that are commonly involved in it: web users, hosting providers, attackers and
security companies or researchers (see Figure 1.4). Overall, we make the following
contributions to the area of web security:

– We develop a new approach for the collection and analysis of web attacks
and malicious code, based on the creation of a network of fully functional
honeypot websites. This allows us to study and better understand current
web attacks trend, and the reasons behind these actions.

– We present a measurement study on the way shared web hosting companies
handle the security of their customers, on a worldwide scale. This includes
testing whether any attack prevention mechanism is put in place, whether
providers are able to detect obvious signs of compromise on their customers’
accounts, and testing if abuse complaints are handled in a timely and appro-
priate manner.

– We introduce a novel approach that uses static analysis and machine learn-
ing techniques for the large-scale detection of web pages launching drive-
by-download attacks. We further show this approach can be successfully ap-
plied in a real-world deployment with the purpose of efficiently filtering out
benign web pages, and forwarding only suspicious ones to dynamic analysis
systems.

– We develop a novel approach for building usage profiles for web users, based
on their web browsing history. We analyze whether profile characteristics
can be correlated to higher or lower chances of visiting malicious websites,

8

Chapter 1. Introduction

and present a comprehensive study on the effectiveness of risk prediction
based on users’ browsing behaviors.

The rest of the dissertation is organized as follows. Chapter 2 presents an
overview of related work in our area of research, namely web attacks and the
spreading of malicious code on the Internet. Chapter 3 describes web attacks from
the point of view of an attacked hosting provider. Chapter 4 shows insights on
current attack trends and exploitation behaviors on the web, targeting small and
medium sized websites, while Chapter 5 describes novel approaches that can be
used in order to detect users that have high chances of becoming victims of web in-
fections, by analyzing their browsing history and habits. Chapter 6 discusses novel
techniques that can be used to search and detect malicious web pages on the Inter-
net, and presents a system we have developed for this purpose. Finally, Chapter 7
proposes directions for future work and concludes.

9

1.4. Contributions

10

Chapter 2

Related Work

As explained in the previous chapter, the vast majority of cyber attacks are
nowadays carried out through the web. For this reason, in the last few years, web
security has become a very active field of study, both for academia and security
companies. A very large number of research papers, projects, tools, and reports
have been produced in the last years, covering almost the whole spectrum of com-
puter security issues related to the web. In this chapter, we present some of the
most relevant works for this thesis, and in particular projects and publications re-
lated to each of the four “points of view” we adopt in the dissertation, to study the
phenomenon of compromised websites and malicious code on the Internet. Each of
the following sections will present works related to one of the four aforementioned
points of view.

2.1 Web Attacks and Hosting Providers

Several works have studied the threats that affect websites all around the world
as well as users visiting infected pages [86, 92–94]. Research has been focusing
also on the ways in which criminals exploit search engines in order to reach their
victims, by poisoning search results for popular queries [50], and on possible solu-
tions to detect them [66]. The work presented by Moore et al. [75] starts from the
analysis of logs collected from phishing websites to demonstrate that web attack-
ers typically search for vulnerable websites by employing specific search terms on
common search engines. Also, authors find out that websites compromised with
the purpose of hosting phishing pages are much more likely to be re-compromised
in the future if they can be identified by attackers through specific searches on
search engines. John et al. [52], instead, studied how attackers find, compromise
and misuse vulnerable servers on the Internet, by employing honeypots that ac-
tively attract attackers and dynamically generate honeypot pages related to what
they search for, in order to lure them and collect attack logs. This work is closely
related to our analysis of the behavior of web attackers, and will be discussed more
in detail in Section 2.2.

11

2.1. Web Attacks and Hosting Providers

Researchers have also studied how all malicious activities are combined by
criminals in order to be able to conduct attack campaigns infecting tens of thou-
sands of hosts [115].

In a recent paper by Bau et al. [7], the authors evaluate current commercial
tools for detecting vulnerabilities in web applications. This is related to what web
hosting providers can do in order to detect, or even prevent, attacks on their cus-
tomer’s websites. As this work shows, however, the tested commercial tools mainly
rely on black-box approaches, and are not able to find all possible vulnerabilities.

Recently, a web hosting provider [21] announced an improvement of his host-
ing offer by adding free automated website vulnerability scanning, fixing and re-
covery. Such a service is presumably running as a white-box approach on the
network and server side. This service is related to what, in our work, we refer to as
“add-on” security services. Unfortunately, this service was announced when our
experiments were already completed, and it was therefore not possible to integrate
it into our results.

The study most closely related to our analysis of compromised websites from
the hosting providers’ point of view, has been presented by Commtouch in 2012 [16].
In this report, the authors surveyed 600 compromised websites owners and, among
other things, reported on the process by which the websites owners became aware
of the compromise. However, this was done with a publicly advertised pool on
detected compromised websites and may therefore be biased. Also, compromised
website owners often answered questions with “I do not know/I have no idea”, as
they often had little knowledge of website management and system administration.
Another problem was that, in some cases, the owners had no way to access the
website’s logs, or did not know how to do that. One of the interesting findings was
however that the compromise, and the way in which the hosting provider handled
it, often affected the site owner’s willingness to keep hosting his or her website
with the same company. In particular, 28% of the surveyed users said they were
considering moving to another hosting company after the incident, while only 12%
of them said they had become more appreciative of their current provider.

Finally, some past work has been focusing on studying the take-down process
employed in the case of phishing websites [72, 73]. This is related to some of the
findings we report in Section 3.3.3, but is aimed at studying the phenomenon at a
ISP and hosting provider level, rather than analyzing the providers’ responses one
by one and provide details on how they react to abuse notifications. The work pre-
sented by Moore and Clayton [72], in particular, shows that website removal is an
effective way to block phishing websites, but that it is not fast enough to completely
mitigate the problem. As the authors report, and as we confirm in this dissertation
(cf. 3.3.3), some providers are fast at taking down websites, but others react when
it is already too late.

As of today, previous works in this area of research have been mostly focusing
on the analysis of how web hosting accounts and websites get exploited, but very
few works have studied the phenomenon of website compromises from the pro-

12

Chapter 2. Related Work

viders’ point of view. The work presented by Commtouch [16] has been the first
attempt to analyze also web hosting providers’ behaviors when it comes do deal
with such incidents. The study is however based on a survey, it is somehow limited
in its findings and its approach cannot be easily automated. To our knowledge, our
analysis of web hosting providers and their handling of compromised websites is
the first attempt to systematically study, on a worldwide scale, how these providers
act with regard to the security of their customers and of their own infrastructure -
focusing in particular on the detection of compromised accounts, rather than vul-
nerabilities.

2.2 Behavior of Web Attackers

Honeypots are nowadays the tool of choice to detect attacks and suspicious be-
haviors on the Internet. Most of the research done with the purpose of observing or
analyzing attackers’ actions has been carried out by using honeypot systems. The
purpose of these systems is, typically, to collect information related to all actions
performed by an attacker on a vulnerable system, or seemingly vulnerable one, in
form of event logs, network traces, and files that have been created and modified
during the attack. Honeypots can be classified in two categories: client honeypots,
which detect exploits by actively visiting websites or executing files, and server
honeypots, which attract the attackers by exposing one or more vulnerable (or ap-
parently vulnerable) services. The behavior of web attackers can be studied by
employing honeypots of the second type, as in this case we are interested in ob-
serving what attackers do on the server, after a website has been compromised.
Several server-side honeypots have been proposed in the past years, allowing for
the deployment of honeypots for virtually any possible service. In particular, we
can distinguish two main classes of server honeypots: low-interaction and high-
interaction ones. The first class of honeypots only simulates services, and thus can
observe incoming attacks but cannot be really exploited. These honeypots usu-
ally have limited capabilities, but are very useful to gather information about net-
work probes and automated attack activities. Examples of these are honeyd [91],
a framework for virtual honeypots that is able to simulate the networking stack of
different operating systems, Leurre.com [89], a project for the development and
deployment of a distributed honeypot network spanning several countries and col-
lecting network-level attack information, and SGNET [60], a scalable framework
for the deployment of low interaction honeypot networks, where each honeypot is
able to collect almost the same amount of information as a real high interaction
honeypot if dealing with server based code injection attacks.

High-interaction honeypots, on the other hand, present to the attacker a fully
functional environment that can be exploited. This kind of honeypots is much
more useful to get insights into the modus operandi of attackers, but usually comes
with high setup and maintenance costs. Due to the fact that they can be exploited,
high-interaction honeypots are usually deployed as virtual machines, allowing their

13

2.2. Behavior of Web Attackers

original state to be restored after a compromise. Another issue with high interaction
systems is the liability of the honeypot manager for any illicit action or damage that
attackers can cause while abusing the honeypot’s resources. In the study conducted
by Nicomette et al. [80], the authors ran a high interaction SSH honeypot for more
than one year and collected logs of all activities performed by the attackers while
trying to gain access to the machine, and once inside the honeypot. This allowed
them to draw a basic picture of the behaviors of attackers targeting servers running
SSH.

The study of attacks against web applications is often done through the deploy-
ment of web honeypots. In recent years, the scientific and industrial community has
developed and made available several low-interaction web honeypot solutions. The
Google Hack Honeypot [31] has been designed especially to attract attackers that
use search engines to find vulnerable web applications. Glastopf [100] and the
DShield Web Honeypot project [24] are both based on the idea of using templates
or patterns in order to mimic several vulnerable web applications. They emulate a
vulnerable web server hosting many web pages and web applications, thus simu-
lating an attack surface exposing hundreds of vulnerabilities. These tools are also
able to respond to attackers by presenting templates associated with certain request
patterns (e.g. by replying with a fake passwd file if the attacker seems to be trying
to do a local file inclusion looking for the system’s passwd file).

Another interesting approach for creating low interaction web honeypots has
been proposed by John et al. [53]: with the aid of search engines’ logs, the sys-
tem proposed by the authors is able to identify malicious queries from attackers
and automatically generate and deploy honeypot pages responding to the observed
search criteria. Unfortunately, the results that can be collected by low-interaction
solutions are limited to visits from crawlers and automated scripts. Any manual
interaction with the system will be missed, because humans can quickly realize the
system is a trap and not a real functional application. Apart from this, the study by
John et al. [53] collected some interesting insights about automated attacks. For
example, the authors found that the median time for honeypot pages to be attacked
after they have been crawled by a search engine spider is 12 days, and that local file
disclosure vulnerabilities seem to be the most sought after by attackers, accounting
to more than 40% of the malicious requests received by their heat-seeking honey-
pots. Other very common attack patterns were trying to access specific files (e.g.,
web application installation scripts), and looking for remote file inclusion vulnera-
bilities. A common characteristic of all these patterns is that they are very suitable
for an automatic attack, as they only require to access some fixed paths or trying to
inject precomputed data in URL query strings. The authors also proposed a setup
that is similar to the one adopted in our study, but they decided not to implement it
due to the their concerns about the possibility for attackers to use infected honeypot
machines as a stepping stone for other attacks. We explain how we deal with this
aspect in Section 4.2.1.

If one is interested in studying the real behavior of attackers, one has to take
a different approach based on high interaction honeypots. A first attempt in this

14

Chapter 2. Related Work

direction was done by the HIHAT toolkit [78]. This solution allows to transform
arbitrary PHP applications into high-interaction web honeypots by instrumenting
the application’s code with special logging functions, and provides a graphical user
interface to manage and monitor the honeypot. Unfortunately, the evaluation of the
tool did not contain any interesting finding, as it was run for few days only and the
honeypot received only 8000 hits, mostly from benign crawlers.

However, some similar work has been done on categorizing the attackers’ be-
havior on interactive shells of high-interaction honeypots running SSH [80, 97].
Some interesting findings of these studies are that attackers seem to specialize
their machines for some specific tasks (i.e., scans and SSH bruteforce attacks are
run from machines that are different from the ones used for intrusion), and that
many of them do not act as knowledgeable users, using very similar attack methods
and sequences of commands, suggesting that most attackers are actually following
cookbooks that can be found on the Internet. Also, the commands issued on these
SSH honeypots highlight that the main activities performed on the systems were
checking the software configuration, and trying to install malicious software, such
as botnet scripts. As we will describe in Section 4.5, we also observed similar
behaviors in our study.

Part of our study, finally, concerns the categorization of files collected by hon-
eypots. Several papers have been published on how to detect similarities between
source code files, especially for plagiarism detection [12,104]. These systems pro-
pose new ad-hoc metrics for measuring the amount of shared information between
compiled binaries, and to compactly model their structural information. Other
similarity frameworks have been proposed for the detection of similarities between
images and other multimedia formats, mostly for the same purpose.

Unfortunately, when dealing with files collected from web attacks, as explained
in Chapter 4, a good portion of the collected data consists in obfuscated source code
(that renders most plagiarism detection methods useless), binary data or archives.
Also, many of the proposed plagiarism detection tools and algorithms are very
resource-demanding, and difficult to apply to large datasets. These reasons make
the plagiarism detection approaches unsuitable for our needs.

Other approaches have been proposed in order to recover lineage for a given
binary program [49], or to detect similar compiled programs even in case they
employ packing and obfuscation [48]. However, these solutions are specific to
the world of compiled binaries, and mostly suitable for the analysis of malware
samples. Even if they are effective in detecting similarities between binaries, they
have high execution times and cannot be applied in a scenario as generic as ours,
requiring the analysis of many different types of files.

The problem of classifying and fingerprinting files of any type has, however,
been studied in the area of forensics. In particular, some studies based on the idea
of similarity digest have been published in the last few years [57, 103]. These ap-
proaches have been proven to be reliable and fast with regard to the detection of
similarities between files of any kind, being based on the byte-stream represen-
tation of data. We chose to follow this approach, and use the two tools, namely

15

2.3. The User Point of View

ssdeep [57] and sdhash [103], for our work.

As this section showed, there has been a significant amount of research in the
area of web security that focused on how attackers exploit websites and how they
spread malicious code on the Internet. Previous research also covered the develop-
ment of tools, such as honeypots, whose goal is to better understand and analyze at-
tacker’s malicious actions. However, the limitation of most of the studies proposed
so far is that they focused on only one aspect of the phenomenon, e.g., observing
how attackers find and exploit vulnerable websites. This is because all existing
projects used non functional honeypots, providing attackers with fake applications
that cannot be really exploited. This means that all the steps that would commonly
be performed by an attacker after the exploitation will be missed. In Chapter 4,
we instead focus our analysis on two separate aspects: the exploitation phase, in
which we investigate how attacks are performed, and the post-exploitation phase,
in which we analyze what attackers do after they take control of the web appli-
cation. For this reason, the study we present in Chapter 4 is the first large scale
evaluation of the post-exploitation behavior of attackers on the web. This is made
possible by employing a new architecture we developed for this task: a network of
hundreds of fully functional honeypot websites, hosting real vulnerable web appli-
cations, whose aim is to attract attackers and collect information on what they do
during and after their attacks. By collecting the files created and modified during
each attack, moreover, we were able to identify the behavior behind each action
performed both during and after the exploitation of a web application. This allows
us, for the first time, to draw a general picture of the landscape of web attacks
targeting small and medium-size websites.

2.3 The User Point of View

Somehow similarly to the point of view of hosting providers on web attacks and
compromised websites (cf. Chapter 2.1), also the study of these phenomena from a
user’s perspective has not been thoroughly conducted yet, especially in academia.
The main cause of this is the unavailability of data about people’s web browsing
habits and experiences. Thus, the number of studies that tried to understand if there
is any relation between users’ behaviors or characteristics and their probability of
visiting malicious web pages is still very limited. Moreover, most of the existing
studies have been built upon the observation of very limited customer bases, or on
clinical-style case studies based on data collection and surveys on tens or hundreds
of users in a monitored environment [61].

2.3.1 User-based Risk Analysis

One of the first studies that sought to understand the risk factors behind user
infections was carried out by researchers at École Polytechnique de Montréal and

16

Chapter 2. Related Work

Carleton University [61]. This study, which has a similar nature to works that
evaluate medical interventions, examined the interactions among three important
players: the users, the AV software and the malicious software detected on the
system. The authors provided 50 users that accepted to join the experiment with a
laptop that was configured to constantly monitor possible malware infections and
collect information about how the users behaved in such cases. The results of the
experiment show that user behavior is significantly related to infections, but that
demographic factors such as age, sex, and education cannot be significantly related
to risk. Furthermore, innocuous categories of websites such as sports and Internet
infrastructure are associated with a higher rate of infection when compared to other
categories, such as porn and illegal content sites, that common sense traditionally
associates with higher risk. Similarly, and surprisingly, computer expertise seems
to be one of the factors positively related to higher risk of infection.

Onarlioglu et al. [84] studied the behavior of users when they are faced with
concrete Internet attack scenarios. The authors built an online experimental plat-
form that was used to evaluate the behavior of 164 users with different back-
grounds. Their findings confirm that non-technical users tend to fail in spotting
sophisticated attacks, and that they are easily deceived by tricky advertising ban-
ners. On the other hand, they are able to protect themselves as effectively as tech-
nical users when dealing with simple threats.

Maier et al. [68] conducted a study of the security hygiene of approximately
50K users from four diverse environments: a large US research institute, a Euro-
pean ISP, a community network in rural India, and a set of dormitory users of a
large US university. The paper analyzes anonymized network traces, which were
collected from each observed environment for a period that ranges between 4 and
14 days, containing only the first bytes of each connection. The results of the anal-
ysis indicate that having a good security hygiene (i.e., following antivirus and OS
software updates) has little correlation with being at risk. However, on the other
hand, risky behaviors such as accessing blacklisted URLs double the likelihood of
becoming infected with malware. Unlike our work, this paper has the advantage
of being able to monitor all the Internet activity of the users, and thus is not lim-
ited to the analysis of web browsing traffic. However, it considers only malicious
behaviors that overtly manifest themselves at a network level, e.g., sending spam
emails, performing address scans or communications with botnet C&C servers.
For this reason, attacks that produce little traffic, or install themselves on victim’s
machines and remain latent for long periods of time, may have been missed.

Finally, a recent report by TrendMicro and the Deakin University provided an
analysis on the Australian web threat landscape [56]. The report states that, in
average, 0.14% of the web browsing hits collected by the AV company are mali-
cious in nature. One interesting finding is that Australians seem to incur in a higher
percentage of daily malicious hits during holidays and weekends, when compared
to weekdays. Moreover, the percentage of malicious hits rises during night time,
with a peak around 4 am. As explained in Section 5.3.1, these findings are also
confirmed as a worldwide trend by our experiments. Finally, the reported statistics

17

2.4. Detection of Drive-by-Download Attacks

show that one out of eight Australian IP addresses are exposed to web threats, on a
typical day. In our study, instead, we find a higher risk of exposure to web threats
for users in our dataset (19% of at risk users, overall).

Our work is fairly different from these studies in many respects. Compared to
the majority of previous works, we perform our analysis on a much larger dataset
(i.e. three months of data generated by 160K distinct users). Moreover, our analy-
sis does not rely on personal information about the users such as their educational
background, sex and age. We significantly extend the study of the Australian threat
landscape by conducting similar analysis on a worldwide basis. In addition, we per-
formed a more precise and deeper analysis by building user profiles based on over
70 features, and we tried to understand if different risk categories have different
probabilities to end up in malicious web sites.

2.3.2 User Profiling

Olejnik et al. [83] presented a study in which they evaluated the possibility
of fingerprinting users given their past web browsing history. The methodology
the authors adopt to fingerprint users was able to profile 42% out of approximately
380,000 users involved in the study. From the experiment they performed with only
50 web pages, they conclude that categorization information of visited websites
could be a useful parameter to build more accurate user profiles. The results of our
study confirm that categorization information could be used for user profiling.

The problem of user profiling has been largely studied within recommender
systems [22, 70, 71], to help users find topics that are in their interest, while hiding
those topics that are unattractive to them. Therefore, the goals of user profiling in
recommender systems’ research are completely different from ours.

2.4 Detection of Drive-by-Download Attacks

In the last few years, the detection of web pages used to launch drive-by-
download attacks has become an active area of research and several new approaches
have been proposed. In Chapter 6, we will describe the design and implementation
of a fast filter for the large scale detection of malicious web pages. The purpose
of this system is to proactively crawl the web and filter the collected web pages in
search for potentially malicious ones. As such, it can be very useful to researchers
and antivirus companies willing to collect and discover new malicious pages on the
Internet. This section briefly goes through the papers and projects that have been
published in this field of research in recent years.

2.4.1 Dynamic approaches

Dynamic approaches use honeyclient systems to visit web pages and deter-
mine if they are malicious or not. In high-interaction honeyclients, the analysis is
performed by using traditional browsers running in a monitored environment and

18

Chapter 2. Related Work

detecting signs of a successful drive-by-download attack (e.g., changes in the file
system, the registry, or the set of running processes) [76, 92, 107, 124]. In low-
interaction honeyclients, the analysis relies on emulated browsers whose execution
during the visit of a web page is monitored to detect the manifestation of an attack
(e.g., the invocation of a vulnerable method in a plugin) [5, 17, 79].

Both high- and low-interaction systems require to fully execute the content
of a web page. This includes fetching the page itself, all the resources that are
linked from it, and, most importantly, interpreting the associated dynamic content,
such as JavaScript code. These approaches usually yield good detection rates with
low false positives, since, by performing dynamic analysis, they have complete
“visibility” into the actions performed by an attack. The down-side is that this
analysis can be relatively slow, because of the time required by the browser (either
simulated or real) to retrieve and execute all the contents of a web page, taking
from a few seconds to several minutes depending on the complexity of the analyzed
page.

Scalability issues with today’s honeyclient systems (relatively slow processing
speed combined with relatively high hardware requirements) motivated our work
on a filtering system that could be used to quickly scan a large number of web
pages and forward to the dynamic analysis component (e.g., a high interaction hon-
eyclient) only the suspicious ones. The filter we developed, described in Chapter 6,
achieves higher performance by forgoing dynamic analysis (e.g., the interpretation
of JavaScript code), and relying instead on static analysis only.

Other approaches have been proposed, such as the NOZZLE [98] and ZOZ-
ZLE [19] systems by Microsoft Research, that tackle the problem of detecting ma-
licious JavaScript code by instrumenting the browser’s JavaScript engine. These
solutions achieve good accuracy and have the advantage of running inside a nor-
mal browser, but are mostly aimed at detecting one class of attacks (heap spraying)
and still suffer from a non negligible performance overhead, when it comes to an-
alyzing a large number of pages. The paper presenting ZOZZLE [19], however,
claims the system can be employed also as an offline filter for web pages (like Pro-
philer, the solution we present in Chapter 6). In this case, the system would be
able to detect heap spraying JavaScript attacks in a fast and lightweight way. Still,
as the authors claim, the emphasis of ZOZZLE is on very low false positive rates,
which can sometimes imply higher false negative rates. Also, being focused on
heap spraying, ZOZZLE would probably miss some malicious pages using other
types of attack, that Prophiler would be capable of detecting.

2.4.2 Static approaches

Static approaches to the detection of drive-by-download attacks rely on the
analysis of the static aspects of a web page, such as its textual content, features of
its HTML and JavaScript code, and characteristics of the associated URL.

String signatures (i.e., string patterns that are common in malicious code) are
used by traditional antivirus tools, such as ClamAV [14], to identify malicious

19

2.4. Detection of Drive-by-Download Attacks

pages. Unfortunately, signatures can be easily evaded using obfuscation. There-
fore, these tools suffer from high false negatives rates (earlier studies report be-
tween 65% and 80% missed detections [17, 99]), which make them unsuitable for
filtering likely malicious pages. Our filter is also based on static techniques, but
achieves better detection rates by relying on a combination of several characteris-
tics of a web page based on its HTML content, JavaScript code, and other URL
and host features, rather than simple static string patterns. Moreover, our filter can
be more aggressive in labeling a page as malicious. The reason is that incorrect de-
tections are discarded by the subsequent (dynamic) back-end analysis, and hence,
false positives only incur a performance penalty.

Several systems have focused on statically analyzing JavaScript code to iden-
tify malicious web pages [28, 63, 109]. The most common features extracted from
scripts are the presence of redirects (e.g., assignments to the location.href prop-
erty), the presence of functions commonly used for obfuscation/deobfuscation (such
as fromCharCode()), calls to the eval() function, large numbers of string manipula-
tion instructions, abnormally long lines, and the presence of shellcode-like strings.
In our filter, we considerably extend the set of JavaScript features used for detec-
tion by previous works: for example, we detect the presence of sections of code
resembling deobfuscation routines, we take into consideration the entropy of both
the entire script and of the strings declared in it, we identify the number of event
attachments, and we analyze both Document Object Model (DOM) manipulation
functions and fingerprinting functions (such as navigator.userAgent()).

Seifert et al. [109] also use the characteristics of the HTML structure of a web
page as indicators of maliciousness. For example, they consider the visibility and
size of iframe tags and the number of script tags referencing external resources.
We extend this analysis by adding more than ten new features, such as the num-
ber of out-of-place elements (e.g., scripts outside <html> tags), as well as the
percentage of the page occupied by JavaScript code.

Characteristics of URLs and host information have been used in the past to
identify sites involved in malicious activity, such as phishing and scams. Garera
et al. use statistical techniques to classify phishing URLs [30]. Ma et al. [67] use
lexical properties of URLs and registration, hosting, and geographical information
of the corresponding hosts to classify malicious web pages at a larger scale. In
Chapter 6, we discuss the issues involved in applying this approach to detecting
pages involved in drive-by-downloads (opposed to threats such as phishing and
scam pages), and propose a number of new features that are effective in this con-
text.

It is important to observe that we did not simply introduce new detection fea-
tures for the sake of being able to point to a longer feature list. As our experiments
demonstrate, adding these additional features significantly contributes to the im-
proved accuracy of our system.

Several of the detection tools described here have been used as components
of crawler-based infrastructures designed to effectively find malicious web pages,

20

Chapter 2. Related Work

e.g., [44,76,92]. In Chapter 6, we describe a similar setup, where Prophiler is used
as a fast filtering component.

After the publication of our work, and starting from the study of the system
we designed (see Chapter 6), Eshete et al. proposed BINSPECT [25]. BINSPECT
is a detector for malicious web pages based on most of the features introduced by
our work, plus some new features, such as “social reputation” features extracted by
social networking sites. BINSPECT uses multi-model training with confidence-
weighted majority voting for the classification of each web page, and spawns a
fresh instance of an emulated browser in order to extract features from web pages.
The system has very good performances overall, reaching a detection rate of about
97%, with negligible false negatives. The main difference with Prophiler is, how-
ever, the fact that its run time ranges between 3 and 5 seconds per page, which
renders it unsuitable for the large scale filtering of malicious web pages.

2.4.3 Alternative approaches

Finally, a few other works using completely different approaches for finding
and detecting malicious web pages have been proposed in recent times. Zhang et
al. have developed ARROW [133], a system that leverages aggregate information
on URL redirect chains employed by malware distribution networks in order to
generate signatures to block drive-by download attacks. Invernizzi et al. have
proposed EvilSeed [47], a system whose aim is to build URL datasets that are likely
to contain malicious web pages. EvilSeed starts from an initial seed of known,
malicious web pages, and generates search engine queries to identify pages that
are related to the original ones, and that are likely to be malicious as well. As
the authors claim, such a system can be considered orthogonal to pre-filters like
Prophiler, as it tries to create a “highly toxic” URL set instead of starting from a
set of normal pages and filtering out the benign ones.

Delta [10], finally, presents a novel static analysis approach for the detection
of web infection campaigns. The proposed system extracts change-related features
from two version of the same website, visited at different points in time; it derives
a model of website changes, and detects if the change is malicious or not by means
of machine learning and clustering. Running the Delta system, the authors were
able to spot previously unknown web-based infection campaigns. A downside of
this approach, compared to Prophiler, is that it would not be able to detect every
single drive-by download web page, as it is based on web page changes, and thus
if no website infection/content injection is in place (e.g., the malicious page has
been setup by the attacker, or the site has not been visited before), no changes can
be detected and no comparison with known models can be performed.

These systems all adopt different approaches from the work we present in
Chapter 6, but are related to the subject of malicious web page detection, and can
be considered complementary to what systems like Prophiler do.

21

2.4. Detection of Drive-by-Download Attacks

As it can be noticed, detecting and blocking drive-by download attacks has be-
come a very active field of research in the last few years, and many works have
proposed solutions to this problem. The solution we propose has been developed
specifically for the needs of companies or researchers who need to process large
amounts of URLs, and thus need an efficient filter for detecting possibly malicious
web pages. In fact, when it is necessary to assess the maliciousness of a web page,
the tools of choice are high-interaction honeyclients, as we have described previ-
ously in this section (see 2.4.3). High-interaction honeyclients, however, suffer
from limited scalability. Our study proposes a fast pre-filtering solution to quickly
analyze and discard benign web pages from a given set of URLs. This allows
researchers to save a large amount of resources, since the costly back-end anal-
ysis is performed only on pages that are deemed as likely to contain malicious
content. Second, previous static drive-by download detection systems were lim-
ited to using only HTML and JavaScript features to assess the maliciousness of a
page [28, 63, 109], or its URL-based features only [30, 67]. We improve the state
of the art of static drive-by download detection systems by combining HTML,
JavaScript and URL-based features into one single detector, and by significantly
extending the set of features used for detection. As we demonstrate in Section 6.4,
these new features significantly help improving the accuracy of our system. Third,
we test our system on real large-scale datasets and demonstrate it reaches very low
false negative rates compared to previous systems, while producing an acceptable
amount of false positives, allowing it to be used efficiently as a pre-filtering com-
ponent for a dynamic analysis system. Finally, our large-scale tests allow us to
assess the real-world performances of the system, and demonstrate it can process
an average of about 320,000 pages per day on a single machine. This differentiates
our work from systems like BINSPECT [25], that further extend the set of features
proposed by our system, but have limited scalability compared to Prophiler, even
though being more lightweight than traditional high-interaction honeyclients.

22

Chapter 3

Web Attacks From a Provider’s
Point of View

This chapter starts our in-depth analysis of each of the four points of view
outlined in the beginning of this dissertation. We start our analysis by studying web
attacks from the point of view of web hosting providers, for two reasons. First,
the majority of websites on the Internet are hosted on shared web hosting plans,
and basically every web attack starts with the compromise of a website or hosting
account. Second, being the starting point of each attack, if hosting providers were
able to detect compromises on their customers’ accounts in a precise and timely
way, most of today’s web attacks would fail or have a very short lifetime. Hence,
the importance of studying compromise detection from a provider’s point of view.

In this chapter, we test the ability of web hosting providers to detect compro-
mised websites and react to user complaints. Our study covers also six specialized
services that provide security monitoring of web pages for a small fee.

During a period of 30 days, we hosted our own vulnerable websites on 22
shared hosting providers, including 12 of the most popular ones. We repeatedly ran
five different attacks against each of them. Our tests included a bot-like infection,
a drive-by download, the upload of malicious files, an SQL injection stealing credit
card numbers, and a phishing kit for a famous American bank. In addition, we also
generated traffic from seemingly valid victims of phishing and drive-by download
sites. We show that most of these attacks could have been detected by free network
or file analysis tools. After 25 days, if no malicious activity was detected, we
started to file abuse complaints to the providers. This allowed us to study the
reaction of the web hosting providers to both real and bogus complaints.

The general picture we drew from our study is quite alarming. The vast major-
ity of the providers, or “add-on” security monitoring services, are unable to detect
the most simple signs of malicious activity on hosted websites.

23

3.1. Introduction

3.1 Introduction

Owning and operating a website has become a quite common activity in many
parts of the world, and millions of websites are operated, every day, for both per-
sonal and professional use. People do not need anymore to be computer “gurus”
in order to be able to install and run a website: a web browser, a credit card with
a few dollars’ balance, and some basic computer skills are usually enough to start
such an activity.

Of all the possible ways to host a website, shared hosting is usually the most
economical option. It consists in having a website hosted on a web server where
other websites may reside and share the machine’s resources. Thanks to its low
price, shared hosting has become the solution of choice for hosting the majority of
personal and small business websites all over the world.

Being so common, however, shared hosting websites have also high chances of
being targets of web attacks, and become means for criminals to spread malware
or host phishing scams. In addition, such websites are often operated by users with
little or no security background, who are unlikely to be able to detect attacks or to
afford professional security monitoring services.

The analysis presented in this chapter focuses on shared web hosting services,
and presents a study on what shared hosting providers do in order to help their cus-
tomers in detecting when their websites have been compromised. We believe this
is an important commitment, given the fact that shared hosting customers are the
most vulnerable to web attacks [58]. Furthermore, even a security-aware shared
hosting customer would never be able to fully protect and monitor his or her ac-
count without the provider’s cooperation. In fact, in a shared hosting configuration,
the user has few privileges on the machine and she is not allowed to to run or install
any monitoring or IDS application, nor to customize the machine’s web server, its
firewall, or security settings. Thus, in order to protect his or her website, a user has
to fully rely on the security measures employed by the hosting provider.

We also tested the providers’ reactions to abuse complaints, and the attack
detection capabilities of six specialized services providing security monitoring of
websites for a small fee.

In a recent survey [16], Commtouch and the StopBadware organization re-
ported the results of a questionnaire in which 600 owners of compromised web-
sites have been asked some questions about the attacks that targeted their websites.
From this study, it emerged that, among the surveyed users, 49% of them were
made aware of the compromise by a browser warning, while in fewer cases they
were notified by their hosting provider (7%) or by a security organization (10%).
Also, 14% of the users who took the survey said their hosting provider removed
the malicious content from their website after the infection. At the end, only 12%
of the customers were satisfied from the way their hosting provider handled the
situation, while 28% of users who took the survey were considering to move to a
new provider because of this experience.

24

Chapter 3. Web Attacks From a Provider’s Point of View

Inspired by the StopBadware report, we decided to systematically analyze, on
a wider scale and in an automated way, how web hosting companies behave with
regard to the detection of compromised websites, what their reactions are in case
of abuse complaints, and how they proceed to inform a customer about his website
being compromised.

This chapter presents the first world-scale analysis of the quality and reliabil-
ity of security monitoring activities performed by web hosting providers to detect
compromised customer websites. Unfortunately, the general picture we drew from
our results is quite alarming: the vast majority of providers and “add-on” security
monitoring services are unable to detect the most simple signs of malicious activ-
ity on hosted websites. It is important to note that we do not want to blame such
providers for not protecting their customers, since this service is often not part of
the contract for which users are paying for. However, we believe it would be in the
interest of the providers and of the general public to implement simple detection
mechanisms to promptly identify when a website has been compromised and it is
used to perform malicious activities.

3.2 Setup and Deployment

For our study, we selected a total of 22 hosting providers, chosen among the
world’s top providers in 2011 and 2012 (we will refer to these as global-1 to global-
12), and among other regional providers operating in different countries (referred
to as regional-1 to regional-10). We selected the global providers by picking the
ones appearing most frequently on lists of top shared hosting providers published
on web hosting-related websites, e.g., tophosts.com, webhosting.info,
and webhostingreviews.com. The regional providers were instead chosen
from the "Country-wise Top hosts" list published by the webhosting.info
website [125], with the aim of having an approximately uniform geographical dis-
tribution over every area of the world. Our final list included providers in the US,
Europe, India, Russia, Algeria, Hong Kong, Argentina and Indonesia.

For our study, we limited our choice to providers that allowed international
registrations, as our hosting accounts were registered using real personal data of
people belonging to our research group. In fact, we noticed that some providers,
probably because of regulations in their country, limit the possibility of registering
a web hosting service only to national customers. This is especially true for coun-
tries such as China, Brazil, and Vietnam, whose providers often require a national
ID card number upon registration.

Also, our choice was limited to providers offering shared hosting services as
part of their products, allowing to host at least one domain name per account,
supporting the PHP programming language, and the FTP transfer protocol.

25

3.2. Setup and Deployment

3.2.1 Test Cases

We conducted our study by registering five shared hosting accounts for each
of the 22 web hosting providers. Each one of the five accounts was targeting a
particular class of threat, chosen among the most common types of web attacks
that could be easily detected by hosting providers.

Four out of the five test cases we deployed are based on a static snapshot of a
website running OsCommerce v.2.2. The application was modified so that the PHP
pages always returned a static version of the site, without the need of installing a
back-end database. Each snapshot was modified by hand in order to include the ad-
hoc code required for our experiments, and to diversify the content, the appearance,
and the images shown in each page.

Our test files were deployed in the /osco sub directory of every hosting ac-
count we registered, while the home page of each domain showed only an empty
page with the message "Coming soon...". We did not create any link to the /osco
sub directory, and we excluded the possibility for well behaving web spiders to
visit our test case websites by denying any robot access using the robots.txt
file. This was done in order to avoid external visits to our test case websites, which
could have interfered with our tests.

Intentionally installing and exploiting vulnerable web applications on shared
hosting accounts may raise some ethical and legal concerns. For this reason, we
carefully designed our tests to resemble real compromised websites - being at the
same time completely harmless for both the provider and other Internet users. For
example, we modified the application code to mimic an existing vulnerability but,
compared to their real counterparts, our code was executed only when an additional
POST parameter contained a password that we hard-coded in the application, thus
allowing only us to exploit the bug.

SQL Injection and Data Exfiltration (SQLi)

The first test case aimed at detecting whether web hosting providers detect or
block SQL injection and data exfiltration attacks against their customers’ websites.
The test consisted in deploying the static snapshot of OsCommerce including a
page that mimics the SQL injection vulnerability presented in CVE-2005-4677.

Setup - The product_info.php page was modified to recognize our SQL
injection attempts and respond by returning a list of randomly generated credit card
numbers along with personal details of fictious people (name, address, email, and
MD5 password hash). In order to pass the Luhn test, fake credit card numbers were
generated using an online credit card test number generator [29].

Attack - The attack for this test case was run every hour, and consisted of
a script mimicking a real SQL injection attack: first, the fake vulnerable page
(product_info.php) was visited, then a sequence of GET requests were sent
to the same page adding different payloads to the products_id GET parameter.
The first request simulated somebody testing for the presence of SQL injection vul-

26

Chapter 3. Web Attacks From a Provider’s Point of View

nerabilities by setting products_id=99’; then, five attack requests were issued
to the same page by setting the following payloads for the vulnerable parameter:

1 : 99 ’ UNION SELECT n u l l ,CONCAT(f i r s t _ n a m e , . . . c u s t o m e r s _ p a s s w o r d)
, 1 ,CONCAT(cc_ type , . . . c c _ e x p i r a t i o n) FROM c u s t o m e r s LIMIT
1 , 1 / *

2 : 99 ’ UNION ALL SELECT n u l l ,CONCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CONCAT(cc_ type , . . . c c _ e x p i r a t i o n) FROM
c u s t o m e r s LIMIT 2 , 1 / *

3 : 99 ’ UNION S / * * / ELECT n u l l ,CONCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CONCAT(cc_ type , . . . c c _ e x p i r a t i o n) FROM
c u s t o m e r s LIMIT 3 , 1 / *

4 : 99 ’ UNION S / * * / ELECT n u l l ,CONCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CONCAT(cc_ type , . . . c c _ e x p i r a t i o n) FR
/ * * /OM c u s t o m e r s LIMIT 4 , 1 / *

5 : 99 ’ UNION S / * * / ELECT n u l l ,CO/ * * /NCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CO/ * * /NCAT(cc_ type , . . . c c _ e x p i r a t i o n)
FR / * * /OM c u s t o m e r s LI / * * / MIT 5 , 1 / *

Listing 3.1: Payloads of fake SQL Injection requests

The purpose of these payloads was to detect whether hosting providers employ
any blacklist-based approach to detect SQL injection attempts on their customers’
websites. Requests in lines 1 and 2 would fail in case the providers employ simple
blacklisting rules (blocking any UNION SELECT and UNION ALL SELECT) in
URLs. The last three requests would fail only if providers deploy more complex
rules that are able to blacklist typical SQL words even in case they are stuffed with
comments, or if words like FROM, CONCAT and LIMIT are blacklisted as well.

Remote File Upload (Web Shell) and Code Injection Using Web Shell (SH)

The goal of this test is to understand whether providers detect the upload and
usage of a standard PHP shell, automatic file modifications on the customer’s ac-
count, or the presence of malicious code on the home page of the website. In the
test, a fake web shell is uploaded to the hosting account, and fake commands are
issued to it, resulting in some drive-by-download code being added to the home
page of the e-commerce web application.

Setup - This test uses the base static snapshot of the OsCommerce v.2.2 web
application, and simulates a Remote File Upload vulnerability in the file admin/
categories.php/login.php, as the one described in [82]. Our fake attack
was designed to upload a modified version of the popular c99 PHP shell (one of the
most common web shells on the web), that has no harmful effects other than the
ability to inject custom code in the home page of the e-commerce web application.
Also in this case, the custom code injection is enabled only when certain hidden
parameters are specified along with the request of the c99 shell, thus allowing only
us to trigger the injection. The content to be injected in OsCommerce’s index page
is a snippet of a real malicious code launching a drive-by download attack, that
has been disabled by wrapping it into an if statement with a complex condition

27

3.2. Setup and Deployment

that is always False. We submitted the index page with the injected content to the
VirusTotal online virus scanning service [123], and it was detected as malicious by
13 anti virus engines.

Attack - The test case for this attack was run every hour, and consisted in a
script performing the upload of the web shell, followed by a number of commands
issued on the shell. The shell file, called c99.php as the original shell, in order
to be easily identifiable from the web server logs, was uploaded to the vulnerable
URL by specifying the secret parameter enabling the upload. If the upload was
successful, five commands were issued to the c99.php, picked randomly from a list
of GET and POST requests containing both Unix commands and file names, so
to make the requests seem like the result of someone trying to manually explore
the contents of the server. The requests simulated actions such as trying to read
files (e.g., /etc/passwd) and execute unix commands (who, uptime, uname,
ls, ps). Our intuition was that hosting providers would probably be alerted by
requests containing some of these file names or commands. Finally, the test used
the PHP shell to inject a plain-text version of the malicious code into the home
page of OsCommerce.

Remote File Upload of a Phishing Kit (Phish)

Similarly to the previous test, this test uses a file upload vulnerability in the
OsCommerce application to upload a phishing kit to the web server. The phishing
kit consists of an archive containing a static snapshot of a real Bank of America
scam. The test aims at detecting whether hosting providers are able to detect the
presence of a phishing kit on the customer’s account. The phishing kit was installed
inside a directory named /bankofamerica.com, thus allowing to detect any
visit to the scam pages by simply looking at the requested URLs.

Setup - This copy of the application is configured with the same Remote File
Upload vulnerability explained for the previous test. However, the vulnerable path
for this test is admin/banner_manager.php/login.php. Whenever this
script is issued an upload request for a file with tar extension, it uploads the
archive and automatically unpacks its contents to the upload directory, thus allow-
ing for an automatic installation of the phishing kit. The phishing kit we deployed
is an exact copy of a real Bank of America phishing kit found in the wild, modified
to remove the back end code (thus making it unable to store and send any user
information).

Attack - This attack was split in two phases, which we refer to as attacker
and victim. The attacker phase, run every 6 hours, consisted in triggering the
remote file upload vulnerability and uploading the phishing kit. The victim phase
of the attack was run four times per hour, and consisted in a script that simulated a
victim falling prey of the scam. In order to look realistic, the victim requests were
disguised as coming from a range of different valid User-Agent strings used by web
browsers on Windows operating systems. Every simulated victim visit comprised
a sequence of GET and POST requests containing the form parameters required by

28

Chapter 3. Web Attacks From a Provider’s Point of View

the phishing pages. At each victim visit, the data sent in the requests was randomly
picked among a set of fake personal details we created by hand, containing names,
addresses, passwords and credit card numbers of fictitious people.

Suspicious Network Activity: IRC Bot (Bot)

This test aims at understanding whether providers employ any network rules
to detect suspicious connection attempts to possibly malicious services. For this
study, we opted to deploy to our accounts a script simulating an IRC bot. The
reason for this choice is that IRC bots are probably one of the most common and
easily detectable bots, because IRC connections are very often made to the standard
IRC port (6667) using clear-text communication.

Setup - This test uses our basic OsCommerce installation with no modifica-
tions. The executable bot client was deployed to the hosting account via FTP,
thus simulating an attack in which the attacker has stolen the customer’s web host-
ing credentials. The files to be uploaded are two IRC client binaries written in
C (one compiled for 32-bit architectures, and one for 64-bit ones), and a PHP
script that executes the right binary depending on the underlying OS type, and
outputs its results. The IRC client, once launched, disguises itself as “syslogd”
and tries to connect to a machine hosted on our premises that runs a fake IRC
server on the standard IRC port. If the connection succeeds, the client and server
exchange a few messages resembling real IRC commands (such as NICK xxx,
USER xxx, JOIN #channel) and the client reports some information about
the infected machine (host name, OS type, kernel version); at last, the client closes
the connection.

Attack - The test case for Bot was run every hour, and started with opening a
FTP connection and uploading the two binaries and the PHP file in a new directory
created in the web site’s root folder. If the upload succeeded, an HTTP request was
issued to the PHP file launching the IRC client. The output of this request allowed
us to determine whether the hosting provider was blocking the use of possibly dan-
gerous PHP functions (IRC client execution denied - system() function disabled),
blocking outgoing connections to certain ports (binary executed, but connection
attempt failed), or allowing everything (successful connection to the server). In
order to make the upload of the IRC botnet files appear even more suspicious, the
FTP upload was executed using IP addresses from several different countries.

Known Malicious Files (AV)

This test aimed at understanding whether providers perform any scans of their
disks with off-the-shelf anti virus software. The test simply consisted in deploying,
via FTP, two common known malicious files to the customer’s hosting account.

Setup - Websites hosting this test used a simpler structure than the previous
tests, and consisted in a single static HTML page containing random sentences in
English and a few images. As in test Bot, we chose to use FTP to upload the ma-

29

3.2. Setup and Deployment

licious files to the account, to simulate a case in which the attacker has knowledge
of the customer’s account credentials. The two malicious files were c99.php, a real
c99 PHP web shell, detected on VirusTotal with a score of 25/43 (25 antivirus en-
gines detecting it, out of 43 it was tested against), and sb.exe, a copy of the 2011
Ramnit worm, detected by 36 out of 42 antivirus products according to VirusTotal.
In order to make sure the malicious files were not reachable by any web visitor, but
only available to people having internal access to the server, they were uploaded
to a directory protected by means of .htaccess (denying the listing of its files) and
.htpasswd (requiring a password to access its files from the web).

Attack - The attack itself consisted simply in connecting to the hosting ac-
count’s web space via FTP and uploading every time (deleting and re-uploading if
already present) the protected directory and the two malicious files. Also in this
case, FTP connections were issued from IP addresses in different countries.

3.2.2 Attack Detection Using State-of-the-Art
Tools

Before deploying the tests to the shared hosting accounts, we made sure they
could be detected using common state-of-the art tools, that can be easily employed
by any hosting provider. In order to do so, we executed our tests against an instal-
lation of the SecurityOnion Linux distribution, which includes a pre-configured set
of open source tools for monitoring suspicious network and system activity (Bro
IDS, Snort, Sguil). The installation of this distribution was then equipped with the
Apache2 web server and the ModSecurity plugin, along with its base recommended
rule set.

We also installed the OWASP ModSecurity “Core Rule Set”, a set of common
security rules for Apache ModSecurity that is maintained by the OWASP founda-
tion [87]. These are free certified rule sets providing generic protection from un-
known vulnerabilities often found in web applications. We installed version 2.2.5
of the rule set on our test machine, and disabled some rule sets (base rules number
21, 23, 30) for being too generic and generating too many false alarms. We finally
ran each of the five test cases toggling on and off the OWASP ModSecurity rules.

Table 3.1 summarizes what we were able to detect or block using this setup,
during the execution of each test. Four out of the five attacks would have been
blocked or detected by employing free network and host monitoring solutions like
the ones mentioned above, and the remaining attack could have been easily de-
tected by setting up a simple connection filtering rule in the firewall.

SQLi

The attacks of test SQLi, when run using the basic installation of ModSecurity,
succeed, but generate a series of five different high severity alerts about possible

30

Chapter 3. Web Attacks From a Provider’s Point of View

Test # SQLi SH Phish Bot AV
Blocked by ModSecurity

-
base rule set
Blocked by ModSecurity

 G# # # -
OWASP rule set
High severity IDS alerts 5 2 2 0 0
Detectable by antiviruses no yes no no yes

Table 3.1: Attacks detection using freely available state-of-the-art security scan-
ning tools. Legend:

no; G# in part; yes (full); - not applicable

web server SQL injection attempts. When the OWASP rule set is enabled, however,
all the five SQL injection attempts on which the attack is built fail.

SH

The SH test, executed against a webserver with the basic ModSecurity rules,
successfully uploads the c99 shell and injects the drive-by code in index.php. How-
ever, two high severity events are raised by the IDS, one of which notifying a re-
mote code execution on OsCommerce v.2.2 (triggered by our attack to upload of
the web shell). If the OWASP rules are enabled, the remote file upload succeeds but
most of the commands issued to the web shell fail and raise critical alert messages,
notifying the possibility of a web file injection attack. The index file modification,
finally, fails and raises a message notifying the detection of multiple URL encod-
ings in the request, as a possible sign of protocol evasion. Finally, it has to be
noted that, although we removed all the existing functionalities from the original
web shell, our c99.php contains some original PHP code to display images and
UI elements, plus our custom drive-by injection code. As such, it would still be
detected during a virus scan by approximately 17% of the antivirus engines on the
market (its VirusTotal score is 7/42). The index.php containing the injected content
would instead be detected by almost 30% of the antiviruses, having a VirusTotal
detection score of 13/44.

Phish

This attack succeeded but raised two high severity events: potential remote
code execution in OsCommerce v.2.2, and presence of PHP tags in the HTTP post
(detected on the tar file containing the phishing kit). On the victim’s side, no HTTP
request is blocked when uploading personal information to the scam pages. A
possible solution to stop, or at least raise alerts on the victim’s requests, however,
could be deploying a simple IDS/IPS rule that detects the submission of parameters
containing clear-text personal details, such as credit card numbers and cvv2 codes.

31

3.2. Setup and Deployment

Bot

The Bot test case was undetected by the basic and OWASP ModSecurity rule
sets, as it was run via FTP. In our tests, the connection succeeded and the bot
and fake IRC server completed their message exchange. A normal firewall rule
blocking outgoing connections to port 6667 (IRC) would have, however, blocked
the attack.

AV

The malware upload test (AV) was undetected by our test deployment, because
no HTTP traffic was generated and no network antivirus was used. However, as
explained in Section 3.2.1, we recall that the uploaded c99.php and sb.exe are com-
mon malicious files detected by VirusTotal with a detection scores of 25/42 and
36/42, respectively. Therefore, the vast majority of off-the-shelf antiviruses would
have detected them during a scan of the website’s root directory.

3.2.3 Test Scheduling and Provider Solicitation

All attacks were run without interruption on every hosting account for the first
25 days of testing. As explained in the previous section, each attack was repeated
multiple times per day in order to generate more alerts and increase the probability
of being detected.

If the hosting provider did not detect any suspicious activity during this time
frame, the tests entered a second phase, during which we solicited the provider
to detect our attacks and take action against them. This solicitation took place as
an abuse notification email for the Phish and AV tests, in which we reported the
presence of malicious files on the web application. We also generated “fake” abuse
notifications to study the reaction of the providers to bogus complains.

This allowed us to understand: 1) how quickly providers respond to abuse noti-
fications, if they ever do, 2) if they actually verify the presence of malicious content
or activity on the account before taking any action, and 3) what kind of actions they
take in order to stop the abuse. Abuse notifications were sent to providers by email,
using real (authenticated) email addresses registered on 3rd party domains, to make
them look as realistic notifications from random web users.

Real Abuse Notifications

Starting the 25th day of testing, we started sending one abuse complaint per day
to each provider on which tests Phish and AV had not been previously detected. We
stopped the notification process and the real attacks on the account either when the
30 day testing period elapsed, or after the provider responded to the notification.
The notification email explained that an email had been received, with a link point-
ing to content hosted on the provider’s premises. The link pointed to the phishing
kit’s index page for Phish, and to the sb.exe file for AV test. In addition, the email

32

Chapter 3. Web Attacks From a Provider’s Point of View

mentioned that the user’s antivirus raised an alert when trying to visit the URL, and
suggested the web provider to check the contents of the account.

Fake Abuse Notifications

Apart from real abuse notifications, we also sent emails in which we com-
plained for perfectly clean websites. To perform this test, we cleaned and re-used
the account used for the SQLi and Bot tests. The website contents were replaced
by a single static HTML page containing one JPG picture and a long list of news
extracted from the RSS feeds of popular international news websites. Starting on
the 25th day, we sent to every provider an email per day, where the user complained
about the presence of offending or malicious content on these accounts. Since at
the time these emails were sent the websites were absolutely clean, these fake no-
tifications allowed us to understand whether providers actually check the veracity
of the complaints they receive before taking any action. The first complaint email
was from a user pretending that the website’s content was offending his religious
views, and kindly asking to stop the website owner from spreading such disre-
spectful messages. In the second scenario, the notification email was from a user
claiming to have received an email with a link to the website in question. The user
explained that his browser denied access to the URL, and that at a closer look the
website looked like hosting a phishing scam. Also in this case, the account hosting
the reported webpage was absolutely clean, hosting only the benign static HTML
home page.

One may argue that, in case of these fake notifications, the provider could react
by suspending or shutting down the user account by having a look at the logs of
the machine on which the account was setup, and noticing past malicious activity,
even though, at notification time, the website was clean. We did our best in order to
avoid this from happening, by deploying our tests for fake notifications on accounts
that hosted the SQLi and Bot tests. These tests could not be considered malicious
(no malware nor phishing files were ever uploaded) but the mere evidence that the
website was under attack. Moreover, attacks for these tests could only have been
detected at a network level, since no trace was left on the disk.

3.3 Evaluation

During our experiments, we evaluated the security measures put in place by
web hosting providers to detect malicious activities, compromised websites, and
prevent abuse of their services. We group our findings in three categories: account
verification upon sign-up (3.3.1), compromise prevention and detection capabilities
on live websites (3.3.2), and responses to abuse notifications (3.3.3).

33

3.3. Evaluation

3.3.1 Sign-up Restrictions and Security
Measures

Even though our work was not meant to test the anti-abuse sign-up policies
of web hosting providers, we report here some results that may contribute in un-
derstanding how much effort providers put in preventing services subscription by
malicious users.

Several providers try to discourage abusers by asking to verify the information
entered during the sign-up phase, either by calling the customers on the phone,
or by requiring a scanned copy of their documents (such as government issued
ID, credit card used for the purchase). Some providers also use 3rd party fraud
protection services, that block purchases based on a set of heuristics. For example,
we observed several cases in which the providers correlated the geographic location
of the customer, the billing information, and the IP address used for the purchase.

The shared hosting accounts we used for our study were all registered using real
personal information of people working in our group, and the billing information
of our research institute. The sign-up process was carried out from several IP
addresses, using either credit card or PayPal payments.

Anti-abuse sign-up policies vary widely between hosting providers. Top global
hosting providers are more cautious with regard to sign-up, often blocking attempts
- e.g., blocking multiple registrations from the same billing address and credit card
number, verifying the customer’s personal information by verification phone calls
or ID and credit card checks. Regional providers seem to be more permissive,
probably because they have less incentives in making their sign-up process more
difficult, which could make them lose potential customers.

Among the twelve global providers, seven of them required us to verify our
account information for at least one of the accounts we registered with them. In
order to verify our account information, all these companies required a scanned
version or photocopy of a government issued photo identification card (such as
passport or driver’s license) and the front and back of the credit card used at sign-
up (without showing the first 12 numbers and the cvv2 code). Only one out of these
seven companies claimed, on its website, to manually verify every customer’s sign-
up before allowing the purchase of its web hosting services. Indeed, this was the
only provider that verified every account we registered with them.

Regional providers, instead, do not seem to be as cautious during the account
sign-up phase. Only one out of ten blocked an account creation because of a mis-
match between our billing address and the geolocation of the IP address used for
registration.

Finally, three of the regional providers we tested had a very simple sign-up pro-
cess, where users could register an account in one click, by filling all the required
personal and payment information in one page. These providers never asked us to
verify our information upon registration, and thus could possibly be a good choice
for criminals wanting to perform abusive subscriptions.

34

Chapter 3. Web Attacks From a Provider’s Point of View

Provider
Verification time

Before Before After
payment activation activation

global-2 25% - 50%
global-3 25% - 25%
global-4 33% - -
global-5 40% - -
global-6 - 33% -
global-7 100% - -
global-8 50% 25% -
regional-2 33% - -

Table 3.2: Account verification times. Values represent the percentage of verifica-
tion requests on the number of accounts we registered for each provider. “Before
payment” means during the registration process. “Before activation” means once
the client’s billing account is created, but the hosting service is not yet active.
“After activation” indicates when the hosting account is active and a website has
possibly already been installed.

Sign-up verification requests are either sent during registration or after a suc-
cessful account registration and activation. While requiring an account verifica-
tion upon sign-up can be effective in preventing malicious registrations, it can also
make the hosting provider lose potential good customers that may not have time or
patience to provide all the required information. On the other hand, requiring an
account verification once the service has been purchased and set up has the draw-
back of temporarily suspending an account on which a website has already possi-
bly been deployed, thus causing a service outage for a benign customer. During
our experiments we encountered both situations. Table 3.2 shows the percentage
of verification requests on the number of accounts we registered for each provider,
grouped by the time at which the request was issued. Only providers that requested
at least one account verification are listed.

The table shows that, in general, most of the anti-abuse systems send alerts and
block a registration attempt during the customer’s sign-up phase. This typically
happens when the user enters his or her credit card details and tries to complete the
hosting purchase. Others, instead, let the client sign up for the service and receive
its management panel credentials, but lock the web hosting service activation until
a copy of the customer’s document is received by the support department. Two
web hosting providers (global-2,3) sent verification requests when the web hosting
account was already active and the customer’s website deployed. This caused a
temporary service disruption for the affected accounts, making their websites un-
available for several hours. Certain providers, finally, issued verification requests
at different times, probably depending on the kind of alert they received from their
abuse prevention system (global-2,3,8).

35

3.3. Evaluation

3.3.2 Attack and Compromise Detection

During the first phase of our experiments, we deployed our five test suites on
every hosting provider and recorded whether the hosting provider took some action
or contacted us to notify that malicious activity was observed on our account. As
explained in Section 3.2.3, if no malicious activity was detected on the account dur-
ing the first 25 days, we started sending abuse notifications to the hosting provider,
in order to stimulate a response. The results of this second phase are summarized
in Section 3.3.3.

To make our fake attacks look realistic, our test cases were run automatically
at certain time intervals (as explained in Section 3.2.1), and the attacks were ex-
ecuted from different IP addresses belonging to several different countries. Also,
in order to avoid having only “artificial” malicious requests in the web server logs
of our accounts, we generated some background traffic simulating real visits to our
websites. This was accomplished by developing a simple traffic generator tool, that
visited every account we deployed every 10 minutes, and randomly followed links
on every website up to a depth of 30. In the general case, this meant following an
average of 13 links on every website, thus generating a bit less than two thousand
hits per day on every active account. The machine used for traffic generation was
not used for other experiments and used a different set of public IP addresses than
the ones we used to run the attacks.

Attack Prevention

Even though our study focuses on the ability of the providers to detect com-
promised websites, during our experiments some of our attacks were blocked and
were therefore ineffective. In some of these cases, we proceeded by manually com-
promising the account. For example, whenever a provider denied the possibility of
running test SH, we manually uploaded the drive-by download code to the account
to continue the experiment. This allowed us to test whether the provider was able
to detect the menace by scanning the customer’s account. For the phishing attack
(Phish), since it had to be detected on a network level, we did not take such mea-
sure and thus no manual upload was performed on accounts of providers blocking
the remote file upload.

Table 3.3 reports, for each test and provider, whether the web hosting company
took any measure to prevent the attack. Such measures depend on the test case,
and ranged from employing URL blacklists to blocking outgoing connections or
process executions.

URL blacklisting Some providers employ URL blacklists in order to prevent
SQL injection attempts (test SQLi) and remote file uploads (SH, Phish).

However, as shown in column SQLi of Table 3.3, none of the providers we
tested were able to fully prevent our SQL injection attacks. This is probably due
to the adoption of simple keyword-based blacklisting rules, that can be easily by-

36

Chapter 3. Web Attacks From a Provider’s Point of View

passed by introducing SQL comments in the middle of blacklisted keywords (such
as using “SE/**/LECT” instead of “SELECT”, as explained in Section 3.2.1). Two
providers (global-1, regional-2) blocked the first four requests of our attacks, and
other five providers were able to block only the first two. The remaining did not
adopt any SQL-injection protection mechanism at all.

Regarding tests SH and Phish, some providers were able to prevent the attack
by employing URL blacklists probably containing specific rules for the detection of
common vulnerabilities on web applications, such as the ones we employed for the
tests presented in Section 3.2.2, provided by the OWASP foundation. Regarding
SH, Table 3.3 shows that some providers were able to only partially prevent the at-
tack. These providers did not block the file upload itself, but employed blacklisting
rules to block some requests to the web shell (these requests contained common file
names, e.g., /etc/passwd, or common parameter sequences such as .php?act=cmd).

Connection and OS-level filtering The attack files for test Bot were first up-
loaded to the customer’s account via FTP, then the fake IRC client was executed
issuing a HTTP request to a PHP file launching an executable file using the sys-
tem() PHP function. A total of 18 providers were able to fully stop the attack: of
these, 50% did so by disabling the system() function in PHP, while the remaining
half firewalled outgoing connections to the IRC port.

When the attack was prevented, we were expecting some form of notification
regarding the suspicious activity. After all, it is not normal that a shared hosting
user has a disguised process that tries to connect to an IRC server every hour for
one month.

Two hosting providers allowed the attack only at certain periods in time (global-
2 and global-6). This may due to temporary misconfigurations on their networks
or to automatic account migrations over different machines with different configu-
rations (for example, the account running test Bot on provider global-6 connected
to our fake IRC server from eight different hosts during the 25 days testing period).

No prevention results are shown for test AV, as this test did not run any attack
and no filtering was done on the upload of malicious files via FTP.

As a final remark, we noticed that, for some tests, some providers had exactly
the same behavior. This is the case, for example, of global-1 and regional-2 and
global-8 and regional-3. We thus believe that these providers employ the same
protection mechanisms and web server security configurations for their shared web
hosting solutions. These services are probably provided by third party companies
as part of common off-the-shelf security solutions.

Compromise Detection

Sadly, all but one of the providers we tested did not notify their clients when
their websites were compromised and were used to perpetrate obvious malicious
activities.

37

3.3. Evaluation

Provider
Account Attack Prevention/Detection (days) Solicitation Reaction

verification SQLi SH Phish Bot AV Abuse Fake abuse Avg. reply
complaint complaint delay (days)

global-1 # G#/ # / # / - / # - / # # N N -
global-2 G# #/ # #/ # #/ # G#/ # - / # # T - - 1
global-3 G# - / - #/ # #/ # / # - / # # N/T - - -
global-4 G# #/ # #/ # #/ # / # - / (17) S G# U 0
global-5 G# - / - #/ # #/ # / # - / # # T - - 0
global-6 G# #/ # #/ # #/ # G#/ # - / # # U O 2
global-7 G#/ # #/ # #/ # / # - / # # N N -
global-8 G# G#/ # #/ # / - / # - / # # N N -
global-9 # #/ # / # / - / # - / # # N N -
global-10 # #/ # / # / - / # - / # G# S N 4
global-11 # #/ # #/ # #/ # / # - / # # N N -
global-12 # #/ # #/ # #/ # #/ # - / # G# T,C O 0
regional-1 # G#/ # G#/ # #/ # / # - / # S,C # S 0
regional-2 G# G#/ # / # / - / # - / # # N N -
regional-3 # G#/ # #/ # / - / # - / # G# O,C O 0
regional-4 # #/ # #/ # #/ # #/ # - / # # N N -
regional-5 # #/ # #/ # #/ # / # - / # G# S O 16
regional-6 # G#/ # G#/ # #/ # / # - / # G# C # C 1
regional-7 # #/ # #/ # #/ # / # - / # # N G# U 5
regional-8 # #/ # #/ # #/ # / # - / # S,F O 1
regional-9 # #/ # #/ # #/ # / # - / # # N N -
regional-10 # #/ # #/ # #/ # / # - / # # N # P 0

Table 3.3: The results of our study. Legend:
- not applicable
no / not satisfying
G# in part / partly satisfying
 yes (full) / satisfying

N no reply P forced password reset
S account suspension C cleanup or file removal
T account termination U ultimatum to the user
F complaint email forwarded O reply but no action

The only hosting provider that reacted to one of the attacks was global-4, but
that reaction happened 17 days after the beginning of test AV. The provider properly
notified the presence of a malicious file (the c99 shell) on the user’s web hosting
account. In addition, the provider warned the user that a service suspension would
occur if no reply to the alert was received by the customer support service within
24 hours. However, the message was not mentioning the presence of the other
malicious file on the account, namely, sb.exe. This suggests that the alert was an
automated message resulting from a virus scan of the account, and that no human
operator actually checked the contents of the directory in which the two malicious
files were stored.

We were quite surprised by our findings, as we were expecting to have at least
a few of our scenarios detected by the vast majority of web hosting providers. It
emerges that, on shared hosting servers, even the most basic virus scan is not as
common as one could expect. From our measurements, we are not able to tell if the
hosting providers run antivirus systems on their shared hosting servers. However,
if they do, they are either using outdated signature definitions, or the frequency at
which they perform the scans is less than once a month.

38

Chapter 3. Web Attacks From a Provider’s Point of View

3.3.3 Solicitation Reactions

As explained in detail in Section 3.2.3, whenever one of our test suites was not
detected by the hosting provider for 25 consecutive days, we started sending daily
abuse notification emails to the provider’s abuse contact. The purpose of sending
these messages was to understand whether web hosting providers respond and react
to abuse notifications (e.g., by suspending a compromised account or notifying the
customer of his or her website being compromised). To complete our test, we
also sent fake abuse notifications for perfectly clean webpages, with the aim of
understanding whether any providers take action without first verifying the claims.
This would pose a serious menace, as it would be a very easy and effective way to
conduct a Denial of Service attack against websites of other users. The following
paragraphs are meant to give some insights and details on what is presented in the
“Solicitation Reaction” section of Table 3.3.

Abuse Notifications

Unfortunately, 50% of both the global and regional web hosting providers
never replied to any of the real abuse notifications we sent. This percentage is
quite alarming, and means that if a website is hosting malicious content (such as
phishing or malware), no action will be taken to stop it from spreading and reach-
ing its victims. Moreover, phishing attacks and malware files used in dropzones
usually have a short lifetime, and, as such, even a late response to a malware or
phishing abuse notification would have little or no effect on the general outcome
of the attack.

Seven out of the eleven providers that replied to our complaints replied either
the same day or the day after the notification was sent. This is a good indicator,
meaning that these companies probably care about web abuses and are able to
handle these issues in a timely manner. The only provider that replied later than
5 days after the notification was regional-5, with an average response time of 16
days. After such a long delay any action would be basically useless, as the website
may have completely changed in the meantime.

There were a variety of reactions to our abuse complaints. The most common
approach was to temporary suspend the customer’s account, with five companies
performing at least one suspension as result of a malware or phishing abuse com-
plaint. We consider this action a reasonable response to the abuse, causing a tempo-
rary disruption of the services the client is paying for, but blocking the immediate
threat. Other providers responded to the notifications by cleaning up the account,
removing the suspicious files (4 providers - note that this action seems to be more
common among regional providers), or by forwarding the abuse notification to the
customer (1 case). We considered such responses, in general, to be appropriate
to stop the menaces from spreading, and at the same time avoiding to impact too
much the user’s services.

39

3.3. Evaluation

Provider global-12 reacted without notifying the website’s owner: in the case
of AV, the account was terminated, while in the case of phishing (Phish), the di-
rectory containing the fake phishing kit was removed. Also in the case of provider
regional-6, actions were taken without notifying the user, with the exception that,
in this case, the reactions to the abuse notifications consisted in deleting all the files
(including the clean ones) of the user’s websites!

Controversial responses to our abuse notifications were those from providers
that sent ultimatums to the user (marked with U, in the table), warning him that
offending content had been found on his website, and that if no cleanup was per-
formed within a few hours, the account would have been suspended. This was
controversial because, as in the case of provider global-6, even though we did not
take any action to respond to the provider ultimatum, the fake phishing pages were
still present on our account after several days. This means that the provider did not
keep to its commitment.

Finally, a few responses were partially or fully unsatisfying. The regional-3
provider replied to the malware abuse complaint probably after scanning the cus-
tomer’s account using an antivirus. The reply stated that a c99 PHP shell had been
found on the account, and asked the notifier if he wanted them to remove it. The
malicious executable was not mentioned at all and no further action was taken,
thus leaving both malicious files on the account. The case of providers global-2,
global-3 and global-5 is quite particular. While experiments were in progress on
most of the providers, and once our tests Phish and AV reached their 25th day
on global-2 and global-5, notifications were sent to the two providers. First, pro-
vider global-5 replied by terminating the account (disabling both the billing and
the hosting account) and giving the customer 15 days to reply and to recover his
files. We replied, asking to re-enable the account for recovering our files, but in the
meanwhile another abuse response was received from provider global-2, terminat-
ing our account. Starting that moment, within a few hours, all the accounts we had
registered on providers global-2, global-3 and global-5 were terminated without
any explanation, even when we tried to contact the companies to ask details about
the reasons of our accounts’ termination. The only response we were able to get
was: “Due to certain items contained in the account information, this account was
flagged for fraud. For security reasons, this flag caused the system to delete your
account. At this time we ask you to seek out a new hosting company.”

Either the three companies used the same support service, provided by a third
party, or they shared information between them. Indeed, the termination notifica-
tions for all the accounts on the three providers were sent by the same support rep-
resentatives, and contained exactly the same text (only the email signature changed,
containing the email and postal address of the appropriate company). For this rea-
son, we expect the support center for these companies was able to link our ac-
counts’ personal information and understand they were all registered by the same
group of individuals. Thus, having received complaints for two of the accounts, all
the other accounts that could have been reasonably linked to them were terminated
as well.

40

Chapter 3. Web Attacks From a Provider’s Point of View

When this happened, some test cases had not been deployed yet on these pro-
viders (SQLi on global-3, global-5) and others had not yet reached their 25th day
of execution (Phish on all, and SQLi on global-2), thus no fake abuse notifications
were sent for them. This explains why Table 3.3 has missing data for such provid-
ers in columns “SQLi” and “Fake abuse complaint”. This is also why in the “Abuse
complaint” cell for provider global-3, we listed N/T: no abuse notification response
was received (N), but a termination occurred anyway (T) for other reasons.

Finally, for provider global-9, we were not able to properly contact its abuse
department: out of the four different abuse notifications we sent to its abuse email
address, only the last two received an automated reply, saying that in order to re-
port an abuse, it is necessary to click on the help link on the web hosting provider’s
home page and follow a series of steps (at the time we received these responses, the
five-days testing period was already expired). We flagged this case as “no reply”
because, although we tried to submit the complaints following the company’s ad-
vice, the user interface adopted by the provider makes it very difficult, even for an
experienced user, to find the right way to report a website abuse. Moreover, once
a visitor is able to reach the right page for submitting a website abuse notification,
he or she is required to register an account before being able to file a complaint.

Fake Abuse Notifications

We expected most web hosting providers to ignore our abuse notifications re-
garding “offending content” (see 3.2.3) and to check the website’s contents but take
no action in case of the fake phishing complaints. In Table 3.3, we thus marked as
“satisfying” also the providers that never replied to our complaints. However, this
is not always a good sign, especially when the same provider never responded to
the real complaints.

Sadly, some of the reactions we observed were clearly in contrast with our ex-
pectations. Both providers marked with “U” believed either our religious complaint
(global-4) or our phishing one (regional-7), warning the website owner about the
possibility for his account to be suspended if the offending content was not re-
moved within a few days. However, contrarily to what was promised, the content
of the websites was left untouched and none of these providers took any action to
block the user’s account after the ultimatum expired.

One provider, regional-1, suspended one of our clean accounts on the same day
it was notified as hosting a phishing website. regional-6, instead, acted as in the
case of real abuse complaints: all the pages on the account’s web hosting directory
were deleted, and the website’s home page was replaced by an “under construction”
page. This was already bad when associated to a real malicious content, but in case
of a bogus complaint it is really an unacceptable behavior. One last provider, then,
responded to the fake phishing abuse notification by sending the website owner an
email stating that his website has been attacked, and as such a password reset had
been forced on the account. Furthermore, the malicious files were disabled (by
means of changing their access permissions) and their list was sent to the user: the

41

3.3. Evaluation

list contained the benign website home page and the jpeg picture included in it.
We were not able to figure out how the web hosting provider assumed the static
HTML home page and the picture could contain malicious code.

Only four web hosting providers replied to our fake abuse notifications with
messages that completely satisfied our expectations. In these cases, marked with
“O” in the table, the support representative informed the notifier that upon man-
ual inspection, the website seemed to be clean, and, in case some content seems
to be offending somebody’s cultural views, the issue has to be resolved in person
by contacting the owner of the website. From this analysis it seems that regional
providers are slightly more likely to perform a manual content inspection on the
websites they host (at least 30% of the ones we tested), compared to global provid-
ers (only two out of twelve).

3.3.4 Re-Activation Policies

Whenever an hosting account was suspended, providers often provide the cus-
tomer with the steps to follow in order to have the account re-activated. These
steps usually imply changing every password of the account (billing, FTP, database
passwords, etc.), writing a letter or an email stating the agreement to the provider’s
Terms of Service, and removing the malicious files or re-installing a clean copy of
the website. Among the companies that suspended our accounts, global hosting
providers seem to stick to strict legal requirements before allowing customers to
have their accounts re-activated after a violation of the terms of service. The two
hosting providers that suspended at least one of our accounts required us to send
an email (global-4) or a scanned letter or fax (global-10) to their support depart-
ment, stating that we have followed all the necessary steps to clean up our account
and reset our login credentials, and that in future we will abide by the terms of
service of the company. Regional providers appear to be more “informal” with
regard to this, as often a simple email replying to the incident notification, ex-
plaining that we were running a vulnerable web application or using a weak FTP
password, was sufficient to have our account re-activated. Also regional providers,
however, in their incident notifications, advised the user to follow basic steps to
secure his account (password change, website cleanup) before requesting a service
re-activation. During our tests on regional-1, in one case, a scanned version of
the customer’s identification card was required in order to re-activate a suspended
account.

Finally, in the case of service terminations, the providers just wanted the user to
leave their company, replying to service re-activation requests with emails stating
in that, given the kind of activity encountered on the account, the company was not
willing anymore to provide their service to such customers.

42

Chapter 3. Web Attacks From a Provider’s Point of View

3.3.5 Security Add-on Services

In our study, we also evaluated the ability of third party “add-on security pro-
viders” to detect attacks or abuses on a website. These services can be purchased
separately from web hosting accounts ∗, and associated with a domain or website
to monitor. In some cases, the subscriber has even the option to give his FTP/SFTP
access credentials to the security service, to allow an in-depth scan of all the files
on his or her account (also those that may not be reachable from the web). For our
study, we selected four companies offering such security services, chosen among
the most common and advertised on the web. We limited our choice to services
that are affordable for a personal or small business use ($30/month max subscrip-
tion price). We did so in order to test services that are in line with the level of web
hosting we were testing. Indeed, it would not be reasonable to pay hundreds of
dollars per month, or more, to protect a $10/month hosting plan.

Some of the add-on companies we evaluated are proposing several level of ser-
vice, at different pricing. We thus registered every protection level available, up to
the $30/month threshold we had fixed, ending up registering a total of six security
add-on services (two each from the companies offering multiple levels of protec-
tion). Six additional hosting accounts were purchased, from different companies,
in order to accommodate our tests for these security services. In the following,
we refer to them as sec-1 through sec-4. The two variants for companies offering
different levels of protection are labeled with a -basic or -pro suffix, to distinguish,
respectively, the cheapest version of the service from the more expensive one. Ser-
vices in the -pro version, for both providers sec-1 and sec-2, allow to scan, daily,
all the files on the customer’s FTP hosting account, if they are provided with his
or her access credentials. We configured both services to enable this kind of scans.
The other four security services, contrarily, perform only scans on publicly acces-
sible pages of the websites they are configured to monitor. Such scans include, in
most of the cases, checking for malware, malicious links, blacklisted pages, and
performing reputation checks on both the website and the provider hosting its con-
tents.

Evaluation of the Security Services

The security services’ evaluation schedule was tighter than the normal test eval-
uation schedule, as we expected security add-on services to react faster to attacks
and suspicious account activities, being specially designed for detecting security
issues. Thus, the tests on accounts hosting the security add-on services were run
for a total duration of 50 days, 10 days for each test, from SH to AV. The SQL
injection test was not run on such web hosting accounts, because its attack does

∗. Although these services can be purchased separately, several web hosting providers offer se-
curity services from third party companies at a discounted price, if purchased in conjunction with a
web hosting plan.

43

3.3. Evaluation

Provider Attack Detection
SH Phish Bot AV SH-BL

sec-1-basic # # # # #
sec-1-pro # # # G#
sec-2-basic # # # # #
sec-2-pro # # # # #
sec-3 # # # # #
sec-4 # # # # #

Table 3.4: Results of our evaluation of third party security services. Symbols and
their meanings are the same as in Table 3.3.

not generate any side effect on the hosting account and thus could not be detected
by third party external security services.

We noticed that two of the companies providing the add-on security services
are listed among the partners of known URL blacklisting services. We therefore
used the last 10 days of testing to study reactions to the notification of suspicious
URLs to such blacklists. For this, we scheduled a last test consisting in a new
deployment of SH, along with the submission of its drive-by download page to
a few malicious URL reporting and blacklisting services. The URL blacklisting
requests were sent on the same day the tests were deployed. We refer to this test as
“SH-BL”.

Results are shown in Table 3.4. One can see that detection capabilities for add-
on services are comparable to those of providers. However, in this case, customers
pay for a service whose only commitment should be monitoring a website in search
of potential vulnerabilities or malicious content. Almost all the services we tested
in this part of our study seem to completely fail this objective.

All the services were configured to send notifications to the user whenever a
security issue was detected on the monitored website. None of the add-on security
services detected anything anomalous during our tests SH, Phish, Bot (attacks were
all successful and never blocked by the hosting provider). Test AV was not detected
either, but the sec-1-pro service raised a warning for having detected the c99 web
shell on our hosting account. However, this alert was visible only when logged on
the security service’s web management panel, where the c99.php file was listed as
suspicious. No critical alerts were issued, nor any email was sent to the user as
notification for this event. Finally, the only successful detection was performed by
the sec-1-pro service, detecting our drive-by download page the day following our
blacklisting request for its URL. As the sec-1 security company was listed as one of
the partners of the blacklisting service, we expect that our URL blacklisting request
was forwarded to the security service right after our submission, thus allowing a
timely detection.

44

Chapter 3. Web Attacks From a Provider’s Point of View

3.4 Lessons Learned, Conclusions

This section concludes our analysis of web attacks from the point of view of
hosting providers. We can summarize the main findings of our experiments around
the following five points:

Registration - Top providers invest a considerable effort to collect information
about the users who register with them. This procedure can be an effective tech-
nique to prevent criminals from hosting their malicious pages on those providers.

Prevention - About 40% of the providers deployed some kind of security
mechanism to block simple attacks, ranging from SQL injections to exploitation
of common web application vulnerabilities.

Detection - Once the customer is registered, most of the providers do nothing
to detect malicious activities or compromised websites - therefore providing very
little help to their customers. We were surprised to discover that 21 out of the 22
tested providers did not even run an antivirus once per month (or they run them
with old or insufficient signature sets) on the hosted websites. Moreover, none of
them considered suspicious having multiple outgoing connection attempts towards
an IRC server.

Abuse Notification - Only 36% of the providers reacted to our abuse notifica-
tions. When they promptly replied, most of the time their reaction was inappropri-
ate or excessive. None of the global providers and only one of the regional ones
were able to properly manage both the real and the fake complaints in a timely
manner.

Security Services - The use of inexpensive security add-on services did not
provide any additional layer of security in our experiments. Also the services that
were configured to scan the content of our sites via FTP failed to discover the
malicious files.

The main differences between global and regional providers appeared to be in
terms of registration verification (in favor of global providers) and reaction to real
complaints (in favor of regional ones).

As we already mentioned in the beginning of this chapter, web hosting provid-
ers are in the position to play a key role in the security of the Web. In fact, they
host millions of websites that are often poorly managed by inexperienced users,
and that are likely to be compromised to spread malware and host phishing kits.
Unfortunately, all the shared web hosting providers we tested in our study missed
this opportunity.

45

3.4. Lessons Learned, Conclusions

46

Chapter 4

Web Attacks From the Attacker’s
Point of View

This chapter analyzes the details of how websites are attacked from the point
of view of attackers and criminals exploiting them. As we already mentioned in
Chapters 1 and 2, web attacks are nowadays one of the major threats on the In-
ternet, and several studies have analyzed them, providing details on how they are
performed and how they spread. However, no study seems to have sufficiently
analyzed the typical behavior of an attacker after a website has been compromised.

In this chapter, we present the design, implementation, and deployment of a
network of 500 fully functional honeypot websites, hosting a range of different
services, whose aim is to attract attackers and collect information on what they
do during and after their attacks. In 100 days of experiments, our system auto-
matically collected, normalized, and clustered over 85,000 files that were created
during approximately 6,000 attacks. Labeling the clusters allowed us to draw a
general picture of the attack landscape, identifying the behavior behind each action
performed both during and after the exploitation of a web application (such as in-
stalling a phishing web page, a botnet script, or a local exploit to escalate privileges
on the compromised machine.)

4.1 Introduction

Web attacks are one of the most important sources of loss of financial and intel-
lectual property. In the last years, such attacks have been evolving in number and
sophistication, targeting governments and high profile companies, stealing valu-
able personal user information and causing financial losses of millions of euros.
Moreover, the number of people browsing the web through computers, tablets and
smartphones is constantly increasing, making web-related attacks a very appealing
target for criminals.

This trend is also reflected in the topic of academic research. In fact, a quick
look at the papers published in the last few years shows how a large number of

47

4.1. Introduction

them cover web-related attacks and defenses. Some of these studies focus on com-
mon vulnerabilities related to web applications, web servers, or web browsers,
and on the way these components get compromised. Others dissect and analyze
the internals of specific attack campaigns [11, 51, 74], or propose new protection
mechanisms to mitigate existing attacks.

The result is that almost all the web infections panorama has been studied in
detail: how attackers scan the web or use google dorks to find vulnerable applica-
tions, how they run automated attacks, and how they deliver malicious content to
the final users. However, there is still a missing piece in the puzzle. In fact, before
our analysis, no work seems to have sufficiently detailed the behavior of an average
attacker during and after a website is compromised. Sometimes the attackers are
only after the information stored in the service itself, for instance when the goal is
to steal user credentials through a SQL injection. But in the majority of the cases,
the attacker wants to maintain access to the compromised machine and include it
as part of a larger malicious infrastructure (e.g., to act as a C&C server for a botnet
or to deliver malicious documents to the users who visit the page).

While the recent literature often focuses on catchy topics, such as drive-by-
downloads and black-hat SEO, this is just the tip of the iceberg. In fact, there is a
wide variety of malicious activities performed on the Internet on a daily basis, with
goals that are often different from those of the high-profile cyber criminals who
attract the media and the security firms’ attention.

The main reason for which no previous work was done in this direction of
research is that almost all of the existing projects based on web honeypots use
fake, or ’mock’ applications. This means that no real attacks can be performed and
thus, in the general case, that all the steps that would commonly be performed by
the attacker after the exploitation will be missed.

As a result, to better understand the motivation of the various classes of at-
tackers, antivirus companies have often relied on the information reported by their
clients. For example, in a recent survey conducted by Commtouch and the Stop-
Badware organization [16], 600 owners of compromised websites have been asked
to fill a questionnaire to report what the attacker did after exploiting the website.
The results are interesting, but the approach cannot be automated, it is difficult to
repeat, and there is no guarantee that the users (most of the time not experts in
security) were able to successfully distinguish one class of attack from the other.

In this chapter we provide, for the first time, a comprehensive and aggregate
study of the behavior of attackers on the web. We focus our analysis on two sep-
arate aspects: i) the exploitation phase, in which we investigate how attacks are
performed until the point where the application is compromised, and ii) the post-
exploitation phase, in which we examine what attackers do after they take con-
trol of the application. The first part deals with methods and techniques (i.e., the
“how”) used to attack web applications, while the second part tries to infer the
reasons and goals (i.e., the “why”) behind such attacks.

For this reason, this study does not analyze common SQL injections or cross-
site scripting vulnerabilities. Instead, our honeypots are tailored to attract and mon-

48

Chapter 4. Web Attacks From the Attacker’s Point of View

http://www.site.com

www.site.com Link 1

Link 2

Figure 4.1: Architecture of the system - high level.

Figure 4.2: Architecture of the system - detail.

itor criminals that are interested in gaining (and maintaining) control of web appli-
cations. Our results show interesting trends on the way in which the majority of
such attacks are performed in the wild. For example, we identify 4 separate phases
and 13 different goals that are commonly pursued by the attackers. We also provide
some insights into a few interesting attack scenarios that we identified during the
operation of our honeypots.

4.2 HoneyProxy

Our honeypot system is composed of a number of websites (500 in our ex-
periments), each containing the installation of five among the most common - and
notoriously vulnerable - content management systems, 17 pre-installed PHP web
shells, and a static web site.

We mitigated the problem of managing a large number of independent instal-
lations by hosting all the web applications in our facilities, in seven isolated virtual
machines running on a VMWare Server. On the hosting provider side we installed
only an ad-hoc proxy script (HoneyProxy) in charge of forwarding all the received
traffic to the right VM on our server. This allowed us to centralize the data col-

49

4.2. HoneyProxy

lection while still being able to distinguish the requests from distinct hosts. A
high-level overview of the system is shown in Figure 4.1.

The PHP proxy adds two custom headers to each request it receives from a
visitor:

– X-Forwarded-For: this standard header, which is used in general by proxies,
is set to the real IP address of the client. In case the client arrives with this
header already set, the final X-Forwarded-For will list all the previous IPs
seen, keeping thus track of all the proxies traversed by the client.

– X-Server-Path: this custom header is set by the PHP proxy in order to make
it possible, for us, to understand the domain of provenance of the request
when analyzing the request logs on the virtual machines. An example of
such an entry is: X-Server-Path: http://sub1.site.com/

These two headers are transmitted for tracking purposes only between the host-
ing provider’s webserver and the honeypot VM’s webserver, and thus are not visi-
ble to the users of the HoneyProxy.

4.2.1 Containment

Each virtual machine was properly set up to contain the attackers and prevent
them from causing any harm outside our honeypot. In particular, we blocked outgo-
ing connections (which could otherwise result in attacks to external hosts), patched
the source code of the vulnerable blog and forum applications to hide messages
posted by spammers (that could result in advertising malicious links), and tuned
the file system privileges to allow attackers to perpetrate their attacks, but not to
take control of the machine or to modify the main source files of each application.
Still, the danger of hosting malicious files uploaded by attackers exists, and we
tackle this problem by restoring every virtual machine to its pristine state at regular
time intervals.

In the following lines, we briefly explain the possible abuses that can be perpe-
trated on a honeypot machine and present our way to prevent or mitigate them.

– Gaining high privileges on the machine. We tackle this problem by using vir-
tual machines with up-to-date software and security patches. In each virtual
machine, the web server and all exposed services run as non privileged user.
Of course, this solution does not guarantee a protection against new 0-day
attacks, but we did our best to limit the attack surface, having only 3 services
running on the machine (apache,sshd,mysqld), among which only the web
server is exposed to the Internet. We considered the possibility of a 0-day
attack against apache fairly remote, and, may it happen, a vast majority of
the Internet will be exposed to it as well.

– Using the honeypot machine as a stepping stone to launch attacks or email
campaigns. This is probably the most important concern that has to be ad-
dressed before deploying a fully functional honeypot machine. In our case,
we used regular iptables rules to block (and log) all outgoing traffic from
the virtual machines, except for already established connections. One excep-

50

Chapter 4. Web Attacks From the Attacker’s Point of View

tion to this rule is the IRC port (6667). We will explain this in more detail in
sections 4.3 and 4.5.

– Hosting and distributing illegal content(e.g., phishing pages). It is difficult
to prevent this threat when applications have remote file upload vulnerabili-
ties. However, it is possible to mitigate the risk of distributing illegal content
by limiting the privileges of directories in which files can be uploaded and
preventing the modification of all the existing HTML and PHP files. In addi-
tion, we also monitor every change on the VM file systems, and whenever a
file change is detected, the system takes a snapshot of it. The virtual machine
is then restored, at regular intervals, to its original snapshot, thus preventing
potentially harmful content from being delivered to victims or indexed by
search engines.

– Illegally promoting goods or services (e.g., spam links). Another issue is
raised by applications that, as part of their basic way of working, allow users
to write and publish comments or posts. This is the case for any blog or
forum CMS. These applications are often an easy target for spammers, as
we will show in section 4.4.3, and when hosting an honeypot it is important
to make sure that links and posts that are posted by bots do not reach any
end user or do not get indexed by search engines. We solved this problem
by modifying the source code of the blog and forum applications (namely,
Wordpress and Simple Machines Forum), commenting out the snippets of
code responsible of showing the content of posts. With this modification, it
was still possible for attackers to post messages (and for us to collect them),
but navigating the posts or comments will only show blank messages.

These countermeasures are limiting the information we can collect with our
honeypot (e.g., in the case in which an attacker uploads a back-connect script that
is blocked by our firewall), but we believe they are necessary to prevent our infras-
tructure to be misused for malicious purposes.

4.2.2 Data Collection and Analysis

Our analysis of the attackers’ behavior is based on two sources of information:
the logs of the incoming HTTP requests, and the files that are modified or generated
by the attackers after they obtain access to the compromised machines.

We built some tools for the analysis of HTTP request logs, allowing us to iden-
tify known benign crawlers, known attacks on our web applications, as well as
obtaining detailed statistics (number and type of requests received, User-Agent, IP
address and geolocalization of every visitor, analysis of the ’Referer’ header, and
analysis of the inter-arrival time between requests). Our analysis tools also allow
us to normalize the time of attack relatively to the timezone of the attacker, and to
detect possible correlations between attacks (e.g., an automated script infecting a
web application uploading a file, followed by another IP visiting the uploaded file
from another IP address). We also developed a parser for the HTTP request logs

51

4.2. HoneyProxy

of the most commonly used PHP web shells, allowing us to extract the requested
commands and understand what the attacker was doing on our systems.

We employed two sources of uploaded or modified files: webserver logs and
file snapshots from monitored directories. Webserver logs are the primary source
of uploaded files, as every file upload processed by our honeypots is fully logged
on the apache mod_security logs. File snapshots from monitored directories on the
virtual machines, instead, are the primary source for files that are modified or gen-
erated on the machine, or about archives or encrypted files that are decompressed
on the system. The total number of files we were able to extract from these sources
was 85,567, of which 34,259 unique.

Given the high number of unique files we collected, a manual file analysis was
practically infeasible. Therefore, in order to ease the analysis of the collected data,
we first separate files according to their types, and then apply similarity clustering
to see how many of them actually differ from each other in a substantial way. This
allows us to identify common practices in the underground communities, such as
redistributing the same attack or phishing scripts after changing the owner’s name,
the login credentials, or after inserting a backdoor.

First of all we employed the file Linux utility to categorize files and group
them in 10 macro-categories: source code, picture, executable, data, archive, text,
HTML document, link, multimedia, and other.

We then observed that many files in the same category only differ by a few
bytes (often white spaces due to cut&paste) or to different text included in source
code comments. Therefore, to improve the results of our comparison, we first
pre-processed each file and transformed it to a normalized form. As part of the
normalization process, we removed all double spaces, tabs and new line characters,
we removed all comments (both C-style and bash-style), and we normalized new
lines and stripped out email addresses appearing in the code. For HTML files, we
used the html2text utility to strip out all HTML tags as well.

PHP files underwent an additional pre-processing step. We noticed that a large
amount of PHP files that were uploaded to our honeypots as result of an exploita-
tion were obfuscated. For files in this form it is very difficult, even with automated
tools, to detect similarities among similar files encoded in different ways. In order
to overcome this issue, we built an automatic PHP deobfuscation tool based on
the evalhook PHP extension [26], a module that hooks every call to dynamic code
evaluation functions, allowing for step-by-step deobfuscation of PHP code. We
deployed our tool on a virtual machine with no network access (to avoid launching
attacks or scans against remote machines, as some obfuscated scripts could start
remote connections or attacks upon execution) and, for each file with at least one
level of deobfuscation (i.e., nested call to eval()), we saved its deobfuscated code.

Our approach allowed us to deobfuscate almost all the PHP files that were
obfuscated using regular built-in features of the language (e.g., gzip and base64
encoding and decoding, dynamic code evaluation using the eval() function). The
only obfuscated PHP files we were not able to decode were those terminating with
an error (often because of syntax errors) and those encoded with specialized com-

52

Chapter 4. Web Attacks From the Attacker’s Point of View

mercial tools, such as Zend Optimizer or ionCube PHP Encoder. However, we
observed only three samples encoded with these tools.

In total, we successfully deobfuscated 1,217 distinct files, accounting for 24%
of the source code we collected. Interestingly, each file was normally encoded
multiple times and required an average of 9 rounds of de-obfuscation to retrieve
the original PHP code (with few samples that required a stunning 101 rounds).

Similarity Clustering

Once the normalization step was completed, we computed two similarity mea-
sures between any given couple of files in the same category, using two state-of-
the-art tools for (binary data) similarity detection: ssdeep [57] and sdhash [103].
We then applied a simple agglomerative clustering algorithm to cluster all files
whose similarity score was greater than 0.5 into the same group.

We discarded files for which our analysis was not able to find any similar ele-
ment. For the remaining part, we performed a manual analysis to categorize each
cluster according to its purpose. Since files had already been grouped by similar-
ity, only the analysis (i.e., opening and inspecting the content) of one file per group
was necessary. During this phase, we were able to define several file categories,
allowing us to better understand the intentions of the attackers. Moreover, this step
allowed us to gain some insights on a number of interesting attack cases, some of
which are reported in the following sections as short in-depth examples.

4.3 System Deployment

The 500 honeyproxy have been deployed on shared hosting plans ∗ chosen from
eight of the most popular international web hosting providers on the Internet (from
USA, France, Germany, and the Netherlands). In order for our HoneyProxy to
work properly, each provider had to support the use of the cURL libraries through
PHP, and allow outgoing connections to ports other than 80 and 443.

To make our honeypots reachable from web users, we purchased 100 bulk do-
main names on GoDaddy.com with privacy protection. The domains were equally
distributed among the .com, .org, and .net TLDs, and assigned evenly across
the hosting providers. On each hosting provider, we configured 4 additional subdo-
mains for every domain, thus having 5 distinct websites (to preserve the anonymity
of our honeypot, hereinafter we will simply call them www.site.com, sub1.site.com,
sub2.site.com, sub3.site.com, sub4.site.com) Finally, we advertised the 500 do-
mains on the home page of the authors and on the research group’s website by
means of transparent links, as already proposed by Müter et al. [78] for a similar
purpose.

∗. This is usually the most economical hosting option, and consists in having a website hosted
on a web server where many other websites reside and share the machine’s resources.

53

4.3. System Deployment

We used a modified version of the ftp-deploy script [42] to upload, in batch, a
customized PHP proxy to each of the 500 websites in our possession. This simpli-
fied the deployment and update of the PHP proxy, and uniformed the way in which
we upload files to each hosting service †, Thanks to a combination of .htaccess,
ModRewrite, and cURL, we were able to transparently forward the user requests
to the appropriate URL on the corresponding virtual machine. Any attempt to read
a non-existing resource, or to access the proxy page itself would result in a blank
error page shown to the user. Not taking into account possible timing attacks or
intrusions on the web hosting provider’s servers, there was no way for a visitor to
understand that he was talking to a proxy.

The HoneyProxy system installed on every website is composed of an index
file, the PHP proxy script itself and a configuration file. The index file is the home
page of the website, and it links to the vulnerable web applications and to other
honeypot websites, based on the contents of the configuration file.

The linking structure is not the same for every subdomain, as can be noticed
taking a closer look at Figure 4.1. Indeed, each subdomain links to at most 2 dif-
ferent subdomains under its same domain. We put in place this small linking graph
with the aim of detecting possible malicious traffic from systems that automatically
follow links and perform automated attacks or scans.

4.3.1 Installed Web Applications

We installed a total of 5 vulnerable CMSs on 7 distinct Virtual Machines. The
Content Management Systems were chosen among the most known and vulnerable
ones at the time we started our deployment. For each CMS, we chose a version with
a high number of reported vulnerabilities, or at least with a critical one that would
allow the attacker to take full control of the application. We also limited our choice
to version no more than 5 years old in order to ensure our websites are still of
interest to attackers.

Our choice was guided by the belief that attackers are always looking for low-
hanging fruits. On the other hand, our honeypots will probably miss sophisticated
and unconventional attacks, mostly targeted to high profile organizations or well
known websites. However, these attacks are not easy to study with simple honeypot
infrastructures and are therefore outside the scope of our study.

Table 4.1 describes the vulnerable applications installed on the 7 virtual ma-
chines, along with their publication date and the list of their known and exploitable
vulnerabilities. We have installed two instances of WordPress 2.8, one with CAPTCHA
protection on comments, and one without CAPTCHA protection, in order to see if
there are attackers that register fake accounts by hand, or systems that are capable
of automatically solve CAPTCHAs. This does not seem to be the case, since we

†. Shared web hosting services from different providers usually come with their own custom
administrative web interface and directory structure, and very few of them offer ssh access or other
’advanced’ management options. Thus, the only possible way to automate the deployment of the
websites was to use FTP, the only protocol supported by every provider.

54

Chapter 4. Web Attacks From the Attacker’s Point of View

VM # CMS, version Plugins Description Vulnerabilities

1 phpMyAdmin, 3.0.1.1 -
MySQL database

PHP code injection
manager

2 osCommerce, 2.2-RC2a - Online shop
2 remote file upload, arbitrary
admin password modification

3 Joomla, 1.5.0
com_graphics,

tinymce
Generic/multipurpose

portal

XSS, arbitrary admin password
modification, remote file

upload, local file inclusion

4 Wordpress, 2.8
kino, Blog (non moderated Remote file include,

amphion lite theme comments) admin password reset

5
Simple Machines

-
Forum (non moderated

posts)

HTML injection in posts, stored

Forum (SMF), 1.1.3
XSS, blind SQL injection, local
file include (partially working)

6
PHP web shells,

static site -
Static site and 17

PHP shells allow to run any
kind of commands on the host

PHP shells (reachable
through hidden links)

7 Wordpress, 2.8
kino, Blog (captcha-protected Remote file include,

amphion lite theme comments) admin password reset

Table 4.1: Applications installed on the honeypot virtual machines, together with
a brief description and a list of their known and exploitable vulnerabilities.

did not receive any post on the CAPTCHA-protected blog. Therefore, we will not
discuss it any further in the rest of this study.

4.3.2 Data Collection

We collected 100 days of logs on our virtual machines, starting December 23rd,
2011. All the results presented in our work derive from the analysis of the logs of
these 7 machines.

Overall, we collected 9.5 GB of raw HTTP requests, consisting in approxi-
mately 11.0M GET and 1.9M POST. Our honeypots were visited by more than
73,000 different IP addresses, spanning 178 countries and presenting themselves
with more than 11,000 distinct User-Agents. This is over one order of magnitude
larger than what has been observed in the previous study by John et al. on low inter-
action web-application honeypots [53]. Moreover, we also extracted over 85,000
files that were uploaded or modified during attacks against our web sites.

There are two different ways to look at the data we collected: one is to identify
and study the attacks looking at the web server logs, and the other one is to try
to associate a goal to each of them by analyzing the uploaded and modified files.
These two views are described in more detail in the next two Sections.

4.4 Exploitation and Post-Exploitation Behaviors

In order to better analyze the behavior of attackers lured by our honeypots, we
decided to divide each attack in four different phases: discovery, reconnaissance,
exploitation, and post-exploitation. The Discovery phase describes how attack-
ers find their targets, e.g. by querying a search engine or by simply scanning IP
addresses. The Reconnaissance phase contains information related to the way in

55

4.4. Exploitation and Post-Exploitation Behaviors

Figure 4.3: Overview of the four phases of an attack

which the pages were visited, for instance by using automated crawlers or by man-
ual access through an anonymization proxy. In the Exploitation phase we describe
the number and types of actual attacks performed against our web applications.
Some of the attacks reach their final goal themselves (for instance by changing a
page to redirect to a malicious website), while others are only uploading a second
stage. In this case, the uploaded file is often a web shell that is later used by the
attacker to manually log in to the compromised system and continue the attack. We
refer to this later stage as the Post-Exploitation phase.

It is hard to present all possible combinations of behaviors. Not all phases are
always present in each attack (e.g., reconnaissance and exploitation can be per-
formed in a single monolithic step), some of the visits never lead to any actual
attack, and sometimes it is just impossible to link together different actions per-
formed by the same attacker with different IP addresses. However, by extracting
the most common patterns from the data collected at each stage, we can identify
the “typical attack profile” observed in our experiment. Such profile can be sum-
marized as follows:

1. 69.8% of the attacks start with a scout bot visiting the page. The scout often
tries to hide its User Agent or disguise as a legitimate browser or search
engine crawler.

2. Few seconds after the scout has identified the page as an interesting target,
a second automated system (hereinafter exploitation bot) visits the page and
executes the real exploit. This is often a separate script that does not fake the
user agent, therefore often appearing with strings such as libwww/perl.

3. If the vulnerability allows the attacker to upload a file, in 46% of the cases the
exploitation bot uploads a web shell. Moreover, the majority of the attacks
upload the same file multiple times (in average 9, and sometimes up to 30),
probably to be sure that the attack was successful.

56

Chapter 4. Web Attacks From the Attacker’s Point of View

Figure 4.4: Volume of HTTP requests received by our honeypots during the study.

4. After an average of 3 hours and 26 minutes, the attacker logs into the ma-
chine using the previously uploaded shell. The average login time for an
attacker interactive session is 5 minutes and 37 seconds.

While this represents the most common behavior extracted from our dataset,
many other combinations were observed as well - some of which are described
in the rest of the section. Finally, it is important to mention that the attack be-
havior may change depending on the application and on the vulnerability that is
exploited. Therefore, we should say that the previous description summarizes the
most common behavior of attacks against osCommerce 2.2 (the web application
that received by far the largest number of attacks among our honeypots).

Figure 4.3 shows a quick summary of some of the characteristics of each
phase. ‡ More information and statistics are reported in the rest of the section.
Then, based on the analysis of the files uploaded or modified during the exploita-
tion and post-exploitation phases, in Section 4.5 we will try to summarize the dif-
ferent goals and motivations behind the attacks we observed in our experiments.

4.4.1 Discovery

The very first HTTP request hit our honeypot proxies only 10 minutes after
the deployment, from Googlebot. The first direct request on one IP address of our
virtual machines (running on port 8002) came after 1 hour and 50 minutes.

During the first few days, most of the traffic was caused by benign web crawlers.
Therefore, we designed a simple solution to filter out benign crawler-generated

‡. The picture does not count the traffic towards the open forum, because its extremely large
number of connections compared with other attacks would have completely dominated the statistics.

57

4.4. Exploitation and Post-Exploitation Behaviors

Figure 4.5: Amount of requests, by issuing country.

traffic from the remaining traffic. Since HTTP headers alone are not trustable (e.g.,
attackers often use User Agents such as ’Googlebot’ in their scripts) we collected
public information available on bots [101, 112] and we combined them with infor-
mation extracted from our logs and validated with WHOIS results in order to iden-
tify crawlers from known companies. By combining UserAgent strings and the
IP address ranges associated to known companies, we were able to identify with
certainty 14 different crawlers, originating from 1965 different IPs. Even though
this is not a complete list (e.g, John et al. [53] used a more complex technique to
identify 16 web crawlers), it was able to successfully filter out most of the traffic
generated by benign crawlers.

Some statistics about the origin of the requests is shown in Figure 4.4. The
amount of legitimate crawler requests is more or less stable in time, while, as time
goes by and the honeypot websites get indexed by search engines and linked on
hacking forums or on link farming networks, the number of requests by malicious
bots or non-crawlers has an almost linear increase.

When plotting these general statistics we also identified a number of suspicious
spikes in the access patterns. In several cases, one of our web applications was
visited, in few hours, by several thousands of unique IP addresses (compared with
an average of 192 per day), a clear indication that a botnet was used to scan our
sites.

Interestingly, we observed the first suspicious activity only 2 hours and 10 min-
utes after the deployment of our system, when our forum web application started
receiving few automated registrations. However, the first posts on the forum ap-
peared only four days later, on December 27th. Even more surprising was the fact
that the first visit from a non-crawler coincided with the first attack: 4 hours 30

58

Chapter 4. Web Attacks From the Attacker’s Point of View

minutes after the deployment of the honeypots, a browser with Polish locale vis-
ited our osCommerce web application § and exploited a file upload vulnerability to
upload a malicious PHP script to the honeypot. Figure 4.5 summarizes the visits
received by our honeypot (benign crawlers excluded), grouped by their geolocal-
ization.

Referer Analysis

The analysis of the Referer HTTP header (whenever available) helped us iden-
tify how visitors were able to find our honeypots on the web. Based on the results,
we can distinguish two main categories of users: criminals using search engines to
find vulnerable applications, and victims of phishing attacks following links posted
in emails and public forums (an example of this phenomenon is discussed in Sec-
tion 4.5.8).

A total of 66,449 visitors reached our honeypot pages with the Referer header
set. The domains that appear most frequently as referrers are search engines, fol-
lowed by web mails and public forums. Google is leading with 17,156 entries.
Other important search engines used by the attackers to locate our websites, were
Yandex (1,016), Bing (263), and Yahoo (98). A total of 7,325 visitors arrived
from web mail services (4,776 from SFR, 972 from Facebook, 944 were from Ya-
hoo!Mail, 493 from Live.com, 407 from AOL Mail, and 108 from comcast.net).
Finally, 15,746 requests originated from several public web forums, partially be-
longing to hacking communities, and partially just targeted by spam bots.

Finally, we extracted search queries (also known as ‘dorks’, when used for
malicious purposes) from Referer headers set by the most common web search en-
gines. Our analysis shows that the search terms used by attackers highly depend
on the application deployed on the honeypot. For example, the most common dork
that was used to reach our Joomla web application contained the words ’joomla
allows you’, while the Simple Machines Forum was often reached by searching
’powered by smf’. Our machine containing public web shells was often reached via
dorks like ’inurl:c99.php’, ’[cyber anarchy shell]’ or even ’[ftp buteforcer] [secu-
rity info] [processes] [mysql] [php-code] [encoder] [backdoor] [back-connection]
[home] [enumerate] [md5-lookup] [word-lists] [milw0rm it!] [search] [self-kill]
[about]’. The latter query, even though very long, was used more than 150 times
to reach our machine with web shells. It was probably preferred to searching via
’intitle:’ or ’inurl:’ because script names and titles are often customized
by attackers and as such searching for their textual content may return more results
than searching for fixed URL patterns or page titles. Some specialized search en-
gines appear to be used as well, such as devilfinder.com, which was adopted in
141 cases to reach some of the shells on our machines. This search engine claims
to show more low-ranking results than common search engines, not to store any
search data, and to return up to 300 results on the same web page, making it very

§. Since UserAgent information can be easily spoofed, we cannot prove that our assumptions
about the browser and tools run by the attacker, and his or her locale, are correct.

59

4.4. Exploitation and Post-Exploitation Behaviors

suitable for attackers willing to search for dorks and collect long lists of vulnerable
websites.

4.4.2 Reconnaissance

After removing the legitimate crawlers, the largest part of the traffic received
by our honeypots was from unidentified sources, many of which were responsible
of sending automated HTTP requests. We found these sources to be responsible
for the majority of attacks and spam messages targeting our honeypots during the
study.

However, distinguishing attackers that manually visited our applications from
the ones that employed automated scout bots is not easy. We applied the following
three rules to flag the automated requests:

– Inter-arrival time. If requests from the same IP address arrive at a frequency
higher than a certain threshold, we consider the traffic as originated from a
possible malicious bot.

– Request of images. Automated systems, and especially those having to opti-
mize their speed, almost never request images or other presentation-related
content from websites. Scanning web logs for visitors that never request
images or CSS content is thus an easy way of spotting possible automated
scanners.

– Subdomain visit pattern. As described in Section 4.3, each web site we
deployed consisted in a number of sub-domains linked together according to
a predetermined pattern. If the same IP accesses them in a short time frame,
following our patterns, then it is likely to be an automated crawler.

For example, after removing the benign crawlers, a total of 9.5M hits were
received by systems who did not request any image, against 1.8M from system
that also requested images and presentation content. On the contrary, only 641 IP
addresses (responsible for 13.4K hits) visited our websites by following our links
in a precise access pattern. Among them, 60% followed a breadth first approach.

85% of the automated requests were directed to our forum web application, and
were responsible for registering fake user profiles and posting spam messages. Of
the remaining 1.4M requests directed to the six remaining honeypot applications,
95K were mimicking the User-Agent of known search engines, and 264K switched
between multiple User-Agents over time. The remaining requests did not contain
any suspicious User-Agent string, did not follow paths between domains, neither
requested images. As such, we classified them as unknown (possibly benign) bots.

4.4.3 Exploitation

The first important activity to do in order to detect exploitation attempts was
parsing the log files in search of attack traces. Luckily, knowing already the vul-
nerabilities affecting our web applications allowed us to quickly and reliably scan
for attacks in our logs using a set of regular expressions.

60

Chapter 4. Web Attacks From the Attacker’s Point of View

Overall, we logged 444 distinct exploitation sessions. An interesting finding is
that 310 of them adopted two or more different User-Agent strings, appearing in
short sequence from the same IP address. As explained in the beginning of Sec-
tion 4.4, this often happens when attackers employ a combination of scout bots and
automatic attack scripts in order to speed up attacks and quickly find new targets.
In particular, in two thirds (294) of the total exploitation sessions we observed, the
User-Agent used for the exploitation was the one associated to the LibWWW Perl
library (libwww/perl).

In some of these exploitation sessions, the attacker tried to disguise her tools
and browser as known benign bots. Some crawler User-Agent strings that were
often used during exploitation sessions were: FreeWebMonitoring, Gigabot/3.0,
gsa-crawler, IlTrovatore-Setaccio/1.2, bingbot/2.0;, and Googlebot/2.1.

The most remarkable side effect of every exploitation session is the upload
or modification of files on the victim machine. Quite surprisingly, we noticed
that when an exploitation session uploads a file, the file is uploaded in average
9.75 times. This strange behavior can be explained by the fact that most of the
exploitation tools are automated, and since the attacker does not check in real-time
whether each exploit succeeded or not, uploading the same file multiple times can
increase the chance for the file to be successfully uploaded at least once.

Using the approach presented in Section 4.2.2, we automatically categorized
the files uploaded to our honeypots as a result of exploiting vulnerable services.
We then correlated information about each attack session with the categorization
results for the collected files. Results of this phase show that the files uploaded
during attack sessions consist, in 45.75% of the cases, in web shells, in 17.25% of
the cases in phishing files (single HTML pages or complete phishing kits), in 1.75%
of the cases in scripts that automatically try to download and execute files from
remote URLs, and in 1.5% of the cases in scripts for local information gathering.
Finally, 32.75% of the uploaded files were not categorized by our system, either
because they were not similar to anything else that we observed, or because they
were multimedia files and pictures (e.g., images or soundtracks for defacement
pages) that were not relevant for our study.

Figure 4.6 shows the normalized times of the attacks received by our honey-
pots. The values were computed by adjusting the actual time of the attack with the
timezone extracted from the IP geolocalization. As such, our normalization does
not reflect the correct value in case the attacker is proxying its connection through
an IP in a different part of the world. However, the graph shows a clear daylight
trend for both the exploitation and post-exploitation phases. In particular, for the
interactive sessions we observed fewer attacks performed between 4am and 10am,
when probably also the criminals need to get some sleep. Interestingly, also the
exploitation phase, that is mostly automated, shows a similar trend (even though
not as clear). This could be the consequence of scans performed through botnet
infected machines, some of which are probably turned off by their users during the
night.

61

4.4. Exploitation and Post-Exploitation Behaviors

Figure 4.6: Normalized time distribution for attack sessions

Searching our attack logs for information about attackers reaching directly our
virtual machines, without passing through the honeypot proxies, we found that a
small, but still significant number of attacks were carried out directly against the
ip:port of our honeypots. In particular, we found 25 of such attack sessions against
our e-commerce web honeypot and 19 against our machine hosting the web shells
and the static website. In both cases, the attacker may have used a previous exploit
to extract the IP of our machines (stored in a osCommerce configuration file that
was often downloaded by many attackers, or by inspecting the machine through an
interactive shell) and use this information in the following attacks.

Posts

Since the 1st day of operation, our forum application received a very large
amount of traffic. Most of it was from automated spamming bots that kept flooding
the forum with fake registrations and spam messages. We analyzed every snapshot
of the machine’s database in order to extract information about the forum’s posts
and the URLs that were embedded in each of them. This allowed us to identify
and categorize several spam and link farming campaigns, as well as finding some
rogue practices such as selling forum accounts.

A total of 68,201 unique messages were posted on the forum during our study,
by 15,753 users using 3,144 unique IP addresses. Daily statistics on the forum
show trends that are typical of medium to high traffic message boards: an average

62

Chapter 4. Web Attacks From the Attacker’s Point of View

of 604 posts per day (with a max of 3085), with an average of 232 online users
during peak hours (max 403).

Even more surprising than the number of posts is the number of new users reg-
istered to the forum: 1907 per day in average, and reaching a peak of 14,400 on
March 23, 2012. This phenomenon was so common that 33.8% of the IP addresses
that performed actions on our forum were responsible of creating at least one fake
account, but never posted any message. This finding suggests there are some in-
centives for criminals to perform automatic user registrations, perhaps making this
task even more profitable than the spamming activity itself. Our hypothesis is that,
in some cases, forum accounts can be sold in bulk to other actors in the black mar-
ket. We indeed found 1,260 fake accounts that were created from an IP address
and then used few days later by other, different IPs, to post messages. This does
not necessarily validate our hypothesis, but shows at least that forum spamming
has become a complex ecosystem and it is difficult, nowadays, to find only a single
actor behind a spam or link farming campaign.

A closer look at the geolocation of IP addresses responsible for registering
users and posting to the forum shows that most of them are from the United States
or Eastern Europe countries (mostly Russia, Ukraine, Poland, Latvia, Romania). A
total of 6687 distinct IP addresses were active on our forum (that is, posted at least
one message or registered one or more accounts). Among these, 36.8% were asso-
ciated to locations in the US, while 24.6% came from Eastern European countries.
The country coverage drastically changes if we consider only IP addresses that
posted at least one message to the forum. In this case, IPs from the United States
represent, alone, 62.3% of all the IP addresses responsible for posting messages
(Eastern Europe IPs in this case represent 21.2% of the total).

Finally, we performed a simple categorization on all the messages posted on
the forum, based on the presence of certain keywords. This allowed us to quickly
identify common spam topics and campaigns. Thanks to this method, we were able
to automatically categorize 63,763 messages (93.5% of the total).

The trends we extracted from message topics show clearly that the most com-
mon category is drugs (55% of the categorized messages, and showing peaks of
2000 messages per day), followed by search engine optimization (SEO) and elec-
tronics (11%), adult content (8%), health care and home safety (6%).

All the links inserted in the forum posts underwent an in-depth analysis us-
ing two automated, state-of-the-art tools for the detection of malicious web pages,
namely Google Safe Browsing [105] and Wepawet [17]. The detection results of
these two tools show that, on the 221,423 URLs we extracted from the forum posts,
a small but not insignificant fraction (2248, roughly 1 out of 100) consisted in ma-
licious or possibly harmful links.

4.4.4 Post-Exploitation

The post-exploitation phase includes the analysis of the interaction between
the attackers and the compromised machines. In our case, this is done through the

63

4.4. Exploitation and Post-Exploitation Behaviors

web shells installed during the exploitation phase or, to increase the collected data,
through the access to the public shells that we already pre-installed in our virtual
machines.

The analysis of the post-exploitation phase deserves special attention since it is
made of interactive sessions in which the attackers can issue arbitrary commands.
However, these web shells do not have any notion of session: they just receive
commands via HTTP requests and provide the responses in a state-less fashion.

During our experiments we received a total of 74,497 shell commands. These
varied from simple file system navigation commands, to file inspection and editing,
up to complex tasks as uploading new files or performing network scans.

To better understand what this number represents, we decided to group together
individual commands in virtual “interactive sessions” every time they are issued
from the same IP, and the idle time between consecutive commands is less than 5
minutes.

According to this definition, we registered 232 interactive sessions as a conse-
quence of one of the exploited services, and 8268 in our pre-installed shells ¶. The
average session duration was of 5 minutes and 37 seconds, however, we registered
9 sessions lasting more than one hour each. The longest, in terms of commands
issued to the system, was from a user in Saudi Arabia that sent 663 commands to
the shell, including the manual editing of several files.

Interestingly, one of the most common actions performed by users during an
attack is the upload of a custom shell, even if the attacker broke into the system
using a shell that was already available on the website. The reason for this is that
attackers know that, with a high probability, shells installed by others will contain
backdoors and most likely leak information to their owner. In addition to the 17
web shells supported by our tools, we also identified the HTTP patterns associated
to the most common custom shells uploaded by the attackers, so that we could
parse the majority of commands issued to them.

In 83% of the cases, attackers tried to use at least one active command (up-
loading or editing a file, changing file permissions, creating files or directories,
scanning hosts, killing a process, connecting to a database, sending emails, etc.).
The remaining sessions were purely passive, with the attackers only browsing our
system and downloading source and configuration files.

Finally, in 61% of the sessions the attackers uploaded a new file, and in 50%
of them they tried to modify a file already on the machine (in 13% of the cases
to perform a defacement). Regarding individual commands, the most commonly
executed were the ones related to listing and reading files and directories, followed
by editing files, uploading files, running commands on the system, listing the pro-
cesses running on the system, and downloading files.

¶. For the pre-installed shells, we also removed sessions that contained very fast sequences of
commands or that did not fetch images on the pages, because they could have been the result of
crawlers visiting our public pages. Since shells uploaded by attackers were not linked from any
page, we did not apply this filtering to them.

64

Chapter 4. Web Attacks From the Attacker’s Point of View

File Type Clustered Not Clustered Clusters
Archive 335 (82.6%) 71 (17.4%) 159
Data 221 (62.5%) 133 (37.5%) 87
Executable 102 (82.3%) 22 (17.7%) 41
HTML doc 4341 (100.0%) 0 (0%) 822
Image 1703 (81.9%) 374 (18.1%) 811
Source code 3791 (100.0%) 0 (0%) 482
Text 886 (43.8%) 1138 (56.2%) 219
Various 118 (65.9%) 61 (34.1%) 42
Total 11,497 (86.5%) 1799 (13.5%) 2663

Table 4.2: Results of clustering

4.5 Attackers Goals

In this section we shift the focus from the way the attacks are performed to
the motivation behind them. In other words, we try to understand what criminals
do after they compromise a web application. Do they install a botnet? Do they
try to gain administrator privileges on the host? Do they modify the code of the
application and insert backdoors or malicious iFrames?

To answer these questions, we analyzed the files uploaded during the exploita-
tion phase, and the ones created or modified during the post-exploitation phase. We
normalized each file content as explained in Section 4.2, and we clustered them to-
gether according to their similarity. Finally, we manually labeled each cluster, to
identify the “purpose” of the files. The results of the clustering are summarized
in table 4.2 and cover, in total, 86.4% of the unique files collected by our hon-
eypots. For these, Figure 4.7 shows the distribution of the file categories ‖. For
example, 1.7% of the unique files we observed in our experiments were used to
try to escalate the privileges on the compromised machine. This is different from
saying that 1.7% of the attackers tried to escalate the privileges of the machine.
Unfortunately, linking the files to the attacks in which they were used is not always
possible. Therefore, we computed an estimation of the attackers that performed
a certain action by identifying each unique IP that uploaded a certain file during
an attack. Identifying an attacker only based on his or her IP address is not always
correct, but still provides a reasonable approximation. Thus, if we say that a certain

‖. We removed from the graph the irrelevant and damaged documents, that accounted in total for
10% of the files.

65

4.5. Attackers Goals

Figure 4.7: Attack behavior, based on unique files uploaded

category has an estimated attackers ratio of 20%, it means that 1 attacker out of 5
uploaded at least one file of that category during his or her operation.

Only 14% of the attackers uploaded multiple files belonging at least to two
separate categories. This means that most of the attacks have a precise goal, or that
attackers often change their IP addresses, making it very hard for us to track them.

In the rest of the section, we briefly introduce each of the 13 categories.

4.5.1 Information gathering

Unique files ratio 1.8%
Estimated attackers ratio 2.2%

These files consist mainly in automated scripts for the analysis of the com-
promised system, and are often used as a first stage of a manual attack, in which
the attacker tries to gather information on the attacked system before proceeding
with other malicious actions. In general, we observed a number of attackers using
scripts to search, archive, and download several system configuration files.

For example, an attack using such tools hit our honeypots on April 7, 2012.
The attacker, using a normal browser and coming from a Malaysian IP address,
uploaded a script called allsoft.pl. Once executed, the script scans the system
for a list of directories containing configuration files of known CMSs (e.g., Word-
press, Joomla, WHM, phpBB, vBulletin, . . .), creates a tar archive containing all
the files it was able to find, and returns to the attacker a link to the created archive,
that can thus be easily downloaded. The script iterates on both the users and the

66

Chapter 4. Web Attacks From the Attacker’s Point of View

possible multiple home directories in the system trying to gather information from
as many accounts as possible on the attacked machine.

4.5.2 Drive-by Downloads

Unique files ratio 1.2%
Estimated attackers ratio 1.1%

We have witnessed few attacks that aimed at creating drive-by download web-
pages, by inserting custom exploit code in the HTML source of the web pages of
our honeypots, or by uploading documents that contain exploits for known browser
vulnerabilities. This kind of activity is aimed at exploiting users visiting the web-
site, typically to convert their machines in bots that can be later used for a large
spectrum of illicit activity.

An example of such attacks was the intu.html web page uploaded to one of our
honeypots on February 28th, 2012. When opened, the page shows ’Intuit Mar-
ket. Loading your order, please wait...’. Behind the scenes, a malicious JavaScript
loads an iframe pointing to a document hosted at twistedtarts.net. This
document is malicious and contains two exploits, for CVE-2010-0188 and CVE-
2010-1885. Wepawet [17] reported the document as malicious on the same day
this webpage was uploaded to our honeypots.

4.5.3 Second Stages

Unique files ratio 37.2%
Estimated attackers ratio 49.4%

This category includes downloaders (programs designed to download and exe-
cute another file), uploaders (web pages that can be used to remotely upload other
files), web shells, and backdoors included in already existing documents. These are
the tools of choice for attackers to perform manual web-based attacks. The reason
is that such tools allow either to upload any file to the victim machine, or to issue
arbitrary commands as if the attacker was logged in to one of the server’s terminals.
The majority of the attacks logged by our honeypot adopted a mix of web shells
and custom scripts to try to hack the machine and install malicious software on it.

An example of this behavior is the attack that started at 6:50 am (GMT) on Jan-
uary 1st, 2012. An IP address from Englewood, Colorado, with an User-Agent set
to ’blackberry8520_ver1_subvodafone’ connected directly to our honeypot virtual
machine running osCommerce and exploited a file upload vulnerability, uploading
several different PHP scripts, all of them launching IRC bots connecting to dif-
ferent IRC servers. The same person also uploaded a PHP shell, and used it to
download the configuration file of the CMS installed on the machine.

The fact that the attacker was not connecting through our HoneyProxy infras-
tructure but directly to our IP address was unusual, and attracted our attention.
Searching backwards in our logs starting the date of the attack, we found out that

67

4.5. Attackers Goals

less than 24 hours before, an automated system with an User-Agent set to ’bing-
bot/2.0’ connected to one of our websites from another IP address from Englewood,
Colorado, exploited a vulnerability and downloaded the osCommerce configura-
tion file, which contains the real IP of our virtual machine hosting the e-commerce
web application.

4.5.4 Privilege Escalation

Unique files ratio 1.7%
Estimated attackers ratio 2.2%

Privilege escalation exploits are among the oldest types of exploits in the com-
puter security history, but are still among the most sought after, as they allow an
attacker to gain administrator privileges and thus full control of vulnerable ma-
chines. Successfully executing a privilege escalation exploit on server machines
used in a shared web hosting environment would make the attacker in the position
to modify the files of every website hosted on the server, possibly allowing for
mass exploitations of hundreds or even thousands of websites at the same time.

An example of such kind of attack hit our honeypots on February 9, 2012. An
attacker with an Hungarian IP address uploaded a file called mempodipper.c
to our machine hosting the web shells, and used one of the shells to try to com-
pile its source code with gcc. The machine had no available compiler, thus, less
than 5 minutes later, the attacker uploaded a pre-compiled ELF binary named
mempodipper, and tried to execute it through one of the shells. We found this
exploit to be for a very recent vulnerability, the CVE-2012-0056, published less
than 20 days before this attack. At the time of the attack, the exploit for this vul-
nerability, titled Linux Local Privilege Escalation via SUID /proc/pid/mem Write
was already publicly available [134]. However, the kernel of our virtual machines
was not vulnerable to it.

4.5.5 Scanners

Unique files ratio 2.3%
Estimated attackers ratio 2.8%

This kind of activity is performed to find other local or remote vulnerable target
websites that could possibly be exploited by the attacker. For example, FTP scan-
ning, querying search engines using ’dorks’, or trying to list all the domain names
being hosted on the machine belong to this category.

A concrete example is the trdomain.php page, uploaded to one of our honey-
pots on December 26th, from a Turkish IP address. It contains a local domain
name scanner, that pulls the domain names configured on the machine from the
local configuration files (such as named.conf), gets their PageRank from Google,
as well as their document root and their owner’s username, and returns a web page
with a list containing all this information. The title of the page is ’Domain ve User

68

Chapter 4. Web Attacks From the Attacker’s Point of View

ListeLiyici | by W£ßRooT ’; as of today, searching such title on the web still yields
many results, showing that this kind of attack is very common and wide spread.

4.5.6 Defacements

Unique files ratio 28.1%
Estimated attackers ratio 27.7%

Attacks of this kind are among the most frequent ones on our honeypots. In
this kind of attack, the attackers modify existing web pages on the honeypot, or
upload new pages with the purpose of claiming their responsibility for hacking the
website. Usually, but not always, the claims are accompanied by religious or politic
propaganda, or by funny or shocking images. Many of the attackers performing
such attacks even insert links to their personal website or Facebook page, where
one can see they are mainly teenagers looking for fame and bragging in front of
their friends.

One of the many defacements attacks that hit our honeypots happened around
8 pm GMT on the 6th of March. Somebody connecting from a German IP address
found one of the hidden shells in our machine hosting the static website, and used it
to edit one of the static html pages hosted on the machine. The code of the page was
thus uploaded using copy-and-paste in a textarea provided by the web shell. The
defacement page contained a short slogan from the author, an animated JavaScript
text slowly unveiling a Portuguese quote, and a set of links to the personal Twitter
pages of each member of the hacking crew, some of which had more than 1000
tweets and several hundred followers. Quickly looking at these Twitter profiles,
we found out that all the members are actively posting their defacements on their
profile pages. Apparently, they do so in order to build some sort of reputation. This
is confirmed by the URL they posted as a personal webpage on Twitter, a web page
from the zone-h.org website, reporting statistics about previous defacements
of the crew. The statistics are quite impressive: at the time of writing the whole
crew has claimed more than 41,600 defacements starting July 20, 2011, of which
almost 500 are on important websites with high reputation (government websites,
universities, multinational corporations, etc.).

Thanks to attacks like this we found out that it is common practice among
attackers to advertise their defacements on publicly accessible ’defacement’ show-
cases, such as the one on the zone-h.org website. It seems that some of these
people are really in a sort of competition in order to show off their presumed skills
at hacking websites, and our honeypot domains were often reported as trophies by
several groups.

69

4.5. Attackers Goals

4.5.7 Botnets

Unique files ratio 28.1%
Estimated attackers ratio 27.7%

Several attackers, after exploiting our honeypots, tried to make our servers join
an IRC botnet by uploading dedicated PHP or Perl scripts.

Two of the honeypot virtual machines, and specifically those with the most
severe vulnerabilities, allowing attackers to upload and run arbitrary files on the
server, have been set up to allow outgoing connections to port 6667 (IRC). We did
so in order to monitor IRC botnet activity launched by an eventual attacker on our
machines. We allowed connections only to port 6667, allowing thus only botnets
running on the standard IRC port to connect to their management chat rooms. To
avoid being tracked down by bot masters, every connection to the IRC port was
tunneled through a privacy-protected VPN that anonymized our real IP address.
No other outgoing connections were allowed from the machines, in order to avoid
the possibility for our machines to launch attacks or scans against other hosts.

Our expectations proved to be correct, and we indeed logged several connec-
tions from our two machines to IRC command and control servers. The analysis of
the packet traces showed some interesting information.

First of all, we were expecting IRC botnets to be quite rare nowadays, given the
relatively high number of web-based exploit packs circulating on the black market.
However, the analysis of the files that were uploaded on our honeypots showed an
opposite trend, with about 200 distinct scripts launching IRC bots.

Another interesting observation is that, apparently, most of these IRC botnets
are operated by young teenagers, as some IRC logs show. Some of the bot masters
even put links to their Facebook or Twitter profiles in order to show off with their
friends. Despite being run by youngsters, however, most of our connection logs
show IRC rooms with hundreds to thousands of bots (the biggest IRC botnet we
observed was comprised of 11900 bots).

While some logs showed us some of the bot masters attacking rivals on other
IRC servers (which we considered a typical script-kiddie behavior), we were in-
terested to see that these young people already deal with money and are able to
use (and probably develop themselves) automated tools for searching on search
engines and exploiting web vulnerabilities. We received a number of commands to
perform DoS attacks, search engines scans using dorks, automatic mass exploita-
tions, and instructions to report back usernames and passwords, as well as credit
card credentials, stolen from exploited websites.

A final interesting finding, supported by the language used in the IRC logs and
by an analysis of the IP addresses used for the upload of the IRC script, was that
the majority of these IRC botnets were installed by users from South-Eastern Asian
countries (mostly Malaysia and Indonesia).

70

Chapter 4. Web Attacks From the Attacker’s Point of View

4.5.8 Phishing

Unique files ratio 7.3%
Estimated attackers ratio 6.3%

Phishing is one of the most dangerous activities that online criminals perform
nowadays. We found proof of many attempts to install phishing pages or phish-
ing kits on our honeypots. This kind of activity is always profit-driven; the vast
majority of phishing websites are replicas of online banking websites, but we also
collected few examples of online email portal phishing and even a handful of web
pages mimicking ISPs and airline companies’ websites.

During the 100 days of operation, our honeypots collected a total of 470 phishing-
related files, 129 of which were complete phishing packages (archives often con-
taining a full phishing website installation, including images, CSS files, and the
phishing scripts themselves). Surprisingly, Nigeria seems to be a very active coun-
try for this kind of attacks, with Nigerian IP addresses responsible for approxi-
mately 45% of the phishing attacks logged by our honeypots.

An interesting case was logged by our honeypots starting on March 27th. Ana-
lyzing the Referer header of the requests received by our websites, we found 4776
requests, from 1762 different IP addresses, reaching our pages with the referer set
to the mail servers of sfr.fr, one of the major French ISPs. Inspecting the web-
server logs, we found out that all the HTTP requests having a Referer from sfr.fr
requested only two png images. Both files had been uploaded to our honeypots
on the 24th of March; when the first hit from SFR arrived, the virtual machines
had already been cleaned up several times, but we found the original version of
the pictures in our snapshots of uploaded files. Surprisingly, the pictures showed
a message resembling a regular communication from SFR’s customer service. All
the users that hit our honeypots with a Referer from sfr.fr had thus received a phish-
ing email containing links to the two png files, and their web client was only trying
to download and show them the contents of the email.

4.5.9 Spamming and message flooding

Unique files ratio 7.8%
Estimated attackers ratio 9.3%

Many users still seem to use spam as a technique to make profit on the Internet.
Some of the scripts we found are indeed mailers, i.e., scripts used to send out spam
to a large number of recipients in an automated way. Some other scripts were email
or SMS flooders, that are instead used for launching DoS attacks.

Our honeypots collected around 600 such scripts. As an example, on February
21st, a script called a1.php was uploaded from a Nigerian IP address. This script
is a highly customizable mailer, and allows sending spam to a list of recipients in
plain text or HTML format, with many options. It can also be configured to log in
to a remote SMTP server in order to send spam through an authenticated account,

71

4.5. Attackers Goals

and to disconnect and reconnect to the server after a certain threshold of sent emails
is reached, probably with the purpose of avoiding bans.

4.5.10 Link Farming & Black Hat SEO

Unique files ratio 2.7%
Estimated attackers ratio 1.0%

Link farms are groups of web sites linking to each other, usually creating web
pages with a very dense link structure, whose aim is to boost the search engine
ranking of the web sites of the group. Black-hat SEO, instead, refers to using illicit
or unethical techniques, such as cloaking, to boost the search engine ranking of a
website, or to manipulate the way in which search engines and their spiders see and
categorize a web pages. If we exclude automated posts on the forum web appli-
cation, where a high percentage of posts contained links to link farming networks,
this kind of behavior has not been observed very frequently on our honeypots.

An interesting attack that created a big amount of web pages on our honeypots
was launched on March 19th. Somebody installed an fully functional CMS, com-
prising hundreds of static HTML pages, to one of our honeypots. All the generated
pages were installed on the images/rf/ subdirectory of our e-commerce web appli-
cation, and contained Russian text, along with images, CSS and JavaScript files
used for presentation purposes. This page structure seems to be generated through
a blog or CMS creation engine, as all the pages have a very dense link structure and
point one another using absolute links (that had been customized and contained our
honeypot website’s domain name). We expect this to be part of an attempt to create
a link farming network, or simply to be a marketing campaign for some counter-
feit goods, as most of the pages we analyzed were actually advertising the sale of
replica watches.

Finally, on a smaller scale, we also saw some attackers creating pages with ads
or inserting links to partner sites on their uploaded pages. The reason for this is
still making profit out of ads, or improving their or their partners’ ranking on search
engines.

4.5.11 Proxying and traffic redirection

Unique files ratio 0.6%
Estimated attackers ratio 0.6%

Online criminals always look for reliable ways to hide their tracks, and as time
goes by, it becomes more and more difficult to rely only on open proxy networks,
the TOR network, or open redirection web pages to conduct malicious activities.
In fact, these services are often overloaded with (malicious) traffic and as such
have very bad average performances and are very likely to be monitored by the
authorities. In this scenario, the possibility of tunneling traffic on infected hosts
seems idyllic, as it is quite easy to turn a webserver into a proxy, and often web-
servers running on hosting providers premises have high bandwidths, making them

72

Chapter 4. Web Attacks From the Attacker’s Point of View

a very valuable target. We saw some attackers uploading proxy scripts or traffic
redirection systems (TDS) to our honeypots, for the purpose of redirecting traffic
anonymously (proxies) or redirecting users to malicious sources or affiliate web-
sites (TDSs).

As an example, an archive of 504KB was uploaded on one of our honeypots on
February 22, 2012. The archive contained a proxy tool called VPSProxy, publicly
available at http://wonted.ru/programms/vpsproxy/ ; it is a PHP proxy fully control-
lable through a GUI client. Apparently, among all its features, if installed on more
than one server, the tool makes it easy for the person using it to bounce between
different connections. We believe tools like this can be very useful to criminals
trying to hide their traces on the Internet.

4.5.12 Custom attacks

Unique files ratio 1.9%
Estimated attackers ratio 2.6%

This category groups all attacks that were either built on purpose for exploiting
specific services, or that had no other matching category. For example, attacks in
this category include programs whose aim is to scan and exploit vulnerable web
services running on the server, such as the config.php script that was uploaded to
one of our websites on April the 9th. This PHP script presents a panel for finding
and attacking 9 of the most known Content Management Systems: if any of these is
found on the machine, the attacker can automatically tamper with its configuration.
The tool also contained other scripts to launch local and remote exploits.

4.5.13 DOS & Bruteforcing tools

Unique files ratio 4.6%
Estimated attackers ratio 2.9%

This category includes programs that launch Denial of Service or brute-force
attacks against specific applications and services (e.g., bruteforcing tools for FTP
or web services, UDP and TCP flooding scripts).

An interesting example of this kind of behavior was the email brute-force script
that was uploaded to one of our honeypots on April 7, 2012. An IP address from
Azerbaijan used a web shell to upload a file called n.php and a wordlist containing
1508 words, called word.txt. The n.php file, once executed, uses the cURL PHP
libraries to connect to the box.az email portal and the uses the wordlist to brute-
force the password for a specific username that was hard-coded in the program.
Our honeypots actually logged the upload of n.php several times, to three different
domains. The attacker tried multiple times to execute the script (10 times in 16
minutes) and to edit it (4 times) as if looking for an error in the code. In reality, the
script traffic was simply blocked by our firewall.

73

4.6. Conclusions

4.6 Conclusions

This chapter described the implementation and deployment of a honeypot net-
work based on a number of real, vulnerable web applications. Using the collected
data, we studied the behavior of the attackers before, during, and after they com-
promise their targets.

This study allowed us to analyze, for the first time in academic literature, how
and why attacks against common websites are carried out. We believe the results
presented in this chapter provided interesting insights on the current state of ex-
ploitation behaviors on the web. On one side, we were able to confirm known
trends for certain classes of attacks, such as the prevalence of eastern European
countries in comment spamming activity, and the fact that many of the scam and
phishing campaigns are still operated by criminals in African countries [45]. Phar-
maceutical ads appear to be the most common subject among spam and comment
spamming activities, as found by other recent studies [20].

On the other hand, we were also able to observe and study a large number
of manual attacks, as well as many infections aimed at turning web servers into
IRC bots. This suggests that some of the threats that are often considered outdated
are actually still very popular (in particular between young criminals) and are still
responsible for a large fraction of the attacks against vulnerable websites.

74

Chapter 5

Web Attacks from the User’s Side

After analyzing how web attackers behave and how hosting providers handle
compromises, it is time to turn our point of view on the target of each web attack:
the user. Users are typically the final target of web attacks, as it is from their
personal information that criminals are able to obtain financial gain.

However, while many aspects of web attacks have been carefully studied by
researchers and security companies, the reasons that make certain users more “at
risk” than others are still unknown. Why do certain users never encounter mali-
cious pages while others seem to end up on them on a daily basis?

To answer this question, in this chapter, we present a comprehensive study on
the effectiveness of risk prediction based only on the web browsing behavior of
users. Our analysis is based on a telemetry dataset collected by a major AntiVirus
vendor, comprising millions of URLs visited by more than 100,000 users during
a period of three months. For each user, we extract detailed usage statistics, and
distill this information in 74 unique features that model different aspects of the
user’s behavior.

Once we extract all features, we perform a correlation analysis to see if they
are correlated with the probability of visiting malicious web pages. Afterwards,
we leverage machine learning techniques to provide predictions for users that are
exposed to risk. The results of experiments show that it is possible to predict with a
reasonable accuracy the users that are more likely to be the victims of web attacks,
only by analyzing their browsing history.

5.1 Introduction

A large amount of research has been conducted on the tools and techniques
adopted by attackers, to automatically identify and mitigate software vulnerabili-
ties, or to protect web browsers from exploitation. Despite this effort, the percent-
age of web pages that are either malicious or that have been compromised to serve
malicious content is steadily increasing [55,116,127]. Even though this is certainly
an alarming phenomenon, these global figures are computed on the entire Internet

75

5.1. Introduction

population, and therefore fail to express what is the real risk for a single user to
encounter a malicious page on her daily activity. The increasing number of dan-
gerous sites does not necessarily affect everyone in the same way. For instance, it
is possible that the majority of users only navigate in “safe neighborhoods” where
malicious pages are still extremely rare. In this case, it should be possible to asso-
ciate to each user, based on her usual online behavior, a certain risk profile. In other
words, there should be a correlation between the browsing habits of a user and the
probability of her visit to potentially harmful pages. This scenario is particularly
attractive in the area of cyber-insurance [9], in which user profiling is an impor-
tant step toward an accurate risk evaluation. For example, in the physical world
insurance rates are normally computed based on a risk classification. For instance,
car insurances are more expensive in large cities or for inexperienced drivers – be-
cause this conditions are known to be positively correlated to the probability of car
accidents. Unfortunately, an equivalent measurement of risk factors in the virtual
world is still missing.

While the hypothesis of a correlation between the risk and the browsing be-
havior is reasonable, this does not necessarily imply the presence of any causality
relationship. It has to be underlined, however, that our work focuses only on the
analysis of voluntary user browsing activity. We thus have no visibility over URL
visits that do not originate from user actions on an Internet browser (such as visits
to pages that are part of Command and Control infrastructures, or URLs visited
directly via non-standard applications or malware).

When dealing with the analysis of user browsing behaviors, there are also other
factors that one has to take into account. For instance, independently from their
daily activity, users are often socially engineered to click on links sent to them
over email. As a consequence, it is possible that other attributes such as the user
experience in computer science, as discussed by Onarlioglu et al. [84] could be
more important to determine the risk factor of a user than her browsing habits.

Unfortunately, few works have tried to answer this question and understand if
there are certain behaviors or certain characteristics that may influence the prob-
ability of users to visit malicious web pages. As discussed in Chapter 2.3, some
works have tried to answer similar questions by performing field studies on the
computer usage of a limited number of subjects [61]. Others have speculated
whether certain behaviors may be related to higher chances of being compromised,
such as the relation between browsing porn sites and being subject to infections or
malicious web master practices [130]. However, no study has so far been general
enough to build user profiles and analyze this information in order to assess if there
is any relation between specific user habits and the fact of visiting malicious web
pages.

In this chapter, we conduct the first comprehensive study in this area by using
the telemetry data collected by a popular antivirus company. In particular, we
analyzed the webpages visited by 160,229 users over a period of 3 months (92
days). Using anonymized information, we first identified two classes of users: the
safe ones who never visited malicious webpages during our experiments, and the

76

Chapter 5. Web Attacks from the User’s Side

ones at risk who visited several malicious sites in the same timespan. Our goal was
to see what kind of behavior can be used to differentiates the two classes. For this
reason, we identified and extracted 74 attributes that can be used to summarize the
user browsing behavior, and we correlated each of them with the users’ class.

Our experiments confirm that the volume of user activity is one of the best
indicators for the level of risk. The more pages a person browses everyday, and
the more diverse is the set of pages, the more likely she would be to come across
a malicious website. We also show that malicious pages are more likely to be
encountered during the weekend and that people in the risk class are more active
during the night than users who belong to the safe class. Looking at the website
categories, we found that some of them – such as adult content and shortened
URLs – are positively correlated to the probability of being at risk. Finally, the
results of the experiments we performed indicate that it is possible to combine all
this information and train a classifier to predict whether a user is at risk of infection,
just by analyzing her browsing profile.

5.2 Dataset and Experiments Setup

We performed our analysis over a dataset we obtained through a collaboration
with Symantec, that gave us access to part of the telemetry data collected by the
WINE platform. This data is obtained from clients that voluntarily opt-in to let their
computers share information on usage statistics and encountered threats. AntiVirus
(AV) vendors typically employ this kind of client feedback with the purpose of
identifying new threats and improve their products and services.

The dataset we obtained consists of a 3-month snapshot of the web browsing
history of a subset of clients that had opted in to allow the company collect infor-
mation on their browsing activity. The dataset covered all the web requests issued
by approximately 160,000 distinct client machines in a three-month period, from
August 1st, 2013 to October 31st, 2013. This consisted in a total of 202,306,687
URL visits, covering a total of 37,797,151 distinct URLs. The data collected by
Symantec included only URLs of websites visited through the HTTP protocol. All
information was provided in an anonymized form, and no private client informa-
tion was available to us, with the exception of the client’s country. It is important to
note that customers who agreed in sharing their browsing history are aware that the
company stores this information in anonymized form, and that client identifiers are
anonymized too. This means it is not possible for the AV company to link back the
collected data to the client from which the requests originated. The specific fields
we have analyzed in our study include only the unique client identifier, the times-
tamp of the visit, and the URL of the web site. Moreover, to further improve the
privacy of the users, we anonymize each URL by removing the path and eventual
URL parameters – limiting our analysis to the fully qualified domain name.

Since our main goal is to perform a statistical analysis of the dataset, we fo-
cused our study on those clients who visited at least 100 web pages during our

77

5.2. Dataset and Experiments Setup

timeframe. This prevents clients whose information has low statistical significance
to pollute, or bias, our measurements. We believe the threshold of 100 pages over
3 months to be conservative enough to include almost all regular user behavior,
while excluding those machines that are only sporadically used to browse the Web.
It can be noticed that, with our dataset, visiting less than 100 web pages over three
months means basically opening one URL per day or less: it would be very difficult
to build a user profile based on such a limited browsing history.

5.2.1 Data Labeling

To be able to estimate if there is a correlation between risk and user behavior,
we first need to define what the definition of risk is for our study. As explained
in Section 5.3, we define the risk categories by setting an experimentally chosen
threshold for the number of times a user visits distinct malicious URLs or domain
names during the experimental period of 3 months.

We constructed our labeled set of malicious URLs from URLs detected to be
malicious either by the Norton SafeWeb service [118] or by Google SafeBrows-
ing [105]. We further collected malicious domain names from several public ser-
vices that provide a list of domains involved in various malicious activities, such
as dropzones, drive-by-download, phishing, and scam web sites. In particular,
we built the list by merging information collected by malware domain list [64],
abuse.ch [4] and malc0de [69].

All this information allowed us to label each URL in our dataset as either Be-
nign, Malicious, or hosted in a Blacklisted domain. We decided to keep this last
class separated from the malicious URLs because domains have a larger granularity
and therefore provides a less accurate classification. Please note that the labeling
phase was performed in an automated way on Symantec’s servers, thus prior to
discarding the full URL path. Once the matching was completed, the rest of the
analysis only operated, in an aggregated form, on the anonymized URLs.

5.2.2 Risk Categories

One of the goals of this work is to answer the question of whether it is feasible
to identify a category of people that, while surfing the Internet, incurs in a higher
chance of visiting malicious web pages, when compared to other users. To be able
achieve this goal, we first need to separate users in different risk categories.

Following a classical insurance approach, we separate users based on their past
experience. With a good approximation, users that never ended up visiting a mali-
cious page during our three-month observation period can be considered safe users.
We noticed, however, that the contrary is not necessarily true. Indeed, given the
high number of factors contributing to the maliciousness of a website and the delay
in updating popular blacklists, misclassifications are not too rare. For example, it
happens even to trusted websites to serve malicious ads or to become victims of
DNS hijacking attacks [122]. Thus, when looking at our classification scores, a

78

Chapter 5. Web Attacks from the User’s Side

Value Risk Category
safe uncertain at risk

Total number of visited URLs 743 1386 2411
Distinct URLs visited 231.3 452.4 873.7
Average number of URLs visited per day 16.8 23.8 36.6
Distinct URLs visited per day 5.8 8.5 14.0
Total number of malicious URLs visited 0 0.78 8.4
Total number of blacklisted domains visited 0 2.44 8.5
Distinct number of malicious URLs visited 0 0.5 4.0
Distinct number of blacklisted domains visited 0 0.9 2.8
Percentage of malicious URLs - 0.14% 0.71%
Percentage of blacklisted domains - 0.32% 0.4%

Number of users
80128 49127 30974
(50%) (31%) (19%)

Table 5.1: Average values of different indicators, for users in the three risk cate-
gories.

certain noise margin has to be taken into account. To handle this problem, we de-
fine a user to be at risk if she visited at least two distinct malicious URLs, or at least
three blacklisted domains over the 3-month period. Again, the reason to use dif-
ferent thresholds for URLs and Domains is that the latter have a lower granularity
and thus a higher probability of misclassification.

We put users who do not belong to the previous two categories into an uncertain
middle category. For instance, the fact that a person visits a single dangerous URL
over three months (with multiple visits to the same URL counting as one) may be
just due to an error in classifying the URL. This is not sufficient for us to conclude
that the user has a risky browsing behavior.

Table 5.1 shows the average number of different types of URLs visited by each
category of users. Users who are “not at risk” appear to browse over five times less
malicious URLs than at risk users. This means that typically, as the table shows,
users in the uncertain category end up on malicious websites less frequently than
at risk ones. Another clear difference is that at risk users typically visit more
pages than other categories of users, and this factor may be related to the chance of
ending up on malicious websites (we will discuss this hypothesis in more detail in
Section 5.5). This is also valid in relation to the “variety” of visited websites, since
for at risk users the average number of distinct URLs, and distinct URLs per day
are about twice as much as the same values for the uncertain group. Finally, the
table highlights that roughly one user out of five in our dataset belongs to the at risk
category. If we consider the total number of users who are exposed at least once to
malicious websites, then, this ratio increases to half of the entire user population.
This is more than what found by a recent study on Australian customers by one

79

5.3. Geographical and Time-based Analysis

major AV company [56], that observed that one customer every eight was exposed
to web threats.

5.3 Geographical and Time-based Analysis

This section describes the analysis we have conducted on the dataset we ob-
tained from Symantec, and provides details on user habits, time trends and more
than 70 other features that we extracted to model the users’ behavior.

5.3.1 Daily and Weekly Trends

Question: Is there a time of the day, or day of the week, when users are more
likely to visit malicious web pages?

We start our analysis of users’ browsing behavior by looking at the weekly and
hourly trends emerging from our dataset. First of all, Figure 5.1 shows that, as
we expected, people surf less during the weekend. This trend is valid, with slight
variations, all over the world, and country-wise daily trends do not differ much
between each other. One can notice that there is a slight but significant increase
in the percentage of malicious URLs visited during the weekend, compared to the
trend of malicious hits during the rest of the week. This amounts approximately to
a 10% increase in the chance of incurring in a malicious URL during the weekend,
compared to the risk of doing so between Monday and Friday. The average p-
value given by the Wilcoxon Signed Rank Test [129] when comparing the two
distributions is of 6.44 × 10−7, which shows the difference is indeed significant.
As often found in literature [113], we consider to be statistically significant those
differences showing computed p-values of less than 0.05.

Figure 5.2 shows instead the hourly trends for website visits, split between the
two categories of users. As the hourly trends show, browsing trends for the safe,
and at risk users do not differ much, even though at risk users are slightly more
active during the night and less active in the morning. The statistical significance
of these variations if confirmed by means of the Wilcoxon Signed Rank Test, that
returned p-values significantly lower than the typical 0.05 significance level (e.g.,
the p-value of the test between 1 and 2am was of only 2.2× 10−16). However, the
fact that users in the at risk category spend more time on the Internet at night does
not imply that it is more risky to browse after midnight. Therefore, in Figure 5.3,
we look at the same hourly trends, but from the point of view of the URLs instead of
users. In this case, the graph shows that hits on blacklisted domains are higher than
other malicious hits between 9pm and 2am, and lower than others during business
hours. Hits on malicious URLs seem instead to be prevalent in the afternoon,
between 3pm and 8pm. Again, the signed rank test confirmed the differences in
these distributions to be statistically significant, producing p-values always below
the significance level of 0.05.

80

Chapter 5. Web Attacks from the User’s Side

MON TUE WED THU FRI SAT SUN

all hits malicious hits

0
5

10
15

20

0
0.

05
0.

1
0.

15
0.

2

%
 o

f v
is

its

Figure 5.1: Global daily distribution of URL hits. The percentage of malicious hits
is expressed as a fraction of the total hits on the same day.

Overall, these results confirm what found by a recent report on the Australian
customers of a known security firm [56]. Indeed, as the mentioned study shows,
also our analysis of time trends shows an increase in the percentage of malicious
hits during nights and weekends. We are thus able to confirm that trends that have
been reported on Australian users still hold when observing browsing statistics of
users from all around the world.

5.3.2 Geographical Trends

Question: Is there a set of countries where users are more likely to visit mali-
cious web pages, when compared to others?

Our dataset contains information about clients located in 167 different coun-
tries. Table 5.2 summarizes some general statistics for those countries for which
we have at least 1000 users. Simply by looking at the outliers (emphasized in bold
in the table), one can notice several interesting trends.

For instance, Japan appears to have by far the lowest per-user ratio of malicious
hits, and the lowest percentage of users at risk. However, the absolute value of
malicious pages visited by Japanese users is in line with the ones of other countries.
Percentages are just lower because average users in Japan browse twice as many
pages as their counterparts in other countries. At the other end of the scale, we
have several Mediterranean countries (notably France, Spain, and Italy) that share
similar high values of several risk indicators. These countries have a percentage

81

5.4. Feature Extraction for User Profiling

1
2

3
4

5
6

al
l h

its

at risk
safe

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.
5

0.
6

0.
7

0.
8

0.
9

m
al

ic
io

us
 h

its

%
 o

f v
is

its

Hour

Figure 5.2: Hourly trends for, respectively, all the hits (upper) and malicious hits
(lower) in our dataset. Malicious hits are expressed as percentage of the total hits
for the same category of users, in the given hour.

of at risk users ranging between 27% and 29%, three times higher than Japan, and
approximately twice as much as other top countries.

Finally, the last column of the table shows the average number of languages
of web pages visited by users in each country. As it can be expected, users from
English speaking countries appear to visit pages in a limited number of languages
compared to those visited by users in non-english speaking countries. In average,
over the 3-months period, users in English speaking countries appeared to browse
pages written in less than 4 different languages, while users from other countries
visited pages in an average of 5.3 different languages. This fact seems however not
to have any clear relation with the percentage of at risk users in each country.

5.4 Feature Extraction for User Profiling

After looking at time patterns and geographical trends, we decided to focus in
more detail on the behavior of users. The basic idea motivating this work is that
we expect users that belong to the risky category (i.e., those that regularly visit
malicious web pages) to behave differently, when browsing the Internet, than users
who are safe. We thus define a user profile as a sort of a multi-dimensional template
such that we can characterize the behavior of each user group. We model each user
profile by using a combination of 74 unique variables, or features, designed to
precisely capture many aspects of a user’s browsing habit.

In the following paragraphs, we will describe the different categories that com-
pose our features set, based on which aspect of the user behavior they are meant to
represent.

82

Chapter 5. Web Attacks from the User’s Side

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

1
2

3
4

5
6 safe hits

malicious URLs
blacklisted domains

%
 o

f h
its

Hour

Figure 5.3: Hourly global trends for all hits and malicious hits in our dataset, show-
ing also trends for the two separate sources of malicious hits

How Much a User Surfs the Web The first set of features are designed to cap-
ture the volume of user activity. The rationale behind this is that, as common sense
suggests, the more time a person spends browsing the Web, the more likely she
would be to encounter a malicious web site. For instance, this category of fea-
tures includes the number of total (hits) and unique (distinct_urls) hits over the
three month period, the average number of hours (hours_per_day) and web pages
(hits_per_day) visited in a day, and the percentage of days in which the client was
active during the period of the experiment (days_active_perc).

In Which Period of the Day a User is More Active When looking at time trends
(see Section 5.3.1), we noticed that the distribution of malicious URLs is propor-
tionally higher during the night and in the weekend. Therefore, we added a set of
features to capture this difference. In particular, we introduced the percentage of
the client’s hits issued, respectively, during night time (hits_night_perc), business
hours (hits_bh_perc), and the evening (hits_evening_perc). We consider midnight
to 6 am as night, 6 am to 7 pm as business hours, and 7pm-midnight as evening.
These time windows were chosen in order to be as conservative as possible in the
evaluation of business hours, as these differ significantly between countries in the
world, and thus we may otherwise wrongly categorize this value.

How Diversified is the Set of Websites Visited by a User Another possible root
cause for being at risk when browsing could be related to browsing a very broad and
diversified class of web sites as this might increase the likelihood of landing on a
malicious page. We model this aspect by counting the number of visited hostnames
(hostnames), domain names (domains), and the number of visited unique top level
domains (TLDs) (tlds).

83

5.4. Feature Extraction for User Profiling

Country Users % users
at risk

Average hits on Visited Pages
lan-
guagesmalicious

URLs
blacklisted
domains

total distinct domains

US 67967 20.8 2.2 (0.22%) 2.0 (0.15%) 1250 422 194 3.6
UK 26204 17.8 1.5 (0.16%) 2.0 (0.16%) 1097 379 183 4.2
JP 16556 10.0 1.1 (0.05%) 3.1 (0.14%) 1989 641 205 3.8
CA 6798 20.9 2.0 (0.22%) 2.4 (0.17%) 1214 387 186 3.8
AU 6107 16.4 1.5 (0.17%) 1.5 (0.15%) 1007 343 173 3.7
DE 5606 22.3 2.0 (0.20%) 2.6 (0.23%) 1042 366 192 4.9
FR 4566 29.1 2.8 (0.27%) 3.3 (0.27%) 1127 390 209 4.5
NL 3415 15.9 1.1 (0.12%) 2.3 (0.21%) 1009 361 195 5.2
ES 1842 28.3 2.4 (0.23%) 3.9 (0.33%) 1121 391 200 5.7
SE 1755 15.3 1.9 (0.17%) 1.9 (0.14%) 1049 327 167 6.4
IT 1665 27.4 1.8 (0.18%) 7.0 (0.69%) 1097 350 186 5.4
BE 1454 21.3 2.2 (0.21%) 2.5 (0.20%) 1126 396 208 5.5
NO 1208 11.8 1.1 (0.10%) 2.5 (0.11%) 1219 341 166 6.1

Table 5.2: Average values of several indicators, for users in the top 13 countries
appearing in our dataset.

Among these features we also consider the percentage of distinct URLs cal-
culated over the total number of hits for the given user (distinct_urls_perc) and
the percentages of unique hostnames and of unique domain names over the total
number of hits (distinct_hostnames_perc, distinct_domains_perc). The purpose of
these features is to estimate if the user tends to revisit the same set of URLs or
websites, or instead appears to browse a more diversified set of web sites.

Finally, we measured the number of languages (n_languages) of the web pages
visited by a certain user. The language of websites was obtained from the same
service we used to obtain the category of web pages, as explained in the following
paragraph.

Which Website Categories the User is Mostly Interested in One of the main
characteristics of a user profile is the categories of the visited web pages. To label
each URL with the corresponding category, we used an internal website categoriza-
tion system from Symantec. This service was designed to apply a set of heuristics
to extract categories and languages from the URLs visited by the AV customers.
Unfortunately, website categorization being based on heuristics, in some cases the
categorization engine was able to retrieve only the main language used in the web
page, but failed to properly capture the category, or vice versa. Therefore, we com-
plemented the company database by using a number of publicly available website
categorization services such as Alexa [1] and Open Directory Project [90], and a
number of lists of known URL shorteners, bittorrent web sites, one-click hosting
providers and porn websites [65, 119, 121, 131]. We employed these lists to com-
plement the heuristic service provided by Symantec, as it is common belief that
visiting websites from these categories yields to higher chances of being infected
by malicious web code. As a result, we were able to cover 76% of the web sites in

84

Chapter 5. Web Attacks from the User’s Side

our dataset (96% for the Alexa top 10,000 domains). The language coverage was
instead 77% overall, and 70% for domains in the Alexa top 10,000.

Once website categorization phase was completed, we extracted a number of
features to incorporate features that are extracted from the category information in
the user profile. For example, we reported the percentage of activity in each of the
following 8 categories: business websites, adult, communications and information
search, general interest, hacking, entertainment and leisure, multimedia and down-
loading, uncategorized (sites for which we were not able to obtain a category).

Computer Type The main aspect we want to capture with this class of features is
the difference between office and personal computers. The assumption we make to
identify office computers is that computers that do not show any activity during the
weekends are very likely to be office computers. We label all computers that are
silent during the weekend as office and the others as personal computers (work_pc).
In addition, for personal computers, we also compute the percentage of activity
during the weekend (hits_we_perc).

The remaining features that are extracted to characterize the computer type are
computed using properties of the anonymized IP addresses of the devices. Note
that we do not have access to the absolute value of the IP addresses and to the
name of the Internet Service Providers (ISP) they belong to. The AV company
keeps the hashed values of IP addresses and their corresponding ISPs such that it is
possible to calculate their distinct numbers (n_ips and n_isps). The final feature in
this category is the number of countries from which the user appeared to be surfing
the web from (n_countries_user). By using features, we aim at representing the
user’s mobility, and helping to assess whether a person is browsing the Internet
from a static IP address or a dynamic one.

How Popular are the Websites Visited by the User This set of features are
computed to model how common the websites visited by a user are, under the
assumption that malicious pages are more commonly found in less popular sites.

The first indicator we look at is the percentage of .com, .net and .org top
level domain (TLD) hits (hits_comnetorg_perc) that appear in each user’s browsing
history, and the number of visited URLs that belong to other TLDs (no_comnetorg_tlds).
We also extracted a number of features related to the Alexa ranking of domains [2],
namely the total number of hits and distinct websites visited in the Alexa top 500
(n_hits_top500, and n_dist_sites_top500), the total number of hits and of distinct
websites visited in Alexa’s top one million (n_hits_top1M, and n_dist_sites_top1M)
and the number of hits and of distinct websites visited out of Alexa’s top one mil-
lion list (n_hits_noAlexa, n_dist_sites_noAlexa). All these features are computed
both as absolute numbers and as percentage among all web sites visited by the user.

How Stable is the Set of Visited Pages To conclude our features set, we modeled
the variability of a user’s browsing activity. The rationale in this case is that users

85

5.5. Evaluation

hi
ts

di
st

in
ct

_u
rl

s
do

m
ai

ns
ho

st
na

m
es

TL
D

s

no
_c

om
ne

to
rg

_t
ld

s
n_

la
ng

ua
ge

s
n_

is
ps

n_
ip

s

n_
co

un
tr

ie
s_

us
er

w
or

k_
pc

di
st

in
ct

_u
rl

s_
pe

rc

ho
st

na
m

es
_p

er
c

do
m

ai
ns

_p
er

c

da
ys

_a
ct

iv
e_

pe
rc

hi
ts

_n
ig

ht
_p

er
c

hi
ts

_b
h_

pe
rc

hi
ts

_e
ve

ni
ng

_p
er

c
hi

ts
_w

e_
pe

rc

n_
hi

ts
_t

op
50

0_
pe

rc

n_
di

st
_s

ite
s_

to
p5

00
_p

er
c

n_
hi

ts
_t

op
1M

_p
er

c

n_
di

st
_s

ite
s_

to
p1

M
_p

er
c

n_
hi

ts
_n

oA
le

xa
_p

er
c

n_
di

st
_s

ite
s_

no
A

le
xa

_p
er

c
hi

ts
_p

er
_d

ay
ho

ur
s_

pe
r_

da
y

hi
ts

_c
om

ne
to

rg
_p

er
c

hi
ts

_s
ho

rt
en

er
s_

pe
rc

hi
ts

_b
itt

or
re

nt
_p

er
c

hi
ts

_o
ch

_p
er

c
hi

ts
_p

or
n_

pe
rc

hi
ts

_d
ow

nl
oa

di
ng

_p
er

c

hi
ts

_e
nt

er
ta

in
m

en
t_

pe
rc

hi
ts

_h
ac

ki
ng

_p
er

c

hi
ts

_g
en

er
al

_p
er

c

hi
ts

_c
om

m
un

ic
at

io
ns

_p
er

c

hi
ts

_b
us

in
es

s_
pe

rc
hi

ts
_a

du
lt_

pe
rc

hi
ts

_u
nc

at
eg

or
iz

ed
_p

er
c

de
lta

_d
ay

_h
os

t
in

te
rs

_d
ay

_h
os

t
in

c_
ho

st
in

te
rs

_h
os

t

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

Figure 5.4: Spearman’s Correlation Coefficient between user profile features and
being at risk.

who always visit the same set of pages are less at risk than users who change
their targets very often. In particular, it is possible that users are mostly exposed
to malicious pages when they deviate from their usual interests and temporarily
browse web sites they do not know very well. In order to obtain these features,
we performed a one week training over the web browsing history of each client in
our dataset. We thus recorded, for each client machine, the set of web sites visited
during its first 7 days of activity (training set). For every other day, we recorded
the set of visited websites and their intersection and difference with the traning
set. We averaged these values, and obtained the average percentage of common
web sites between the daily browsing session and the initial 7-day training period
(inters_day_host), as well as the percentage of new web sites – not visited during
the 7-day training window – browsed in average every day (delta_day_host). We
also recorded, for each client machine, the whole set of web sites visited during all
its browsing activity, and calculate its intersection with the training set. The size of
this intersection is then scaled by the size of the training set to obtain inters_host,
the percentage of hosts visited after the training period that cover the initial training
set. Finally, we also calculate a measure of the increment in the number of web sites
visited by the client during its entire browsing history, compared to the number of
web sites in the initial training set (inc_host).

5.5 Evaluation

In this section, we present the results of our analysis. We first evaluate if any
of the 74 features we have presented in the previous section are correlated to the
fact that a user belongs or not to the at risk category. Afterwards, we build on top
of these results to see if it is possible to use these features in a classifier, to predict
the risk class of a user given her behavior.

86

Chapter 5. Web Attacks from the User’s Side

Feature At Risk Safe Percent
Difference

hits 2411 742 106%
distinct_urls 873 231 116%
domains 331 88 116%
hostnames 388 108 113%
TLDs 17.5 7.9 76%
no_comnetorg_tlds 14.6 5.2 94%
n_languages 5.4 3.4 45%
days_active_perc 0.66 0.46 36%
hits_night_perc 0.09 0.07 27%
n_dist_sites_top500_perc 0.12 0.18 38%
hits_per_day 36.5 16.8 74%
hours_per_day 4.7 3.1 41%
hits_shorteners_perc 0.0034 0.0017 67%
hits_och_perc 0.0030 0.0018 50%
hits_porn_perc 0.0282 0.0112 86%
hits_downloading_perc 0.051 0.033 42%
hits_hacking_perc 0.0002 0.0000 113%
hits_business_perc 0.147 0.220 39%
hits_adult_perc 0.144 0.042 109%
inters_day_host 0.125 0.190 41%
inc_host 11.7 8.0 38%

Table 5.3: Comparison of the average values of certain features for safe and at risk
users. Only features having a percentage difference greater than 25% are shown.

5.5.1 Feature Correlations

In the first part of our experiments, we extracted the feature values for all the
users in our dataset and we used them to perform a correlation analysis with the
risk class.

To start with, we compared the average values of each feature computed on
safe and at risk users. While for the majority of them the difference was relatively
small, in 22 features there was a difference of more than 25%. Those features, and
the respective average values, are summarized in Table 5.3. The fact that several
features clearly show up to a threefold increase between the activity of safe users
and users at risk, suggested us to look at the correlation of these variables in more
detail.

The correlation analysis we have adopted is based on the value of the Spear-
man’s correlation coefficient [37]. Spearman’s correlation is a statistical measure
of the strength of a monotonic relationship between paired data. This coefficient
by design is constrained between -1 and 1. While -1 indicates very strong negative
correlation and +1 very strong positive correlation, the values close to 0 denote
the absence of a monotonic relation between variables. We chose to employ the

87

5.5. Evaluation

Spearman’s rank correlation because, unlike the Pearson’s correlation coefficient,
it does not require a normal distribution in the dataset.

After calculating the Spearman’s correlation coefficient, we tested the confi-
dence of the obtained results by performing a standard significance test. As al-
ready discussed in Section 5.3.1, we consider that the correlation value of a feature
is statistically significant if the computed p-value (i.e, significance level) is less
than 0.05. A set of selected features for which the p-value was under this threshold
is summarized in Figure 5.4.

Note that in the literature [37], a Spearman’s coefficient value below 0.20 is
normally considered an indication of a very weak correlation. Similarly, values
between 0.2 and 0.4 are considered weak, between 0.4 and 0.6 moderate, between
0.6 and 0.8 strong, and above 0.8 very strong indication of a correlation between
the variables. As it can be clearly seen in Figure 5.4, most of the features we have
extracted have weak or no correlation with the fact that a user is at risk.

In the weakly correlated category we find features related to the amount of
daily web activity (hits and hours per day), the number of porn and adult web-
sites visited by a user, the number of languages, and an inverse correlation with
the percentage of visited websites falling in the top Alexa 500. In the moderate
correlation interval we find again some absolute measures of the amount of URLs,
domains, and hostnames visited by a user. Moreover, and more interestingly, we
also find a correlation between being at risk and the number of web pages with a
TLD different from .org, .com, and .net.

Not surprisingly, these results indicate that the more a user surfs the Internet,
the more she might be exposed to the risk of encountering a malicious page. The
category does not seem to matter much, with very little correlation found with
the percentage of usage of URL shorteners, downloading, and hacking websites –
and a small negative correlation with the percentage of business sites. The only
exception, as discussed in more detail in Section 5.6, is the higher correlation with
adult and porn categories.

5.5.2 Predictive Analysis

The results we obtained from the correlation analysis show that some of the
features we examined, although not very strongly, have some mild correlation with
the fact that a user is at risk. Therefore, the same footers might be helpful as
well to predict whether a user is at risk or not. Motivated by this assumption, we
have generated a number of prediction models leveraging state-of-the art machine
learning techniques. Before opting for Logistic Regression [8], we experimented
with many other machine learning approaches including decision trees [62, 96],
support vector machines [18], and Bayesian classifiers [132]. In our tests, logistic
regression achieved the best results in terms of accuracy and false positive rates.

Logistic regression is a probabilistic statistical classification model that aims
at predicting a category from features presenting either continuous or discrete val-
ues [8]. Compared to other classification methods, one of its advantages is that it

88

Chapter 5. Web Attacks from the User’s Side

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	 1	 2	 3	 4	 5	 6	 7	 8	

	 D
et
ec
&o

n	
Ra

te
	 (%

)	

FP	 Rate	 (%)	

Figure 5.5: ROC Curve of the risk class classifier applied to the entire dataset

does not explicitly require features that are not correlated with each other. More-
over, when new data is available, logistic regression can efficiently update the mod-
els with the new input.

The Receiver Operating Characteristic (ROC) curve summarizing the true and
false positive rates of our classifier, applied to the entire dataset, is shown in Fig-
ure 5.5. The curve has an area of 0.919. For instance, if used to detect at risk
users, the system can be tuned to have a detection rate of 74% (i.e., users at risk
properly classified as at risk) with 8% false positives (i.e., users not at risk misclas-
sified as being at risk). These results, both in terms of the best classifier algorithm
and of the area under the ROC curve, are in line with what has been measured in
previous studies about the precision of classification algorithms for financial risk
prediction [88].

Since, as explained in Section 5.3.2, the distribution and behaviors of users’
risk classes are different in different countries, we decided to retrain our classifier
on each country in isolation. The results are quite similar to the overall results, with
the only exception of Japan, for which the system was more precise – achieving
73% detection with 1.9% false positives, and an area under the ROC curve of 0.958,
as shown in Figure 5.6.

5.6 Discussion and Lessons Learned

Our experiments confirm the finding of a recent study by Levesque et al. [61]
regarding the fact that the more websites a user visits the higher is her exposure
to threats. However, we reach a different conclusion regarding the correlation of
browsing adult content. Levesque et al. found that the amount of sport or Internet
infrastructure websites visited by a user are more related to the fact of being in-

89

5.6. Discussion and Lessons Learned

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	 0.5	 1	 1.5	 2	 2.5	 3	

De
te
c%
on

	 R
at
e	
(%

)	

FP	 Rate	 (%)	

Figure 5.6: ROC Curve of the risk class classifier applied to the Japanese users
only

fected than the number of porn websites [61]. However, while the absolute number
of porn website may not be a good indicator, the percentage of time spent browsing
porn seems to be a better feature. In fact, even though browsing adult web pages
may not be a risky activity per se, from our results it looks like people who browse
(in proportion) more porn and adult websites are more likely to also visit malicious
pages in their daily activity. To better investigate this phenomenon, in Figure 5.7
we plotted the percentage of users at risk for different ranges (using a decile split)
of the hits_adult_perc feature. The graph clearly shows that the percentage of safe
users decreases as the ratio of adult hits increase.

Similar trends can be plotted also for the other variables. For instance, Fig-
ure 5.8 presents an even clearer picture of the relationship between the number of
unique top level domains and the steep increase in the percentage of users at risk.
While the large majority of safe users lie in the first half of the decile plot (more
than 50% of the total number of safe users actually lie in the 1st decile – visiting
less than 8 TLDs in the 3-month period), their percentage drops to less than 20%
in the last three deciles of the plot, corresponding to users that visit at least 21
different TLDs. This is yet another confirmation that the variety, and not just the
number, of the pages visited by a user is a strong indicator for its risk factor.

As mentioned in Section 5.3.2, also the geographical location of a user is very
important. Citizens of certain countries (such as Norway and Japan) seem to be
more careful in their browsing habits compared to their peers located, for example,
in Italy or Spain.

While some of the features we used in our experiments were already discussed
in previous works, the main finding of our study is the fact that by extracting and
combining a much larger number of features from the URLs visited by a user in a
certain period of time, it is possible to train a classifier to predict the risk class a user

90

Chapter 5. Web Attacks from the User’s Side

1 2 3 4 5 6 7 8 9 10
Decile

0

20

40

60

80

100

%
 o

f U
se

rs
 A

t R
is

k

Figure 5.7: Decile plot for at risk users with respect to the percentage of hits on
adult web sites.

belongs to. This is a very interesting finding from several points of views. First, our
results can be obtained by looking only at HTTP requests, without any access to
the end-user devices. This allows companies (or even ISPs) to silently profile their
users and even combine their risk class into an aggregated risk factor at a company
or network level. Second, while still far from perfect, the accuracy of the extracted
models is sufficient to be used in a risk prediction scenario. Comparable models are
used everyday to compute the risk associated to financial operations [88], such as
when processing credit card requests. This opens the door to a simple yet effective
way to implement a cyber-insurance mechanism that rewards users who show a
safe browsing profile.

5.7 Conclusions

In this chapter, we have analyzed the behaviors of users who end up being
victims of web attacks, and have presented a first step towards the prediction of
users’ risk when browsing the Internet. Our in-depth analysis of a large telemetry
dataset collected by one of the major AV companies allowed us to gain a number of
insights on the relation between users’ browsing habits and their chances of visiting
malicious web pages on the Internet. For example, we have been able to confirm
some known trends, such as the fact that browsing the web late at night and during
weekends is typically correlated with higher chances of ending up on malicious
web sites. Another general trend confirmed by our work is that, in general, the
more a user surfs the Internet, the more her chances are of ending up in some
“unsafe neighborhood”.

We have also been able to shed some light on whether profiling can be effec-
tively used as a basis for predicting the risk for a user to end up on malicious web

91

5.7. Conclusions

1 2 3 4 5 6 7 8 9 10
Decile

0

20

40

60

80

100

%
 o

f U
se

rs
 A

t R
is

k

Figure 5.8: Decile plot for at risk users with respect to the number of different
TLDs visited.

sites. By employing machine learning, we showed that user profiling could actually
be employed, at least to some extent, in predicting the class of risk for a user on
the web, similarly to what is currently done in the field of insurances and financial
risk prediction.

92

Chapter 6

Detection of Malicious Web Pages
by Companies and Researchers

When a web attack happens, the last actors to become involved in it are the
security companies, or security researchers, trying to understand what happened
and why. Also, security companies are spending a lot of efforts in trying to detect
websites hosting malware as they pose a serious threat to all web users. In partic-
ular, this final chapter presents the point of view of a security company that has to
deal with the analysis of a large volume of web pages on a daily basis.

As we know, in the last few years, researchers have developed a number of
systems that analyze web pages for the presence of malicious code Most of these
systems use dynamic analysis, i.e., they run the scripts associated with a web page
either directly in a real browser (running in a virtualized environment) or in an
emulated browser, and monitor the scripts’ executions for malicious activity. While
the tools are quite precise, the analysis process is costly, often requiring in the order
of tens of seconds for a single page. Therefore, performing this analysis on a large
set of web pages containing hundreds of millions of samples can be prohibitive.

One approach to reduce the resources required for performing large-scale anal-
ysis of malicious web pages is to develop a fast and reliable filter that can quickly
discard pages that are benign, forwarding to the costly analysis tools only the pages
that are likely to contain malicious code. This chapter describes the design and im-
plementation of such a filter. The filter we propose, called Prophiler, uses static
analysis techniques to quickly examine a web page for malicious content. This
analysis takes into account features derived from the HTML contents of a page,
from the associated JavaScript code, and from the corresponding URL. We auto-
matically derive detection models that use these features using machine-learning
techniques applied to labeled datasets.

To demonstrate the effectiveness and efficiency of Prophiler, we crawled and
collected millions of pages, which we analyzed for malicious behavior. Our results
show that our filter is able to reduce the load on a more costly dynamic analysis
tools by more than 85%, with a negligible amount of missed malicious pages.

93

6.1. Introduction

6.1 Introduction

The world wide web has become an integral part in the lives of hundreds of
millions of people who routinely use online services to store and manage sensitive
information. Unfortunately, the popularity of the web has also attracted miscreants
who attempt to abuse the Internet and its users to make illegal profits.

A common scheme to make money involves the installation of malicious soft-
ware on a large number of hosts. The installed malware programs typically connect
to a command and control (C&C) infrastructure. In this fashion, the infected hosts
form a botnet, which is a network of machines under the direct control of cyber
criminals. As a recent study has shown [114], a botnet can contain hundreds of
thousands of compromised hosts, and it can generate significant income for the
botmaster who controls it.

Malicious web content has become one of the most effective mechanisms for
cyber criminals to distribute malicious code. In particular, attackers frequently use
drive-by-download exploits to compromise a large number of users. To perform
a drive-by-download attack, the attacker first crafts malicious client-side scripting
code (typically written in JavaScript) that targets a vulnerability in a web browser or
in one of the browser’s plugins. This code is injected into compromised web sites or
is simply hosted on a server under the control of the criminals. When a victim visits
a malicious web page, the malicious code is executed, and, if the victim’s browser
is vulnerable, the browser is compromised. As a result, the victim’s computer is
typically infected with malware.

Drive-by-download attacks have become pervasive over the last few years, and
real-world examples show that legitimate (and presumably well-maintained) web
sites are frequently compromised and injected with malicious code [33, 34].

Given the rising threat posed by malicious web pages, it is not surprising that
researchers have started to investigate techniques to protect web users. Currently,
the most widespread protection is based on URL blacklists. These blacklists (such
as Google Safe Browsing [105]) store URLs that were found to be malicious. The
lists are queried by a browser before visiting a web page. When the URL is found
on the blacklist, the connection is terminated or a warning is displayed. Of course,
to be able to build and maintain such a blacklist, automated detection mechanisms
are required that can find on the Internet web pages containing malicious content.

The tools of choice for the identification of malicious web pages are (high-
interaction) honeyclients. These honeyclients, such as the MITRE HoneyClient [43],
Microsoft’s HoneyMonkey [124], Capture-HPC [107], or Google Safe Brows-
ing [92], run a web browser on a real operating system inside a virtual machine.
The browser is pointed to a URL that should be analyzed. After the corresponding
page is loaded, the honeyclient system checks for artifacts that indicate a success-
ful attack, such as executable files on the file system or unexpected processes.
While the presence of such artifacts is strong evidence that a page is malicious, the
drawback of high-interaction honeyclients is the fact that the analysis is expensive.
While parallelization can help in processing multiple pages more efficiently, still

94

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

the HTML page needs to be rendered and active content (such as JavaScript) needs
to be executed. Moreover, after each successful exploit, the virtual machine needs
to be restored, since the analysis platform can no longer be trusted. As a result, the
analysis of a single URL can easily require several minutes.

In addition to high-interaction honeyclients, researchers have proposed alter-
native detection approaches for malicious web pages. In particular, a number of
tools were proposed (such as Wepawet [17], PhoneyC [79], JSUnpack [54]) that
rely on instrumented JavaScript run-time environments to detect the execution of
malicious scripts, or only a certain kind of attacks (such as NOZZLE [98], a tool
for the detection of heap-spraying on malicious web pages). Compared to high-
interaction honeyclients, these systems provide more insights into the inner work-
ing of malicious scripts, and they require less effort to configure with a wide range
of vulnerable plugins. However, they are not substantially faster, with analysis
times ranging from seconds to a few minutes for a single page [17].

Unfortunately, the analysis time directly limits the scalability of these systems.
As a result, it becomes very costly (if not impossible) to analyze millions of URLs
in a day. This is problematic, both for organizations that try to maintain blacklists
with good coverage (such as Google), but also, more generally, for everyone whose
goal is to obtain a detailed and broad understanding of the malicious activity on the
Internet with limited analysis resources.

One approach to address the limited scalability of current analysis systems
is to devise an efficient filter that can quickly discard benign pages. By using
such a filter as a front-end to a more sophisticated but resource-intensive back-
end analysis system, one could save a large amount of resources, since the costly
(but precise) back-end analysis is performed only on those pages that are likely to
contain malicious content. Of course, one should be able to tune the sensitivity of
the filter depending on the available analysis capacity and the acceptable level of
false negatives (missed detections). In this context, false positives are less critical
because even though they result in a waste of resources (that is, benign pages are
analyzed using costly procedures), they are not increasing the exposure of users to
threats.

This chapter presents the design and implementation of a filtering system,
called Prophiler, to quickly distinguish between likely malicious and likely be-
nign web pages. Prophiler statically analyzes features of the HTML page, of the
embedded JavaScript code, and of the associated URL using a number of mod-
els that are derived using supervised machine-learning techniques. Pages that are
found to be likely malicious by Prophiler can then be further analyzed with one of
the more in-depth (and costly) detection tools, such as Wepawet.

Since the web page being analyzed is not rendered and no scripts are executed,
the analysis is fast. Compared to previous work that attempts to detect malicious
web pages based on page content, our analysis uses a significantly more compre-
hensive set of features, and, as a result, delivers more precise results. Researchers
have also suggested identifying malicious pages based on features extracted from
URLs alone. This approach delivers good results for scam and phishing pages,

95

6.2. Approach

since the corresponding URLs are often crafted by attackers to mislead users. How-
ever, when malicious content (such as a drive-by-download exploit) is injected into
a legitimate page, the URL is not affected. Hence, systems based exclusively on
URL features suffer from a substantial amount of false negatives, as shown in our
experiments.

The need for a fast filter to enable the large-scale analysis of malicious web
pages was previously recognized by Provos et al. [92] (some of the authors are also
involved in Google’s Safe Browsing efforts). Unfortunately, for obvious reasons,
very few details have been revealed about Google’s filter. In particular, the authors
only provide examples of three page features and report that they use a propri-
etary machine-learning framework. Of course, the existence of Google’s blacklist
provides evidence that the overall system (combining the filter with the back-end
analysis tools) works. Nevertheless, we feel that there are significant benefits in
describing the technical details of our filtering approach in the literature: First,
we introduce a comprehensive set of page and URL features for identifying ma-
licious web pages. This allows others to build similar filters, making better use
of their available analysis resources. Second, we discuss the trade-offs between
false negatives and false positives, and we compare the performance of our filter to
a number of previous systems. Third, we demonstrate that our filter allows us to
dramatically improve the scale of the analysis that can be performed in the case of
a publicly-available system, called Wepawet.

6.2 Approach

The goal of Prophiler is to classify pages collected by a web crawler as ei-
ther likely malicious or likely benign, i.e., as likely to launch a drive-by-download
attack or not, respectively. To perform this classification task, Prophiler uses a
set of models that evaluate the features extracted from a page. These models are
derived using supervised machine-learning techniques. In the following, we first
describe the features extracted from a web page, and then we discuss how models
are derived.

6.2.1 Features

The features extracted from a web page are the basis to determine if a page is
malicious or not. Because, by design, our filter does not execute any code asso-
ciated with the web page, the collected features are derived statically. By doing
this, it is possible to perform the analysis faster than in the case of currently-used
dynamic approaches.

We inspect two main sources of information for features: the page’s contents
(both its HTML and JavaScript code) and the page’s URL (both its lexical and host-
based characteristics). Some of the features we use have been proposed before
(either for the detection of drive-by-download attacks or for the identification of

96

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

Class of features Number of features
Prophiler [109] [63] [28] [67] [108]

HTML 19 5 0 0 0 0
JavaScript 25 3 16 4 0 0
URL 12 0 0 0 4 0
Host 21 0 0 0 16 6
Total 77 8 16 4 20 6

Table 6.1: Comparison of the features, divided in four different feature classes,
considered by our work and by the related approaches.

other threats, such as phishing). In this work, we introduce and evaluate 48 new
features specifically designed for identifying pages involved in drive-by-download
attacks.

Table 6.1 compares our approach to other relevant work in this area, in terms
of the features used to evaluate web pages.

HTML features

HTML features are based both on statistical information about the raw content
of a page (e.g., the page length or the percentage of whitespaces) and on structural
information derived from parsing the HTML code (e.g., the location of specific
elements in the page). To parse HTML pages, we use the Neko HTML Parser [15]
because of its versatility and speed in parsing HTML code. Since some of our fea-
tures detect anomalies in the structure of a web page (e.g., out-of-place tags), which
are silently corrected by Neko, we also parse web pages with HTMLparser [85],
which performs no error correction. We do not currently extract features from CSS
files, even though some exploits rely on malicious style sheets. This is left as future
work.

More precisely, we extract the following 19 features from HTML content: the
number of iframe tags, the number of hidden elements, the number of elements
with a small area, the number of script elements (both included via the src at-
tribute, and inline), the presence of scripts with a wrong file name extension, the
percentage of scripting content in a page, the percentage of unknown tags, the num-
ber of elements containing suspicious content, the number of suspicious objects,
the percentage of whitespace in the page, the presence of meta refresh tags, the
number of embed and object tags, the number of elements whose source is on
an external domain, the number of out-of-place elements, the number of included
URLs, the presence of double documents, the number of known malicious patterns,
and the number of characters in the page.

These features capture characteristics that are commonly found in pages that
have been compromised: the presence of injected content pointing to external do-
mains, the use of obfuscation, and the presence of side effects (e.g., out-of-place
tags) of the attacks used to compromise a web page. Notice that some of these

97

6.2. Approach

features are particularly difficult to evade for an attacker. For example, in SQL
injection attacks (which are often used to inject malicious content in vulnerable
web pages), attackers do not generally have complete control of the resulting page,
and, as a consequence, cannot avoid the anomalies (such as malformed documents
or repeated tags) that are detected by our features. Most of the features are self-
explanatory. Below, we discuss some of the features that require additional discus-
sion.

Number of elements with small area Most of the elements used to carry out
a drive-by-download infection are hidden, on purpose, by the attacker. However,
most drive-by-download exploits do not use visibility attributes to hide their el-
ements, and instead set explicitly the width and height of the elements used to
deliver the attack to very small values. So, we included a feature that records the
number of elements of type div, iframe, or object, whose dimension is less
then a certain threshold (30 square pixels for the area, or 2 pixels for each side).

Number of elements containing suspicious content This feature takes into ac-
count the number of elements whose content is “suspicious,” i.e., the content be-
tween the start tag and the end tag of the element could be shellcode. We consider
this content to be suspicious if it is longer than a certain threshold (128 charac-
ters) and contains less than 5% of whitespace characters. Note that we could
use more sophisticated techniques to determine if specific content represents ex-
ecutable shellcode, but, in this case, we prioritize performance over precision.

Number of suspicious objects Suspicious objects are object elements that are
included in the document and whose classid is contained in a list of ActiveX
controls known to be exploitable. This list is taken from the PhoneyC tool [79] and
has been expanded with a number of other ActiveX controls commonly found in
real-world exploits.

Number of included URLs This feature counts the number of elements which,
being not inline, are included specifying their source location. Elements such as
script, iframe, frame, embed, form, object are considered in computing
this feature, because they can be used to include external content in a web page.
The img elements and other elements are not considered, as they cannot be used
to include any executable code.

Number of out of place elements This feature counts the number of elements
that reside out of their natural positioning in the HTML document. This feature is
useful to detect web pages that have become malicious as the result of a stored XSS
or SQL injection attack. In these cases, it is common to see scripts or iframes
included in strange positions, such as between title tags or after the end of the

98

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

document (outside the body or html elements). iframe, frame, form,
script, object and embed element positions are checked according to the
allowed positioning, as defined by the HTML DTD specifications.

Presence of double documents This feature indicates whether a web page con-
tains two or more html, head, title, or body elements. This is not allowed
by the HTML specification, but can be seen in certain malicious web pages as a
side-effect of the compromise of a web site.

Number of known malicious patterns This feature counts the number of occur-
rences of specific patterns commonly found in drive-by-download campaigns. The
pattern list is compiled and updated by a human analyst. We currently identify only
one of such patterns: the presence of a meta tag that causes the refresh of the page,
pointing it to index.php?spl=, as this is very common in pages redirecting to
exploit servers.

Prophiler extracts also a hash of the content of every HTML document (namely,
an MD5 hash of the page), to avoid analyzing again a page that has already been
analyzed, as well as a signature of the structure of the document, i.e., a signature
of the tree representing its Document Object Model. This signature is used to de-
termine if the page has a structure similar to one or more pages that have been
analyzed before and determined to be malicious. If a match is found, the page is
considered potentially malicious, and sent to the dynamic analysis tool.

JavaScript features

JavaScript features result from the static analysis of either a JavaScript file
(such as the ones commonly served with a content type of text/javascript
and similar), or of each script included in a web page via an inline <script>
element. As for the HTML features, JavaScript features are both statistical and
lexical.

Most malicious JavaScript scripts are obfuscated and packed, to make their
analysis difficult. In some cases, malware authors adopt encryption schemes and
techniques to prevent code debugging. To detect these characteristics, we imple-
mented the extraction of some statistical measures (such as string entropy, whites-
pace percentage, and average line length). We also consider the structure of the
JavaScript code itself, and a number of features are based on the analysis of the
Abstract Syntax Tree (AST) extracted using the parser provided by Rhino [77].
For example, we analyze the AST of the code to compute the ratio between key-
words and words, to identify common decryption schemes, and to calculate the
occurrences of certain classes of function calls (such as fromCharCode(), eval(),
and some string functions) that are commonly used for the decryption and execu-
tion of drive-by-download exploits.

We extract a total of 25 features from each piece of JavaScript code: the number
of occurrences of the eval() function, the number of occurrences of the setTimeout()

99

6.2. Approach

and setInterval() functions, the ratio between keywords and words, the number of
built-in functions commonly used for deobfuscation, the number of pieces of code
resembling a deobfuscation routine, the entropy of the strings declared in the script,
the entropy of the script as a whole, the number of long strings, the maximum en-
tropy of all the script’s strings, the probability of the script to contain shellcode,
the maximum length of the script’s strings, the number of long variable or function
names used in the code, the number of string direct assignments, the number of
string modification functions, the number of event attachments, the number of fin-
gerprinting functions, the number of suspicious objects used in the script, the num-
ber of suspicious strings, the number of DOM modification functions, the script’s
whitespace percentage, the average length of the strings used in the script, the av-
erage script line length, the number of strings containing “iframe,” the number of
strings containing the name of tags that can be used for malicious purposes, the
length of the script in characters. Hereinafter, we provide some details about a
subset of these features.

Keywords-to-words ratio This feature represents the ratio between the number
of keywords (i.e., reserved words) and other strings occurring in a piece of Java-
Script code. This feature is useful to detect malicious pages because in most ex-
ploits the number of keywords (e.g., var, for, while and few others) is limited
while there are usually a large number of other operations (such as instantiations,
arithmetical operations, function calls). This usually does not happen in benign
scripts, where the occurrence of keywords is usually higher.

Number of long strings This feature counts the number of “long” strings used in
this script. A string is considered long if its length is above a certain threshold. This
threshold is learned during the training phase by examining the length of strings in
both known benign and known malicious pages (40 characters in our experiments).

Presence of decoding routines This feature expresses whether the JavaScript
script contains snippets of code that resemble decoding routines. More precisely
the AST of the JavaScript segment is analyzed to identify loops in which a “long”
string is used (where “long” is defined according to the feature described be-
fore). This feature is very effective in detecting routines used to decode obfuscated
scripts.

Shellcode presence probability This number expresses the probability that a
JavaScript script contains shellcode. We analyze the long strings contained in the
script to check if their structure resembles shellcode. We use three methods to
determine if the string is likely to represent shellcode. The first method considers
the number of non-printable ASCII characters in the string. The second one detects
shellcode composed only of hexadecimal characters, i.e., it checks if the string is
a consecutive block of characters in the ranges a-f, A-F, 0-9. The third method

100

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

checks if certain characters are repeated at regular intervals in the string, because
sometimes the bytes of the shellcode are concatenated using custom separators,
so that decryption routines can split the string over the specified separator(s) for
further processing. The final shellcode probability for a certain script is set to the
maximum of the results produced by the three individual detection methods.

Number of direct string assignments This feature counts the number of string
assignments in the script. To extract this feature, we analyze the structure of the
AST generated by the parser. We consider a number of ways in which a JavaScript
program can instantiate a string. More precisely, we count string assignments done
through direct assignment, setting of properties, direct string declaration, instan-
tiations inside the conditional operator ‘?’, and arrays. The rationale behind this
feature is that malicious scripts tend to have an unusually large number of string
assignments, as a side effect of deobfuscation and decryption procedures.

Number of DOM-modifying functions This feature counts the number of func-
tions used to modify the Document Object Model that are referenced in the source
code. Drive-by-download exploits usually call several of these functions in or-
der to instantiate vulnerable components and/or create elements in the page for
the purpose of loading external scripts and exploit pages. We consider the most-
commonly-used DOM functions implemented in all the major browsers, plus a
small set of functions which are only available in Microsoft Internet Explorer’s
JavaScript engine, such as clearAttributes(), insertAdjacentElement(), and repla-
ceNode(). Note that we perform some limited static (data flow) analysis to identify
cases where basic DOM elements (e.g., the document variable) are assigned to
other variables that are later modified.

Number of event attachments This is the number of calls to functions used
to set event handlers on certain actions. Not all events are interesting for us, as
drive-by-download attacks usually need only to be triggered as the page loads or
to disable error reporting in case something goes wrong. So, we only count event
attachments related to these events: onerror, onload, onbeforeunload, onunload.
The functions that can be used to attach an event handler are addEventListener(),
attachEvent(), dispatchEvent(), and fireEvent().

Number of suspicious object names This feature represents the number of ob-
jects with a suspicious name. These objects are identified using the list of ex-
ploitable objects already used by HTML features (see Section 6.2.1). However,
since most of the exploits dynamically insert objects and ActiveX controls into
web pages using JavaScript, we have to check for these components also in the
JavaScript code.

101

6.2. Approach

Number of suspicious strings This feature has been added after manually an-
alyzing several dozens of malicious scripts and noticing that most of them, if not
obfuscated, tend to use certain strings as variable or function names. Thus, we
check whether a script contains such tell-tale signs (common strings are, for exam-
ple, “evil,” “shell,” “spray,” and “crypt”), and we count how many occurrences of
these strings are found.

Number of “iframe” strings This feature counts how many strings containing
“iframe” are present in a script. This feature is motivated by the fact that mali-
cious scripts often inject several iframes into a web page, and, if the script is not
obfuscated, it is possible to identify when the script modifies the DOM to inject an
iframe element.

Number of suspicious tag strings Similarly to the previous feature, this feature
counts the number of times that certain tag names appear inside strings declared in
JavaScript code. In fact, instead of injecting iframes, sometimes malicious scripts
write other scripts or objects inside the page. This feature counts the appearance
of script, object, embed, and frame inside JavaScript strings.

Each piece of JavaScript code is also characterized by a hash of the content (to
avoid analyzing a previously-seen script) and a signature of the AST of the docu-
ment. This is used to identify similar scripts that have been already analyzed and
that have been found to be malicious. If a match is found, the web page is consid-
ered malicious, and it is sent to the dynamic analysis tool for further processing. To
prevent simple obfuscation techniques from hiding the similarity with other scripts,
this AST signature does not take into account variable names and the structure of
arrays, and it is invariant to the place where functions are declared.

URL and host-based features

As shown by previous work [67], it is often possible to predict if a certain web
page is malicious by looking only at its URL. Even though detecting drive-by-
download pages using URL features is more complex than in the case of phishing
pages or scam pages, some information contained in the URL and associated with
the referenced host can be used to help in the detection of malicious web pages.
For example, malware campaigns are often hosted on untrusted hosting providers,
and the corresponding whois information reveals short registration time frames
or sanitized (anonymized) registration information. Also, it is very common for
malicious web pages to include content from sites with no DNS name, or hosted
on domains with a certain TLD (e.g., .cn, .ru).

The collected features are syntactical (the domain name length, whether the
original URL is relative, the presence of a suspicious domain name, the TLD of
this URL, the presence of suspicious patterns, the length of the file name appearing
in the URL, the presence of a suspicious file name, the absence of sub-domain, the

102

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

presence of an IP address in the URL, the presence of port number, the absolute and
relative length of this URL), DNS-based (resolved PTR record, whether the PTR
record is equal to the A record for this IP, and, for each of the A, NS, MX records
for this host: first IP address returned, number of corresponding IP addresses, TTL
of the first IP address, Autonomous System number of the first IP), whois-based
(registration date, update date, expiration date), and geoip-based (country code,
region, time zone, netspeed). We use a total of 33 features derived from the analysis
of URL and host information. Below, we discuss some details about a subset of the
features.

Number of suspicious URL patterns Analyzing the URLs of several pages
launching drive-by-download exploits, we observed that many of them shared com-
mon names or recurring patterns in their paths (we speculate that this is an in-
dication that different attacks are performed using the same exploit toolkits, e.g.,
MPack, Eleonore, and CrimePack). Some examples of these patterns are file names
such as swfNode.php or pdfNode.php. Thus, we use this feature to count
how many patterns from a list of known bad patterns appear in the URL. We derive
known bad patterns from known exploit kits. We currently identify 10 different
suspicious URL patterns.

Presence of a subdomain in URL We noted that, frequently, malicious web
pages refer to the domains serving malware without specifying a subdomain (e.g.,
example.com instead of www.example.com). This feature keeps track of
whether a subdomain is present in the URL.

Presence of IP address in URL Some web sites hosting malware are not associ-
ated with domain names but are addressed by their IPs instead. A common reason
for this is that the malware is hosted on a victim machine on a public network that
was compromised. This feature records if an IP address is present as the host part
in the URL.

Value of the TTL for the DNS A record This feature examines the Time To
Live (TTL) of the DNS entry of the first IP address returned by the DNS A query
for a host name. Shorter TTLs are usually associated with services that are likely
to be moved to another IP address in the near future. This can be the case for DNS
entries associated with malicious (fast-flux) hosts.

Value of the TTL for the DNS NS record This feature examines the Time To
Live of the first NS entry for the host name under analysis. This feature is useful
for identifying malicious web pages because criminals often use different DNS
records to redirect requests to a different IP address once one of their command-
and-control servers is shut down.

103

6.2. Approach

Relationship between PTR and A records This feature indicates whether the
resolved PTR record equals the IP address for the host under examination. For
benign web servers, the values should be consistent.

Registration date This feature examines the registration date for the host name
(domain), if it is available via the Whois service. Registration dates are com-
monly used to distinguish between benign and malicious domains, since most of
the command-and-control and exploit servers reside on domains whose registration
date is recent and/or whose expiration date is in the near future. This is because at-
tackers often buy domain names for short time frames, since they expect that those
names will be blocked quickly.

Country Code This feature leverages the country code to which the IP address
of the host belongs. This feature is extracted via a geoip query ∗.

Unlike previous work [67], we do not consider the domain registrar as one
of our features. Even though we extract and store this information, the models
we derived during the training process did not identify the registrar as a relevant
feature for determining if a web page is malicious or not.

6.2.2 Discussion

Models and classification In Prophiler, a model is a set of procedures that eval-
uate a certain group of features. More precisely, the task of a model is to classify
a set of feature values as either likely malicious or likely benign. A model can
operate in training or detection mode. In training mode, a model learns the char-
acteristics of features as found in sets of web pages that are known to be either
malicious or benign. In detection mode, the established models are used to classify
pages as either likely malicious or likely benign.

Using a training dataset, we derived a number of models to detect likely ma-
licious web pages, based on the features described earlier. The model learning
process is further explained in Section 6.4. After training, we evaluated the effec-
tiveness of our models on a validation dataset. Once we were confident that the
models were able to effectively classify malicious web pages, we deployed them
as a filter for our dynamic analysis tool (Wepawet). This resulted in a tenfold in-
crease in the amount of web pages that the system can process with a given set of
resources.

Machine learning As with all classification problems, our learning-based ap-
proach to the detection of malicious web pages faces several challenges [111].

∗. Geoip queries are used to retrieve location information about an IP address. Usually, this infor-
mation includes the country, region, and city to which the IP address belongs, as well as some other
information such as the Internet Service Provider of this address, depending on the geoip service in
use.

104

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

Here, we discuss in particular the assumptions at the basis of our analysis and the
techniques we used to ensure that these assumptions hold in our setting. First, we
assume that the distribution of feature values for malicious examples is different
from benign examples. To ensure this, we carefully selected the features that we
use in our system on the basis of the manual analysis of a large number of attack
pages. We note that individual feature values may appear in both malicious and
benign pages (e.g., some benign pages are obfuscated, thus they would “trigger”
features that capture obfuscation). However, it is unlikely that the combination of
all the features we consider is similar in benign and malicious pages. A second
assumption is that the datasets used for model training share the same feature dis-
tribution as the real-world data that is evaluated using the models. We address this
issue by training our models with large datasets of recent malicious and benign
pages, and by continuously evaluating the effectiveness of our filter in detecting
web pages with respect to the results provided by (more costly) dynamic analysis
tools. A final requirement is that the ground truth labels for the training datasets are
correct. To this end, we use state-of-the-art tools and manual inspection to ensure
that our labeled datasets are correct.

Evasion The attentive reader will notice that some of our features could be evaded
by malicious scripts. For example, the detection of tags with a small area (one of
our HTML features) could be thwarted by dynamically generating these elements
(e.g., via an obfuscated call to eval()). However, our set of features is comprehen-
sive and covers characteristics that are common to malicious scripts (e.g., the use
of obfuscated code). As a consequence, as our experiments show, our system is
not easily evaded by current malicious web pages. Moreover, it is easy to extend
Prophiler with additional features to cover future attacks. We always send to the
back-end analysis (honeyclient) a small fraction of random pages that our system
has classified as benign. This allows us to detect systemic false negatives, and to
update our feature sets and models accordingly.

Even with full knowledge of our feature set, it is not trivial for an attacker
to disguise his malicious code. First, in certain cases, the freedom of an attacker
is limited with regard to the parts of the infected web page that he can modify. In
particular, this is true when attackers use SQL injection vulnerabilities, which often
result in out of place HTML elements that cannot be cleaned up (and which are
picked up by our system). Second, many of our features do not target specifics of
particular exploits, but general properties of entire classes of attacks. For example,
artifacts that are the result of obfuscated JavaScript are hard to disguise. Of course,
an attacker could opt to send the exploit code in the clear, but in doing so, he risks
that signature-based solutions detect and block the malicious code.

Attackers could also try to fingerprint, detect, and consequently evade, our
tool when it visits a malicious website. This is a problem every malware detec-
tion tool faces, and we address it in two ways. First, we configure our system
so that it closely mimics a real browser (for example, by setting the user-agent

105

6.3. Implementation and setup

of the crawler component as described in Section 6.3). Second, we try to detect
fingerprinting attempts by using features that check for the presence of JavaScript
routines commonly used for this task (as discussed in Section 6.2.1).

Trade-offs Even though we put great care in the selection of the features and the
derivation of models, we do not expect our filter to be as accurate as honeyclients,
which can rely on the dynamic characteristics of a web page for the detection of
malicious behavior. Instead, we expect the filter to provide useful information that
can be used to quickly discard benign web pages, and to send likely malicious
pages to dynamic analysis tools, which can perform more detailed analysis.

In this context, it is critical to minimize false negatives, i.e., missed detections.
In fact, if a page that is indeed malicious is incorrectly classified as benign by
our filter, it will be immediately discarded without being further analyzed. There-
fore, the malicious page will evade the detection of the combined filter/honeyclient
system. Conversely, false positives are not as problematic: If a benign page is in-
correctly flagged as likely malicious by our filter, it will simply be forwarded for
analysis to the honeyclient, which (we assume) will ultimately mark it as benign.
The net effect is that resources are wasted (because the back-end honeyclient has
to analyze a benign page). However, in this case, no incorrect detection will be
made by the overall detection system.

6.3 Implementation and setup

We implemented Prophiler, with the aim of using it as a filter for an existing
dynamic analysis tool, called Wepawet [17] (which is publicly available at http:
//wepawet.cs.ucsb.edu/). However, Prophiler can be used unchanged as
a filter for any of the other, publicly available honeyclient systems. The overall
architecture of the system is shown in Figure 6.1.

Prophiler is fed by a modified instance of Heritrix [39], which crawls † a
list of seed URLs fetched daily from three search engines (namely, Google, Ya-
hoo, and Bing). The crawls are seeded by using the current Twitter, Google, and
Wikipedia trends as search terms. These trends are used as a basis for the searches
because most malware campaigns use Search Engine Optimization (SEO) tech-
niques to increase their ranking in the search engines’ results associated with popu-
lar terms [40,41]. Another source of seeds for our crawler is a list of links extracted
from a feed of spam emails. The list of links is updated daily and provides us with
an average of 2,000 URLs per day.

We modified the crawler to be able to set the “Referer” header when fetching
a seed URL. This header has to be set to the search engine from which the seed
URL was extracted. This is necessary because some malicious web pages deliver

†. Most drive-by-download attacks use browser fingerprinting to decide whether to ‘render them-
selves’ as malicious or benign. We decided to set up our crawler’s user-agent as MS Internet Explorer
6 on Windows XP, to trigger malicious behavior in most cases.

106

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

Internet

Fetched pages

Prophiler

Crawler

seeds

New pages

DatabaseSpam links
database Wepawet

Page fe
atu

re
s

and p
re

dict
ions

Fin
al

cla
ss

ific
atio

n

Suspicious
pages

Twitter trends

Google trends

Wikipedia trends

Search engine search:

Google, Yahoo, Bing

seeds

Figure 6.1: Architecture of the system.

malicious content only when the request appears to be the result of a user clicking
on the search results.

The crawler fetches pages and submits them as input to Prophiler, which ana-
lyzes each page and extracts and stores all the features. Once all features have been
extracted from a page, Prophiler uses the models learned in the previous training
phase to evaluate its maliciousness. If a page has been identified as likely mali-
cious, it is forwarded to the dynamic analysis tool (Wepawet, in our case). This
tool then confirms that the page is indeed malicious or it flags it as a false positive.

The system was installed on a server running Ubuntu Linux x64 v 9.10, with
an 8-core Intel Xeon processor and 8 GB of RAM. The crawler and the analysis
system are both running on this machine. The system in this configuration is able
to analyze on average 320,000 pages/day. Taking into account that a single page
can contain multiple links to JavaScript programs, frames, and objects (which are
all automatically included by the browser when rendering the page), the analysis
must examine around 2 million URLs (objects) each day.

107

6.4. Evaluation

Dataset name Benign Malicious Total
pages pages pages

Training 51,171 787 51,958
Validation 139,321 13,794 153,115
Evaluation N/A N/A 18,939,908

Comparison 9,139 5,861 15,000

Table 6.2: Datasets used for our experiments.

6.4 Evaluation

In this section, we evaluate the effectiveness and performance of Prophiler.
More precisely, we first discuss how the models used to detect malicious pages
were automatically derived from a training dataset. Then, we evaluate Prophiler
on a number of datasets, both labeled and unlabeled, adding up to almost 20 million
web pages. Finally, we quantitatively compare our approach with those that were
proposed in the past.

Model derivation To derive our detection models, we collected a labeled dataset
composed of both malicious and benign pages. We refer to this dataset as the train-
ing dataset. As shown in Table 6.2, the training dataset comprises 787 pages that
are known to be triggering drive-by-download attacks. These pages were extracted
from Wepawet’s database. Furthermore, we confirmed by manual inspection that
these pages indeed contain malicious code used to launch drive-by-download at-
tacks. We also collected a set of 51,171 benign web pages by crawling the first
two levels of the top 100 Alexa web sites [3]. In this case, our assumption was that
these extremely popular web sites are unlikely to have been compromised and used
for malware distribution, as they are visited daily by millions of users, as well as
continuously analyzed by experts and anti-virus programs. Furthermore, we used
the Google Safe Browsing API to remove any malicious pages from this set.

We extracted our detection models from this dataset using the WEKA machine-
learning platform [38]. We experimented with a number of standard models, such
as naïve Bayes, random forest, decision tree, and logistic regression classifiers.
In order to choose a suitable classifier (i.e., the one providing the lowest possible
number of false negatives, and a reasonably small amount of false positives) we
used our training dataset to build several models, each with a different classifier
and/or different parameters. The models were extracted from and tested on the
training dataset, using 10-fold cross-validation.

Note that we built three different models that operate on the three different
feature sets that we defined previously (HTML features, JavaScript features, and
features related to the URL and host name). This allows us to evaluate the effective-
ness of individual feature sets and to experiment with different machine learning

108

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

Feature class Classifier % FN % FP
HTML Random Tree 30.4 0.8

Random Forest 20.5 2.4
Naive Bayes 16.4 44.1
Logistic 25.6 17.1
J48 36.6 0.8
Bayes Net 15.1 23.2

JavaScript Random Tree 22.4 0.2
Random Forest 18.1 0.5
Naive Bayes 51.5 1.0
Logistic 81.0 0.0
J48 21.4 0.3
Bayes Net 39.9 1.7

URL + HOST Logistic 9.3 1.0
J48 9.6 0.6

Table 6.3: False Negatives (FN) and False Positives (FP) ratios for the tested classi-
fiers. The class of features related to the URL and host information has been tested
against fewer classifiers because most of them do not support date attributes.

models. For the final classification of a page, the output of the three models needs
to be combined, as discussed below.

The results for the three classifiers (using 10-fold cross validation on the train-
ing set) are presented in Table 6.3. It can be seen that the classifiers that produced
the best results were the Random Forest classifier for the HTML features, the J48
classifier for the JavaScript features, and the J48 classifier for the URL- and host-
based features. In the rest of the experiments, we configured Prophiler to use these
classifiers.

Interestingly, as shown in Table 6.3, it can be seen that a single class of fea-
tures is not sufficient to reliably determine the maliciousness of web pages. In
fact, individual models yield both high false positive and high false negative rates.
For example, when analyzing JavaScript features alone, even J48 (one of the best
performing models for this class) produces 21.4% false negatives (with 0.3% false
positives). However, as we will show with a number of tests on various datasets,
combining models for all the feature classes substantially improves the detection
capability of our tool. In Prophiler, we declare a page as malicious when one or
more of the individual classifiers declare a page as malicious. The rationale for
this decision is that a page’s maliciousness may be determined by causes (e.g., an
iframe tag or an HTML-based redirect) that are modeled by only one class of fea-
tures. Therefore, whenever the model associated with a class of features classifies
a page as likely malicious, Prophiler raises an alert. As a result, by combining
models, we can substantially reduce the false negatives of the filter by accepting

109

6.4. Evaluation

a minor increase in false positives (which are much less problematic, as discussed
previously).

Effectiveness of new features In the next step, we inspected the models gen-
erated by WEKA to determine the importance of the new features that we added
compared to previous work. We found that some of these features were particularly
effective in the detection of web pages launching drive-by downloads. Regarding
the JavaScript features, some of the most important new features are shellcode
presence probability (which is at the first level in the decision tree of the chosen
J48 classifier), the presence of decoding routines, the maximum string length, and
the entropy of the scripts and of the strings declared in it. Several new features
related to HTML content appear to be very effective in the detection of malicious
or infected web pages. Such features are the number of included URLs, the num-
ber of elements containing suspicious content, the number of iframes, the number
of elements with a small area, the whitespace percentage of the web page, the
page length in characters, the presence of meta refresh tags and the percentage of
scripts in the page. As for URL and host related information, the most effective
novel features introduced by our work are the TLD of the URL, the absence of a
subdomain in the URL, the TTL of the host’s DNS A record, the presence of a
suspicious domain name or file name, and the presence of a port number in the
URL.

Validation After the model derivation, we validated Prophiler by running it on
a second labeled dataset, which we refer to as the validation dataset. This dataset
contained 153,115 pages that were submitted to the Wepawet service by its users
over a period of 15 days. We labeled each page with the result produced by
Wepawet: in total, there were 139,321 benign pages and 13,794 malicious ones.
On this dataset, Prophiler produced a false positive rate of 10.4% and a false neg-
ative rate of 0.54%. In other words, if used as a filter on this dataset, Prophiler
would immediately discard 124,906 benign pages, thus saving valuable resources
of the more costly (dynamic) analyzer.

Table 6.4 shows which models triggered the detection of malicious web pages
when running the system on the validation dataset. One can see that most of the
pages are considered malicious because of their HTML features, and secondly be-
cause of the JavaScript ones.

Large-scale evaluation We performed a large-scale evaluation of Prophiler by
running it over a 60-day period on a dataset containing 18,939,908 pages. This
dataset (which we refer to as the evaluation dataset) was built by leveraging the
infrastructure described in Section 6.3. All the pages in the evaluation dataset are
unlabeled.

Prophiler flagged 14.3% of these pages as malicious, thus achieving an 85.7%
reduction of the load on the back-end analyzer (in our setup, the Wepawet service).

110

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

Number Reason of suspiciousness
of pages
124,906 None (classified as benign)

14,520 HTML
9,593 JavaScript
1,268 Request URL

814 JavaScript + HTML
806 Request URL + HTML
467 Included URL(s)
189 Request URL + JavaScript
181 Included URL(s) + HTML
130 Request URL + JavaScript + HTML
119 Request URL + Included URL(s)

46 Request URL + Included URL(s) + JavaScript + HTML
28 Request URL + Included URL(s) + HTML
17 Request URL + Included URL(s) + JavaScript
16 Included URL(s) + JavaScript
15 Included URL(s) + JavaScript + HTML

Table 6.4: Results on the validation dataset.

With the current implementation of Wepawet, this corresponds to a saving of over
400 days of processing. Figure 6.2 shows in more detail the analysis statistics for
the 60-day analysis period. (The variation in the number of pages processed per day
depends mainly on the number of URLs used as seeds, and the type and complexity
of the visited pages, for example, the number of external resources fetched by each
page.)

After Wepawet had analyzed all the pages that were marked as malicious by
Prophiler, we could determine the false positive of our filter. We found that the
false positive rate for this dataset was 13.7%. Recall that a false positive in our
filter simply determines undesired load on the back-end analyzer (which is forced
to inspect benign pages), but does not result in actual alert. Quantifying false neg-
atives in these settings is more challenging, since the dataset is unlabeled and com-
plete manual analysis is infeasible given the sheer size of the dataset. To estimate
the false negative rate on the evaluation dataset, we processed with Wepawet 1% of
the pages that Prophiler classified as benign (the pages to be further inspected were
chosen at random). Of these 162,315 pages, only 3 were found to be malicious.

Comparison with previous work We compared Prophiler against a number of
previously-proposed systems that rely on lightweight analysis techniques to detect
malicious web pages, and that, thus, could be used as fast (pre)filters.

111

6.4. Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
day

0

100000

200000

300000

400000

500000
pa

ge
s

Results of 60 days of analysis

analyzed pages
pages forwarded to Wepawet
malicious pages

Figure 6.2: Analysis of the evaluation dataset. On average, 1,968 pages every day
were confirmed as malicious by Wepawet.

More precisely, we considered the approach presented in [109], which relies
on five HTML features and three JavaScript features to detect drive-by-download
attacks; and the approach of [67], which analyzes URL features to detect malicious
URLs. In addition, to better understand the effectiveness of the novel features that
we introduced with respect to those that were proposed in the past, we created a
classifier that combines all the features previously proposed in [28,63,67,109]. We
did not compare our system to [108] since obtaining four out of the six features they
use (the ones related to redirects) was not possible for us; the other two features
they propose are already included.

Unfortunately, we were also not able to compare our filter to the one used by
Google [92]. The reason is that their filtering framework is proprietary (and not
available to us) and is not publicly described in detail. Moreover, when using
Google’s Safe Browsing API, one is only able to check whether a page has been
deemed malicious by Google’s entire analysis framework, which is based on the
use of honeyclients. However, no information can be retrieved about the false
positive and false negative ratios of their initial filtering system.

To compare Prophiler with the above-mentioned systems, we built a labeled
dataset (the comparison dataset) of 15,000 web pages and associated URLs. This
dataset contains 5,861 pages involved in drive-by-download attacks; the remaining
pages are benign. We modified our filter so that it would use only the features

112

Chapter 6. Detection of Malicious Web Pages by Companies and Researchers

described in [109] (to reproduce the system described therein) and those presented
in [28, 63, 67, 109] (to test the detection that can be achieved with all previously-
known features combined). Finally, we asked the authors of [67] to analyze the
URLs of the comparison dataset using their system.

Work Features
collection
time

Classifi-
cation
time

FP % FN % Considered
feature
classes

[109] 0.15
s/page

0.034
s/page

13.70 14.69 HTML,
JavaScript

[67] 3.56
s/URL

0.020
s/URL

14.83 8.79 URL,Host

Union
of [28, 63,
67, 109]

N/A N/A 17.09 2.84 HTML,
JavaScript,
URL, Host

Prophiler 3.06
s/page

0.237
s/page

9.88 0.77 HTML,
JavaScript,
URL, Host

Prophiler’s
top 3*

N/A N/A 25.74 5.43 HTML,
JavaScript,
URL, Host

Prophiler’s
top 5*

N/A N/A 5.46 4.13 HTML,
JavaScript,
URL, Host

Table 6.5: Comparison between Prophiler and previous work.
*These are, respectively, models built using only the top 3 and top 5 features ap-
pearing in the decision trees of Prophiler’s original machine learning models.

The results (in terms of average URL processing and testing time, false pos-
itives, and false negatives) are shown in Table 6.5. For the approach described
in [67], we report the best results, which were achieved using an SVM classi-
fier with an RBF kernel. Prophiler clearly outperforms existing approaches in
terms of detection rates. In particular, it is interesting to observe that Prophiler
has lower false positives and false negatives than the system that combines the fea-
tures of [28, 63, 67, 109], indicating that the novel features and the models we use
are effective and improve detection compared to the state of the art. Finally, the
experiment also shows that Prophiler’s feature collection time is very low, despite
the fact that it extracts a larger number of features than the other approaches. By
profiling our tool, we found that the most of the feature collection time is due to the
extraction of host-based features from the URLs (such as DNS information, Whois
data, and geoip information). Note that the value of Prophiler’s features collection
time refers to a “from scratch” run of the system, i.e., with an empty database.
However, we found that a few hours after deployment, the database contains in-

113

6.5. Conclusions

formation about the majority of the hosts analyzed. Therefore, in steady state, our
system is considerably faster, reaching a processing time of about 0.27 s/page.

6.5 Conclusions

As malware on the Internet spreads and becomes more sophisticated, anti-
malware techniques need to be improved in order to be able to identify new threats
in an efficient, and, most important, automatic way. This chapter described the
development and evaluation of Prophiler, a system whose aim is to provide a filter
that can reduce the number of web pages that need to be analyzed dynamically
to identify malicious web pages. We have deployed our system as a front-end for
Wepawet, a well-known, publicly-available dynamic analysis tool for web mal-
ware. The results show that Prophiler is able to dramatically reduce the load of
the Wepawet system with a very small false negative rate. The tool is currently
available upon request, as an open source project provided under the GNU Affero
General Public License (AGPL). We believe the approach described in this chapter
can be employed by any security company or research institution in order to effec-
tively classify and filter hundreds of thousands of web pages per day on a single
machine. Moreover, by coupling such a system with a dynamic analysis tool, Pro-
philer would allow to proactively build blacklists of web pages hosting drive-by
download exploits in a very efficient way, allowing for a timely protection of web
users.

114

Chapter 7

Conclusions and Future Work

In recent years, we have been witnessing an always increasing number of se-
curity incidents on the web. As we presented in the beginning of this dissertation,
four are the main actors involved in the vast majority of web attacks that spread
malicious code or compromise web sites on the Internet. These actors are: the
attackers, the vulnerable websites hosted on the premises of hosting providers, the
victims of attacks (web users), and the security companies and researchers who
fight cyber criminals by detecting and analyzing malicious code on the web.

Past literature has often analyzed each of these four actors by adopting an ex-
ternal point of view, e.g., by analyzing a posteriori the traces of a compromise,
but without visibility on what the attacker actually did during the attack. It is thus
necessary to adopt a novel approach in order to analyze web attacks from the point
of view of each of these four actors. This dissertation is, to our knowledge, the first
study of web attacks and website compromises that analyzed these phenomena by
adopting the four distinct points of view of its different actors. Moreover, all of
the four considered points of view have been analyzed by means of large-scale
measurement studies, which renders our analyses significant on a worldwide scale.

In Chapter 3, we have presented a worldwide-scale study on the way shared
web hosting companies handle the security of their customers. Results show that
whereas a good fraction of the hosting companies put in place simple attack preven-
tion mechanisms, almost none of them is able to detect obvious signs of compro-
mise on their customers’ accounts. Also, we have showed that abuse complaints are
not always handled in a timely and appropriate manner, leaving sometimes space
for a malicious user to trick providers into taking down legitimate web sites.

Chapter 4 then reported on a large-scale study of the behaviors of web attack-
ers, performed by setting up a network of 500 fully functional vulnerable web sites
and observing the actions of attackers while and after they exploit vulnerabilities
on the web applications. This allowed us to gain an unique point of view on the
reasons behind attacks that hit the majority of medium and small size websites on
the Internet. In particular, while the majority of attacks seem to employ a combina-
tion of automated scanning and exploitation bots for compromising known vulner-

115

abilities on web sites, we still witnessed a non negligible fraction of attacks from
“novice” hackers, who carry out attacks manually and seem to perform attacks only
for fun or bragging.

We have also presented, as reported in Chapter 5, a first study towards web
user-based risk profiling, where we have analyzed a large dataset comprising the
3-month web browsing history of the customers of a known security firm. This
allowed us to analyze and understand relations between the behavior of a user, and
his or her probability of visiting malicious websites. For example, we witnessed
an increase in the percentage of malicious websites visited during night time and
weekends, and an increase in the chance of visiting malicious websites for users
who browse the Internet a lot or who browse a wide variety of web sites. We also
showed that user profiling could be a viable way to predict the class of risk for a
user on the web, similarly to what is currently done in the field of insurances and
financial risk prediction.

Finally, as presented in Chapter 6, we introduced a novel approach for secu-
rity companies and researchers to detect web pages launching drive-by-download
attacks. Our approach, implemented in a system called Prophiler, uses static analy-
sis and machine learning techniques for the large-scale detection of malicious web
pages. We show that this system can be successfully applied in real-world scenar-
ios, and is able to efficiently filter out benign pages from large amounts of web
pages, allowing for a more costly analysis to be performed only on the suspicious
ones.

While some of the points of view we explored in this thesis have been widely
studied in academia (e.g., the detection of malicious web pages by researchers),
others have not. For this reason, it can be envisaged to work on future directions
in these areas of research. For instance, in order to provide even more complete
insights on human risk factors linked to visiting malicious web pages, it would
be interesting to have access to users’ “social” features, such as their sex, age,
profession and personal interests, in a similar study to the one we presented in
Chapter 5. This would improve the completeness, and probably the risk detection
accuracy, of the user profiles built with such an approach. Unfortunately, there are
some ethical concerns to be addressed before being able to grant researchers the
right to access all this information, and to publish the results of their work. This is
why, in our study, we have limited ourselves to analyze anonymized information
about clients’ browsing habits.

Other studies could be conducted to advance our research on web attackers,
for example by deploying honeypot websites on big and renowned websites, such
as online news platforms, online retailers, banks and governmental websites. This
would allow researchers to gain some insights also on the behavior of attackers
aiming at high profile targets – which, we believe, should be quite different from
the average attacker we depicted in Chapter 4.

A similar extension could be envisaged also for a more complete analysis on
the behavior of hosting providers in relation with website compromises. Apart
from shared hosting providers and cheap website protection services, in fact, no

116

Chapter 7. Conclusions and Future Work

research has still been conducted on the way high-end hosting providers (e.g., those
providing cloud servers, bare-metal or virtual dedicated servers) and costly website
security services handle compromises on their customer’s websites. This could be
an interesting extension of the study we presented on the point of view of hosting
providers on malicious and compromised websites.

In conclusion, as this dissertation has shown, ensuring users can browse the
web safely is today a very challenging task. Cyber criminals are numerous and well
organized, and often have access to good technical and financial resources. Luck-
ily, on one side, many security companies and researchers are constantly scanning
the Internet in search of malicious code, with the purpose of stopping criminals and
taking down malicious websites. The same security companies also typically pro-
vide users and businesses with endpoint protection mechanisms that can be used
to protect the regular user browsing the Internet, up to a certain extent. On the
other side, though, we have seen that malicious and compromised websites are
the method of choice for criminals to spread malicious code on the Internet. As
Chapter 3 showed, the majority of shared web hosting providers, which host the
majority of websites on the web, do very little or nothing to detect even the simplest
signs of compromise, and often fail even in handling abuse complaints. Both good
compromise detection capabilities, and prompt responses to abuse notifications are
necessary means for allowing the timely detection – and takedown – of malicious
websites. For these reasons, we believe that web hosting providers should play a
key role in making the Internet a more secure place. Even a small improvement
in the way in which they handle website compromises and abuse reports, would
mean far higher chances of stopping web attacks at their earliest stages, compared
to what today is done. As a result, setting up malicious or compromised websites,
and keeping them online for long periods of time, would both become much harder
tasks for the vast majority of web attackers.

117

118

Chapter 8

Résumé

L’incroyable développement subi par le World Wide Web a permis la création
de nouveaux métiers, marchés, activités récréatives, ainsi que de nouveaux moyens
de partage de connaissance et d’argent. Toutefois, le web attire malheureusement
aussi de plus en plus de malfaiteurs, qui le considèrent comme un moyen facile
pour gagner de l’argent en exploitant les services et la propriété d’autrui.

Cette thèse propose une étude des sites web compromis et malicieux sous
plusieurs axes d’analyse. Même si les attaques web peuvent être de nature très
compliquées, on peut quasiment toujours identifier quatre acteurs principaux dans
chaque cas. Ceux sont les attaquants, les sites vulnérables hébergés par des four-
nisseurs d’hébergement, les utilisateurs qui sont victimes des attaques, et les so-
ciétés de sécurité qui parcourent Internet à la recherche des criminels et de sites
web compromis à être bloqués. Dans cette thèse, nous analysons premièrement les
attaques web du point de vue des hébergeurs, en montrant que, même si des outils
simples et gratuits pourraient permettre de détecter des signes simples de compro-
mission, la majorité des hébergeurs échouent dans cette épreuve. Nous passons en
suite à l’analyse des attaquants et des motivations de leurs attaques, en étudiant les
attaques web collectés par une plate-forme constitué de plusieurs centaines de sites
web vulnérables. Ensuite, nous étudions le comportement de milliers de victimes
d’attaques web, en analysant leurs habitudes pendant la navigation sur le web, afin
d’estimer s’il est possible de créer des "profils de risque" pour les utilisateurs web,
de façon similaire à ce que les compagnies d’assurance font aujourd’hui. Enfin,
nous adoptons le point de vue des sociétés de sécurité, en proposant une solution
efficace pour la détection d’attaques web convoyées par sites web compromis, ca-
pables d’infecter des milliers d’ordinateurs chaque jour.

8.1 Introduction

Au cours des dernières années, le World Wide Web (WWW) a changé radi-
calement la société et la façon dont les gens vivent et se comportent quotidien-
nement. Il a évolué à partir d’un ensemble de documents d’hypertexte statiques,

119

8.1. Introduction

servant une communauté restreinte de scientifiques, tel qu’il était à sa naissance en
1991, à un réseau de dispositifs informatiques inter-connectés à niveau mondial,
qui fournissent des services sophistiqués, génèrent dynamiquement du contenu, et
permettent aux gens de communiquer, de partager des connaissances, des données
et de l’argent à partir de n’importe où dans le monde. Un grand nombre de services
en ligne sont disponibles, permettant aux gens de faire un usage plus efficace et
plus rentable de leur temps et ressources.

Courriels, comptes bancaires en ligne, achats en ligne, déclarations d’impôt en
ligne, et même le vote en ligne ne sont que quelques exemples de services qui, au
cours de de la dernière décennie, ont révolutionné la façon dont les gens vivent,
font des affaires, interagissent les uns avec les autres et avec les institutions.

Même si ces changements contribuent à améliorer la qualité de vie du nombre
croissant de personnes qui utilisent le Web de jour en jour, Internet pose égale-
ment un certain nombre de menaces pour ses utilisateurs. Précisément, la popular-
ité d’Internet a également attiré mécréants qui, en permanence, tentent d’abuser de
ses services et ses utilisateurs afin d’obtenir des profits illégaux. Toute personne,
organisation, gouvernement est donc une cible potentielle de différents types de
attaques qui peuvent provenir du web.

8.1.1 Code Malveillant sur le Web

Avec la popularité croissante des services en ligne, les criminels et les utilisa-
teurs malveillants regardent le WWW avec beaucoup d’intérêt. En fait, un nombre
croissant d’utilisateurs d’Internet signifie pour eux un nombre croissant de victimes
potentielles, et donc de profits.

Les services et sites Web en ligne de grande taille stockent aujourd’hui les
données personnelles de plusieurs millions d’utilisateurs. L’accès à ces données
peut s’avérer très rentable pour un criminel [95] et provoquer des graves pertes
financières ou même la faillite de l’organisation ciblée par l’attaque [106].

Parallèlement à des activités criminelles, aussi les gouvernements commencent
à exploiter les faiblesses des utilisateurs et des services Internet comme un moyen
d’obtenir tout type de renseignements, à des fins de défense nationale [32,59], mais
aussi pour attaquer ou perturber les services et installations des pays ennemis [36].
Ce phénomène est souvent appelé Cyber Warfare.

Dans ce contexte, nous utilisons code malveillant comme un terme général
pour décrire tout système, script, morceau de logiciel ou de code qui peut poten-
tiellement causer des effets indésirables sur un dispositif informatique, en attaquant
un de ses “attributs de sécurité”: confidentialité, intégrité et disponibilité (souvent
abrégé “CIA” dans la communauté de la sécurité informatique). Exemples de ces
effets indésirables peuvent être: endommager un système, voler des informations,
perturber des services, ou prendre le contrôle total ou partiel d’un dispositif.

Le web est aujourd’hui le lieu de choix pour la diffusion de code malveillant,
parce que la nature interdépendante de l’ Internet permet d’accéder instantanément
à grandes surfaces d’attaque vulnérables, et effectuer attaques à grande échelle qui

120

Chapter 8. Résumé

2011 / 01 2011 / 07 2012 / 01 2012 / 07 2013 / 01 2013 / 07
0

100,000,000

200,000,000

300,000,000

FIGURE 8.1 – Avertissements de navigation montrées aux internautes chaque se-
maine par Google SafeBrowsing [35]

ne seraient pas possibles dans d’autres scénarios. Aussi, il permet souvent, aux
attaquants expérimentés, de couvrir leurs traces de manière efficace.

Cette tendance est bien visible en Figure 8.1, qui montre que le nombre d’aver-
tissements de navigation soulevée par le service Google SafeBrowsing [105] – util-
isé par les navigateurs les plus populaires sur le marché (à savoir Google Chrome,
Mozilla Firefox, et Apple Safari) - a eu une augmentation de près de 10 fois en-
tre Janvier 2012 et Septembre 2013. Ceci est soutenu aussi par les rapports des
entreprises de sécurité, tels que Websense, que, dans son Threat Report 2013 a an-
noncé une augmentation de près de 600% du nombre de sites Web malveillants sur
Internet [126].

Une remarque encore plus intéressante est que, selon le rapport de Websense,
85% des sites qui hébergent du code malveillant sont des hôtes légitimes qui ont été
compromis. Des augmentations similaires dans le nombre de domaines malveil-
lants sont signalés également dans le 2013 Internet Security Threat Report de
Symantec [117]. Malheureusement, comme le montre le rapport, l’augmentation
n’est pas seulement dans le nombre de domaines malveillants, mais aussi dans
nombre de vulnérabilités ciblant les cinq premiers navigateurs, passant du nombre
de 351 en 2011, jusqu’à 891 vulnérabilités totales déclarées en 2012.

Cela explique pourquoi, au cours des dernières années, les vulnérabilités dans
les applications web et dans les navigateurs sont devenus les moyens les plus ré-
pandus et de succès utilisés pas les criminels afin de propager du code malveillant
sur Internet.

Au même temps, les entreprises de sécurité et les grands fournisseurs de ser-
vices Internet dépensent de plus en plus d’énergies en essayant d’arrêter les acteurs
malveillants et la propagation du code malveillant sur le web. Des bonnes pratiques
et ressources en terme de sécurité sont souvent portées à l’attention des utilisateurs
par le biais de campagnes de sensibilisation, par les écoles, les banques et initiatives
nationales (par exemple, le National Cyber-Security Awareness Month aux Etats-
Unis et en Europe [23, 27]).Les entreprises emploient généralement des Systèmes
de Détection d’Intrusion (IDS) et de Prévention des Intrusions (IPS) [81,102] afin
de détecter ou de bloquer la diffusion de code malveillant sur leurs réseaux, tan-

121

8.1. Introduction

dis que les fournisseurs de services et les moteurs de recherche protègent leurs
utilisateurs en utilisant des listes noires (blacklists) ou des méthodes de détection
des menaces plus sophistiquées (par exemple, [13, 105, 120]). Néanmoins, toute
mesure de sécurité a un coût, et protéger des personnes et des organisations de
manière efficace sur Internet est encore un problème ouvert. Nous sommes con-
frontés à un jeu de chat et souris: les entreprises de sécurité et les chercheurs pro-
posent des techniques avancées pour détecter et bloquer du code malveillant, mais
les criminels sont en mesure de développer des logiciels malveillants de plus en
plus sophistiqués, souvent capables de contourner la protection de ces systèmes.

8.1.2 Modèle d’Attaque

Comme expliqué au début de ce chapitre, le World Wide Web est devenu un
écosystème très complexe. Sa nature distribuée, et la grande variété de services et
entités y agissant, rendent très difficile l’énumération de tous les types possibles
d’attaques qui peuvent arriver sur le web. Cependant, il y a un modèle d’attaque
très commun qui aujourd’hui peut être appliquée à une grande variété d’attaques
web. Nous ferons référence à ce modèle en tant que modèle d’attaque web, et nous
aurons l’occasion de l’analyser en profondeur au cours de cette thèse. Notre mod-
èle d’attaque Web prend en considération quatre acteurs principaux: les attaquants,
les sites vulnérables hébergées par des fournisseurs d’hébergement, les internautes
qui finissent par être victimes d’attaques, et, enfin, les entreprises de sécurité et les
chercheurs qui surveillent en permanence le web afin de repérer sites web malveil-
lants ou compromis.

Le scénario typique représentant le modèle d’attaque Web que nous adoptons
dans cette thèse est représenté en Figure 8.2. Ce modèle comprends les quatre
acteurs différents que nous avons mentionnés; cependant, il est une représentation
générale, que l’on peut utiliser pour décrire un certain nombre de scénarios d’at-
taques web spécifiques. Dans chacun de ces scénarios, l’ensemble des acteurs, ou
seulement une partie d’entre eux, interagissent d’une manière spécifique, qui peut
être complètement différente d’un cas d’attaque à l’autre.

Par exemple, le modèle d’attaque représenté en Figure 8.2 peut être utilisé
pour décrire des attaques drive-by download. Ces attaques sont aujourd’hui l’un
des mécanismes les plus efficaces pour les cybercriminels afin d’infecter des in-
ternautes. Dans un scénario drive-by download typique, les attaquants hébergent
du code malveillant ciblant les navigateurs les plus communs, sur des sites Web
malveillants (ou légitimes et compromis).

En particulier, les attaques drive-by-download installent des logiciels malveil-
lants sur les machines des victimes en exploitant des vulnérabilités dans le navi-
gateur de l’utilisateur ou dans l’un des ses plugins. Pour que cela fonctionne, l’at-
taquant injecte habituellement du code malveillant (typiquement JavaScript), dans
une page web. Quand la victime visite la page malveillante conçue par l’attaquant,
le code malveillant est exécuté, et, si le navigateur de la victime est vulnérable, le

122

Chapter 8. Résumé

Utilisateur

Attaquant

Entreprise de
Sécurité

Hébergeur Web

Sites Web

FIGURE 8.2 – Un modèle général d’attaque Web

navigateur est compromis. Cela se conclue typiquement en l’installation de logi-
ciels malveillants sur la machine de la victime. Malheureusement, ce type d’attaque
est devenu omniprésent au cours des dernières années [33, 34].

Attaques de ce genre permettent aux criminels d’installer des logiciels malveil-
lants sur une multitude d’ordinateurs, avec relativement peu d’effort, et gagner de
l’argent facilement en vendant les informations volées par ces moyens à d’autres
criminels.

Une fois une machine est infecté, le programme malveillant se connecte à
un serveur de commande et contrôle (C&C) sous le contrôle de l’attaquant et,
généralement, reste en attente d’instructions. Cependant, il collecte typiquement
des informations privées de la victime, tels que mots de passe, numéros de carte de
crédit, adresses email, et texte frappé sur le clavier. De cette façon, les machines
infectées forment un botnet, qui est un réseau de machines sous le contrôle direct
des cyber-criminels. Comme des études récentes ont montré [110, 114], un bot-
net peut contenir des centaines de milliers d’hôtes compromis, et il peut générer
des revenus importants pour le botmaster qui le contrôle. Ce genre d’attaques est
étudiée en détail dans le Chapitre 6 de cette thèse.

Un autre type d’attaque très courant, et qui peut être modélisé par le modèle
d’attaque Web adoptée dans cette thèse, est le phishing. Lors d’une attaque de
phishing, le criminel crée un site Web ou un ensemble de pages qui ressemblent en
tous points un site cible sur le quel, en général, les utilisateurs gardent des données

123

8.1. Introduction

sensibles. Il s’agit donc typiquement de sites de banques en ligne, réseaux sociaux
ou sites qui fournissent des services de e-mail ou de messagerie privée. Si un util-
isateur est poussé avec succès à présenter ses données personnelles (tels que mot
de passe, numéro de carte de crédit, etc.) au site faux mis en place par l’attaquant,
le criminel peut facilement récupérer les données volées et les vendre sur le marché
noir.

Les attaques phishing et drive-by download sont généralement mis en place
par des attaquants sur des sites Web compromis. En général, le site compromis est
lui-même un autre cas d’attaque Web, consistant généralement en l’accès abusif,
de la part de l’attaquant, à la machine hébergeant le site Web. Cet accès abusif
est généralement possible grâce à une vulnérabilité dans une application Web util-
isé par le site en question (par exemple, vulnérabilité de input validation), ou par
d’autres moyens tels que le vol de identifiants d’accès au site. Les deux types d’at-
taques peuvent être modélisées par notre modèle d’attaque Web, en considérant
que deux acteurs: l’attaquant et le fournisseur d’hébergement du site Web cible.

La compromission d’un site Web est elle-même un cas très général d’attaque
web, et comme mentionné, peut être effectuée grâce à des moyens différents. Il
peut y avoir différentes raisons qui poussent les criminels à compromettre des sites
Web. L’une d’eux, comme expliqué précédemment, est d’utiliser l’infrastructure
compromise pour lancer de nouvelles attaques contre les visiteurs du site (comme
dans le cas des drive-by downloads et du phishing). Dans d’autres cas, toutefois,
l’attaque peut être destiné directement à voler des informations sensibles sur la
machine qui e été compromise.

En effet, le vol de données sensibles est aujourd’hui l’une des raisons les plus
courantes derrière les attaques Web. L’information, et, spécialement, les documents
confidentiels ou données privées des utilisateurs et des entreprises, sont très recher-
chés car peuvent être vendus à des prix élevés sur les marchés noirs ou aux en-
treprises et aux gouvernements intéressés à voler des secrets industriels ou mili-
taires.

Les grandes fuites d’informations frappent toujours les news en raison de leur
portée mondiale, qui généralement concerne des comptes et des informations d’u-
tilisateurs à l’échelle nationale ou mondiale.

Comme la Figure 8.3 montre, un nombre incroyablement élevé de dossiers
personnels ont été volés dans des entreprises et des organisations pendant les der-
nières 9 années. Le nombre total de dossiers volés a déjà dépassé le milliard, et ce
qu’en prenant en compte les plus grandes violations de données qui ont frappé les
chaînes d’information les plus importantes. Outre le nombre élevé de données volés
chaque année, les dernières trois années ont été marquées par un nombre croissant
d’attaques pendant les quels des informations très très sensibles ont été volés (mon-
trés dans l’image en couleurs sombres), tels que l’adresse e-mail et mot de passe ou
numéro de carte de crédit et informations de compte bancaire. Les chiffres indiqués
dans le graphique sont, bien sûr, seule une limite inférieure pour le nombre réel des

124

Chapter 8. Résumé

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

50

100

150

200

250

300

N
om

br
e

de
 d

os
si

er
s

vo
lé

es
 (

en
 M

ill
io

ns
)

Fuites de données par année

Sévérité de la fuite de données
(par type d'informations volées)

1
2
3
4
5

FIGURE 8.3 – Les vols de données les plus connus et documentés publiquement
depuis 2004 [46]

données qui ont été divulgués par les organisations dans les dernières années, car
il prend en compte que les incidents qui ont été signalés publiquement.

Par ailleurs, le graphique ne tient pas compte de l’énorme quantité de données
que les criminels volent des internautes chaque jour, en les attirant avec pages de
phishing et ingénierie sociale, ou en infectant leurs ordinateurs avec des logiciels
malveillants.

Publiciser des attaques web, et en particulier les vols de données, est une autre
tendance de certains des cyber-attaques d’aujourd’hui. Des organisations telles que
Anonymous [128] par exemple, diffusent publiquement leurs attaques, parfois
même avant l’attaque ait lieu. Tout ça est fait généralement dans le but de frap-
per les news et diffuser des slogans éthiques ou politiques. La raison évoquée, en
faite, pour la plupart des attaques du groupe est “la lutte contre la censure et la
promotion de la transparence et de la liberté de l’information”. Un nouveau mot a
été défini pour décrire ces événements, hacktivisme, de hacker et activisme. Il est
à noter que, contrairement aux premiers jours de hacking “vieille école” , l’être un
hacktiviste n’est pas un rôle d’élite, réservé à quelques membres élus. Au lieu de
cela, tout le monde peut participer à des discussions et des opérations hacktivistes
[6] et utiliser des outils gratuits pour anonymiser ses propres traces tout en lançant
des attaques de la part de la communauté.

125

8.1. Introduction

Attaquants Victimes

Hébergeurs Web Chercheurs
et Entreprises

de Sécurité

SITES WEB
COMPROMIS ET

CODE MALVEILLANT
SUR LE WEB

FIGURE 8.4 – Points de vue adoptés dans cette thèse

Enfin, comme montré dans la figure représentant le modèle d’attaque Web,
les sociétés de sécurité (ou les chercheurs), même si pas impliqués directement
dans les attaques comparés aux autres acteurs, sont généralement présents dans les
coulisses de toutes les attaques Web. Lorsqu’ils n’interviennent pas directement
en essayant d’arrêter les attaquants ou en aidant les fournisseurs d’hébergement et
leurs utilisateurs, en fait, ces entreprises surveillent en permanence les mouvements
des criminels connus, analysent sites à la recherche de code malveillant, et recueil-
lent des informations auprès de leurs clients afin de détecter en temps opportun et
pouvoir analyser les plus nouvelles menaces d’Internet.

8.1.3 Objectifs

Au cours des dernières années, nous avons assisté à une augmentation du nom-
bre d’attaques web et de sites web compromis installés par les criminels afin de
propager leur code malveillant sur Internet. Malheureusement, aujourd’hui cette
tendance ne risque pas de s’arrêter, et les entreprises et les gouvernements, aujour-
d’hui plus que jamais, dépensent énormes quantités d’argent et de ressources, pour
lutter contre les activités malveillantes sur Internet.

Un bon plan de prévention d’attaque commence par une bonne compréhension
de l’écosystème qui est l’objet de l’attaque: le web, dans notre cas.

C’est la raison pour la quelle, dans cette thèse, nous étudions le problème des
sites web compromis à partir de quatre axes d’analyse différents. Ces perspec-
tives nous permettent d’étudier le phénomène des attaques web du point de vue

126

Chapter 8. Résumé

de chacun des acteurs qui sont typiquement impliqués dans ces types d’attaques:
les attaquants, les fournisseurs d’hébergement web qui hébergent sites qui ont été
attaqués ou infectés, les chercheurs ou les entreprises de sécurité qui tentent de
détecter et de prévenir les attaques, et enfin les utilisateurs, qui représenter les vic-
times des attaques web. Figure 8.4 représente graphiquement les quatre points de
vue que nous adoptons dans cette thèse. Chacun d’eux correspond à un chapitre de
cette thèse.

Bien que l’étude du code malveillant sur le web soit un sujet assez commun
dans la littérature de la sécurité informatique contemporaine, très peu de travaux
ont étudié ce sujet en l’observant à partir des points de vue de ses multiples acteurs.

L’objectif de ce travail est donc de fournir au lecteur une vue d’ensemble du
phénomène des sites web compromis et du code malveillant sur le web, et de
plonger plus profondément dans ce sujet dès ses quatre points de vue différents
décrits ci-dessus. Cela aura l’avantage de donner une vue d’ensemble complète de
l’écosystème, en l’observant par ses différents faces. En particulier, nous allons
analyser comment les attaquants trouvent leurs cibles sur Internet, comment ils
les exploitent et quels sont leurs objectifs une fois qu’ils ont accès à un système
compromis. Deuxièmement, nous allons adopter le point de vue des fournisseurs
d’hébergement web, qui hébergent des sites qui peuvent être compromis ou infec-
tées par des criminels. Dans ce cas, nous allons étudier comment les hébergeurs
agissent en matière de prévention des utilisations abusives de leurs systèmes, com-
ment ils détectent les comptes clients compromis, et la façon dont ils gèrent les in-
cidents et les notifications d’abus. Troisièmement, nous allons étudier comment les
chercheurs et les entreprises de sécurité peuvent parcourir Internet à la recherche
de pages web infectés portant du code malveillant, en pouvant donc contribuer à la
fermeture de sites malveillants avant qu’ils soient capables d’infecter des victimes.
Enfin, nous concentrons notre analyse sur le comportement des internautes, afin
de comprendre si certaines catégories d’utilisateurs sont plus à risque que d’autres
pendant la navigation sur le web, et, si oui, pour étudier comment nous pouvons le
prédire en analysant uniquement leur comportement.

8.1.4 Contributions

Cette thèse analyse la diffusion de code malveillant sur le web au cours des der-
nières années, en se concentrant en particulier sur les sites web compromis. Notre
travail de recherche nous permet d’étudier ce phénomène du point de vue des ac-
teurs qui sont couramment impliqués dans celui-ci: les internautes, les fournisseurs
d’hébergement, les attaquants et les entreprises de sécurité ou les chercheurs (voir
la Figure 8.4): Dans l’ensemble, nous apportons les contributions suivantes au do-
maine de la sécurité web:

– Nous développons une nouvelle approche pour la collecte et l’analyse des
attaques web et de code malveillant, sur la base de la création d’un réseau de
sites web vulnérables et entièrement fonctionnels (pots de miel web). Cela
nous permet d’étudier et de mieux comprendre les tendances actuelles dans

127

8.2. Fournisseurs d’Hébergement

le domaine des attaques web, et les raisons de ces actions de la part des
attaquants.

– Nous présentons une étude de mesure sur comment les sociétés d’héberge-
ment web mutualisé gèrent la sécurité de leurs clients, à l’échelle mondiale.
Ceci inclut des tests pour vérifier si des mécanismes de prévention d’attaque
sont mis en place, si les hébergeurs sont en mesure de détecter des signes év-
idents de compromission sur les comptes des leurs clients, et si les plaintes
d’abus sont traités d’une manière opportune et appropriée.

– Nous introduisons une nouvelle approche qui utilise analyse statique et tech-
niques de “machine learning” pour la détection à large échelle des pages web
qui lancent des attaques de type drive-by-download. Nous montrons en outre
que cette approche peut être appliquée avec succès dans un environnement
réel dans le but de filtrer efficacement des pages web bénignes, et de trans-
mettre seulement les pages suspectes à des systèmes d’analyse dynamique,
plus coûteux en termes de performances.

– Nous développons une nouvelle approche pour la construction de profils d’u-
tilisation pour les internautes, en fonction de leur historique de navigation.
Nous analysons si les caractéristiques de chaque profil peuvent être corrélés
à des chances plus ou moins élevés de visiter des sites web malveillants, et
nous présentons une étude approfondie sur l’efficacité de la prédiction des
risques fondée sur les comportements de navigation des utilisateurs du web.

8.2 Fournisseurs d’Hébergement

Nous commençons notre analyse en étudiant les attaques web du point de vue
des fournisseurs d’hébergement Web, pour deux raisons. Tout d’abord, la majorité
des sites Web sur Internet sont hébergés sur des plates-formes d’hébergement web
mutualisé et, généralement, la plupart des attaques web commencent par la com-
promission d’un site ou d’un compte d’hébergement. Deuxièmement, en étant le
point de départ de chaque attaque, si les fournisseurs d’hébergement sont en mesure
de détecter des compromissions sur les comptes de leurs clients d’une manière
précise et en temps opportun, la plupart des attaques web d’aujourd’hui devraient
échouer ou avoir une très courte durée de vie. D’où l’importance d’étudier la dé-
tection de compromission du point de vue des fournisseurs d’hébergement.

Dans ce chapitre, nous testons la capacité des fournisseurs d’hébergement web
de détecter les sites web compromis et de réagir aux plaintes des utilisateurs. Notre
étude couvre également six services spécialisés qui fournissent des services de
surveillance pour sites web pour une somme modique.

Pendant une période de 30 jours, nous avons installé nos propres sites vul-
nérables sur 22 plates-formes d’hébergement mutualisé, y compris 12 des plus pop-
ulaires. Nous avons exécuté, à plusieurs reprises, cinq types d’attaque différentes
contre chacun d’eux. Nos tests comprenaient une infection par botnet, une attaque
drive-by download, le téléchargement de fichiers malveillants, une injection SQL

128

Chapter 8. Résumé

avec vol de données client, et un kit de phishing pour une célèbre banque améri-
caine. En outre, nous avons également généré du trafic en simulant des victimes du
phishing. Nous montrons que la plupart de ces attaques auraient pu être détectés
par des outils gratuits et libres disponibles sur le web. Après 25 jours, si aucune
activité malveillante était détectée, nous avons commencé à déposer des plaintes
d’abus aux fournisseurs. Cela nous a permis d’étudier la réaction des fournisseurs
d’hébergement Web à des plaintes réelles et fictives.

L’image générale que nous avons pu tirer de notre étude est tout à fait alar-
mante. La grande majorité des fournisseurs, ou ”services add-on de sécurité“, sont
incapables de détecter les plus simples signes d’activité malveillante sur les sites
hébergés.

8.2.1 Introduction

Posséder et opérer un site web est devenu une activité très courante dans de
nombreuses régions du monde, et des millions de sites sont crées, tous les jours, à la
fois pour un usage personnel et professionnel. Les gens n’ont plus besoin d’être des
gurus de l’informatique pour pouvoir gérer un site Web: un navigateur Web, une
carte de crédit avec quelques dollars, et des compétences de base en informatique
sont généralement assez pour commencer ce type d’activité.

De toutes les façons possibles pour accueillir un site Web, l’hébergement partagé
est généralement l’option la plus économique. Elle consiste à avoir un site Web
hébergé sur un serveur Web où d’autres sites peuvent résider et partager les ressources
de la machine. Grâce à son faible prix, l’hébergement mutualisé est devenu le choix
typique pour accueillir la majorité des sites web pour particuliers et PMEs dans le
monde entier.

En étant si commun, toutefois, les sites d’hébergement mutualisé ont aussi des
grandes chances d’être la cible d’attaques web, et devenir des moyens pour les
criminels de propager leur code malveillant sur Internet. En plus, ces sites sont
souvent exploités par des utilisateurs avec peu ou pas d’expérience en matière de
sécurité, qui sont peu susceptibles d’être en mesure de détecter les attaques ou se
servir d’outils de sécurité pour la prévention et la détection d’attaques.

L’analyse présentée dans ce chapitre se concentre sur les services d’héberge-
ment Web mutualisé, et présente une étude sur ce que les fournisseurs d’héberge-
ment font pour aider leurs clients à détecter des signes de compromission sur leur
site web. Il s’agit d’un engagement important, compte tenu du fait que les clients
des services d’hébergement mutualisé sont les plus vulnérables aux attaques web
[58]. En outre, même un client avec des connaissances en matière de sécurité ne
serait jamais en mesure de protéger et de surveiller son compte sans la coopération
du fournisseur. En fait, dans une plate-forme partagé, l’utilisateur a peu de priv-
ilèges sur la machine et n’est pas autorisé à exécuter ou installer des applications
de surveillance ou des systèmes de détection d’intrusions, ni gérer le pare-feu,
ou les paramètres de sécurité. Ainsi, afin de protéger son site Web, l’utilisateur

129

8.2. Fournisseurs d’Hébergement

doit se fier entièrement sur les mesures de sécurité employées par le fournisseur
d’hébergement.

Nous avons également testé les réactions des fournisseurs aux plaintes, et les
capacités de détection d’attaque de six services spécialisés dans la surveillance de
la sécurité des sites web.

Dans un récent sondage [16], Commtouch et StopBadware ont rapporté les
résultats d’un questionnaire dans lequel 600 propriétaires de sites Web compromis
ont été posées des questions sur les attaques qui ont visé leurs sites Web. Il est
apparu que, parmi les interrogés, 49% des utilisateurs ont été mis au courant de la
compromission par un avertissement de leur navigateur, tandis que dans moins de
cas, ils ont été informés par leur fournisseur d’hébergement (7%) ou par un service
de sécurité (10%). En outre, 14% des utilisateurs qui ont participé à l’enquête ont
déclaré que leur fournisseur d’hébergement a retiré le contenu malveillant de leur
site web après l’infection. Enfin, seulement 12% des clients étaient satisfaits de
la façon dont leur fournisseur d’hébergement a géré la situation, tandis que 28%
des utilisateurs qui ont participé à l’enquête envisagent de passer à un nouveau
fournisseur à cause de cette expérience.

Inspiré par le rapport StopBadware, nous avons décidé d’analyser systéma-
tiquement, sur une plus grande échelle et de façon automatisée, comment les so-
ciétés d’hébergement web se comportent en ce qui concerne la détection des sites
web compromis, quelles sont leurs réactions en cas de plaintes d’abus, et comment
ils procèdent pour informer un client si son site vient d’être compromis.

8.2.2 Résultats

Ce chapitre présente la première analyse d’envergure mondiale de la qualité
et de la fiabilité des activités de surveillance de sécurité réalisées par les four-
nisseurs d’hébergement web mutualisé. Malheureusement, le résultat général que
nous avons tiré de nos analyses est tout à fait alarmant: la grande majorité des
fournisseurs et ”services add-on de sécurité“ sont incapables de détecter les signes
les plus simples d’activités malveillantes sur les sites web qu’ils hébergent. Il est
important de noter que nous ne voulons pas blâmer ces fournisseurs de ne pas pro-
téger leurs clients, puisque ce service n’est souvent pas partie des conditions du
contrat pour le quel les utilisateurs paient. Cependant, nous croyons qu’il serait
dans l’intérêt des fournisseurs et du grand public de mettre en œuvre des simples
mécanismes de détection, afin de pouvoir identifier rapidement quand un site a été
compromis et il est utilisé pour effectuer des activités malveillantes.

Nous pouvons résumer les principales conclusions de nos expériences autour
des cinq points suivants:

Inscription - Les majeurs hébergeurs investissent des efforts considérables
pour recueillir des informations sur les utilisateurs qui s’inscrivent chez eux. Cette
procédure est efficace afin d’empêcher les criminels d’abuser du service d’héberge-
ment et installer des sites web malveillants.

130

Chapter 8. Résumé

Prévention - Environ 40% des hébergeurs ont déployé quelques mécanismes
de sécurité avec le but de bloquer des simples attaques (injections SQL, exploita-
tion des vulnérabilités les plus courantes contre des applications web)

Détection - Une fois que le client est enregistré, la plupart des fournisseurs
ne font rien pour détecter des activités malveillantes ou des sites Web compromis,
offrant ainsi très peu d’aide à leurs clients. Nous avons été surpris de découvrir que
21 des 22 fournisseurs testés n’ont même pas exécuté un antivirus une fois par mois
(ou ils les exécutent avec des signatures très anciennes et pas à jour) sur les sites
hébergés. En outre, aucun d’entre eux a considéré comme suspect un site ayant des
multiples tentatives de connexion sortantes vers un serveur IRC.

Plaintes d’Abus - Seul le 36% des fournisseurs ont réagi à nos notifications
d’abus. Quand ils ont répondu rapidement, la plupart du temps leur réponse était in-
appropriée ou excessive. Aucun des fournisseurs globaux et un seul des régionaux
étaient en mesure de gérer correctement, à la fois, les plaintes réelles et fausses en
temps opportun.

Services de Sécurité - L’utilisation de services de sécurité pas chers comme
”add-on“ ne fournit aucune couche supplémentaire de sécurité dans nos expéri-
ences. En outre, les services qui ont été configurées pour analyser le contenu de
nos sites via FTP n’ont pas réussi à découvrir les fichiers malveillants.

Les principales différences entre hébergeurs globaux et régionaux semblent
être en termes de vérification d’inscription (en faveur des globaux) et la réaction à
de plaintes réelles (en faveur des régionaux).

Comme nous l’avons déjà mentionné au début de ce chapitre, les fournisseurs
d’hébergement web sont en mesure de jouer un rôle clé dans la sécurité du Web.
En fait, ils accueillent des millions de sites qui sont souvent mal gérés par des util-
isateurs inexpérimentés, et qui sont susceptibles d’être compromis pour propager
du code malveillant ou héberger des kits de phishing. Malheureusement, tous les
fournisseurs d’hébergement web partagé que nous avons testé, ont manqué cette
occasion.

8.3 Attaquants

Dans ce chapitre, nous analysons les détails de la façon dont les sites Web sont
attaqués, à partir du point de vue des attaquants et des criminels qui les exploitent.
Les attaques web sont aujourd’hui l’une des principales menaces sur Internet, et
plusieurs études les ont analysé, fournissant des détails sur la façon dont ils sont
réalisés et comment ils se propagent. Cependant, aucune étude semble avoir suff-
isamment analysé le comportement typique d’un attaquant après un site web a été
compromis.

Dans ce chapitre, nous présentons la conception, la mise en œuvre et le dé-
ploiement d’un réseau de 500 sites web pot-de-miel (honeypot) entièrement fonc-
tionnels, accueillant une gamme de services, dont le but est d’attirer les attaquants
et recueillir des informations sur ce qu’ils font pendant et après leurs attaques. En

131

8.3. Attaquants

100 jours de collecte de données, notre système a reçu, normalisée, et regroupé plus
de 85 000 fichiers qui ont été créés pendant environ 6000 attaques. L’étiquetage des
groupes nous a permis d’obtenir une vue générale des attaques web, d’identifier le
comportement derrière chaque action réalisée à la fois pendant et après l’exploita-
tion d’une application web (tels que l’installation d’une page de phishing, un script
de botnet, ou un exploit locale sur la machine compromise.)

8.3.1 Introduction

Les attaques Web sont une des sources les plus importantes de la perte de pro-
priété intellectuelle et financière. Dans les dernières années, ces attaques ont évolué
en nombre et en sophistication, en ciblant les gouvernements et les grandes en-
treprises, en volant des informations personnelles des utilisateurs et en entraînant
des importantes pertes financières, jusqu’à plusieurs millions d’euros à chaque oc-
casion. En outre, le nombre de personnes parcourant le web grâce à des ordinateurs,
tablettes et smart phones est en constante augmentation, ce qui rend les attaques
web un moyen très attrayante pour les criminels.

On retrouve également cette tendance dans le sujet de la recherche universi-
taire. En fait, un regard rapide sur les articles publiés au cours des dernières années
montre comment un grand nombre d’entre eux concernent le WWW et ses attaques
et défenses. Certaines de ces études se concentrent sur les vulnérabilités courantes
liées aux applications web, serveurs web ou les les navigateurs, et sur la façon dont
ces composants peuvent être compromis. D’autres analysent les détails de chaque
attaque ou de certaines campagnes [11, 51, 74], ou proposent des nouveaux outils
ou mécanismes de protection pour atténuer les attaques existants.

Le résultat est que presque tout le panorama des infections web a été étudié à
fond: la façon dont les attaquants scannent le web, l’utilisation de “google dork-
s” pour trouver des applications vulnérables, la façon dont ils gèrent les attaques
automatisées, et la façon dont ils fournissent contenu malveillant pour les utilisa-
teurs finaux. Cependant, il y a encore une pièce manquante dans le puzzle. En
fait, avant nous, aucun projet de recherche semble avoir suffisamment détaillé le
comportement d’un attaquant typique pendant et après la compromission d’un site
web. Parfois, les attaquants sont seulement à la recherche des informations stockées
dans le service lui-même, par exemple lorsque l’objectif est de voler des informa-
tions d’identification de l’utilisateur par le biais d’une injection SQL. Mais dans
la majorité des cas, l’attaquant veut maintenir l’accès à la machine compromise et
l’insérer dans le cadre d’une infrastructure malveillante de plus grande taille (par
exemple, pour agir comme un serveur C&C pour un botnet ou servir des documents
malveillants aux utilisateurs qui visitent la page).

Bien que la littérature récente souvent met l’accent sur des sujets accrocheurs,
comme drive-by-download et black-hat SEO, ceux-ci ne sont que la pointe de l’ice-
berg. En fait, il y a une grande variété d’activités malveillantes effectuées sur In-
ternet sur des bases quotidiennes, avec des objectifs qui sont souvent différents de

132

Chapter 8. Résumé

ceux des criminels notoires qui attirent les médias et l’attention des entreprises de
sécurité.

La principale raison pour la quelle aucun travail précédent a été fait dans cette
direction de recherche est que presque tous les projets existants basés sur les pots de
miel Web utilisent des applications simulées. Cela signifie qu’aucune attaque réelle
peut être effectuée avec succès, et donc, dans le cas général, que toutes les actions
qu’un attaquant pourrait effectuer après l’exploitation ne seront pas collectées.

Par conséquent, afin de mieux comprendre la motivation des différentes caté-
gories d’attaquants, les éditeurs de logiciels antivirus ont souvent compté sur des
informations communiquées par leurs clients. Par exemple, dans une étude récente
menée par Commtouch et l’organisation StopBadware [16], 600 propriétaires de
sites Web compromis ont été invités à remplir un questionnaire afin de rendre
compte de ce que l’attaquant avait fait après l’exploitation de leur site. Les ré-
sultats sont intéressants, mais l’approche ne peut pas être automatisé, et il est donc
difficile de le répéter. Aussi, il n’y a aucune garantie que les utilisateurs (la plupart
du temps pas des experts en matière de sécurité) soient été en mesure de distinguer
avec succès une classe d’attaque de l’autre.

En ce chapitre, nous fournissons, pour la première fois, une analyse appro-
fondie et globale du comportement des attaquants sur le web. Nous concentrons
notre analyse sur deux aspects distincts: i) la phase d’exploitation, dans laquelle
nous examinons comment les attaques sont effectuées jusqu’au point où l’applica-
tion est compromise, et ii) la phase de post-exploitation, dans laquelle nous exam-
inons ce que les attaquants font après qu’ils prennent le contrôle de l’application.
La première partie traite des méthodes et des techniques (le “comment”) utilisée
pour attaquer des applications web, tandis que la seconde partie essaie de déduire
les raisons et les objectifs (le “pourquoi”) derrière ces attaques.

Pour cette raison, cette étude n’analyse pas des attaques ordinaires de type in-
jections SQL ou cross-site scripting. Au lieu de cela, nos pots de miel sont conçus
pour attirer et contrôler les criminels qui sont intéressés à acquérir (et maintenir)
le contrôle des applications web. Nos résultats montrent des tendances intéres-
santes sur la façon dont la majorité de ces attaques sont effectuées à l’état sauvage.
Par exemple, nous identifions quatre phases distinctes et 13 buts différents qui
sont couramment poursuivis par les attaquants. Nous fournissons également un
aperçu de quelques scénarios d’attaque intéressants que nous avons identifiés lors
de l’opération de nos pots de miel.

8.3.2 Résultats

Cette étude nous a permis d’analyser, pour la première fois dans la littérature
académique, comment et pourquoi les attaques contre les sites communs sont ef-
fectués. Nous croyons que les résultats présentés dans cet étude ont fourni des
indications intéressantes sur l’état actuel des comportements d’exploitation sur le
web. D’un côté, nous avons été en mesure de confirmer les tendances connues pour
certaines catégories d’attaques, telles que la prévalence de pays d’Europe orientale

133

8.4. Les Utilisateurs

dans l’activité de spamming de commentaires pour forums, et le fait que la plu-
part des campagnes de phishing et scams sur Internet sont encore exploités par des
criminels dans les pays africains [45]. Les annonces pharmaceutiques semblent
être les sujet les plus fréquents dans les activités de spamming, comme on retrouve
dans d’autres études récentes [20].

D’autre part, nous avons également pu observer et étudier un grand nombre
d’attaques manuelles, ainsi que des nombreuses infections qui visent à transformer
des serveurs Web en bots IRC. Cela suggère que certaines des menaces qui sont
souvent considérées comme dépassées sont effectivement encore très populaires
(en particulier entre les jeunes criminels) et sont toujours responsables d’une grande
partie des attaques contre les sites vulnérables.

8.4 Les Utilisateurs

Après avoir analysé comment les attaquants Web se comportent et comment les
fournisseurs d’hébergement gèrent les compromissions de sites web, il est temps
de tourner notre point de vue sur la cible de chaque attaque: l’utilisateur. Les util-
isateurs sont généralement la cible finale des attaques web, et il est de leurs don-
nées personnelles que les criminels sont typiquement en mesure d’obtenir un gain
financier.

Cependant, alors que de nombreux aspects d’attaques web ont été soigneuse-
ment étudiés par les chercheurs et les entreprises de sécurité, les raisons qui font
que certains utilisateurs sont plus “à risque” que d’autres sont encore inconnues.
Pourquoi certains utilisateurs ne rencontrent jamais des pages malveillantes, tandis
que d’autres semblent se tomber sur eux sur une base quotidienne ?

Pour répondre à cette question, dans ce chapitre, nous présentons une étude ap-
profondie sur l’efficacité de la prédiction du risque basée uniquement sur le com-
portement des utilisateurs pendant leur navigation web. Notre analyse est basée sur
un ensemble de données de télémétrie recueillies par un des majeurs fournisseurs
AntiVirus, comprenant des millions d’URL visités par plus de 100.000 utilisa-
teurs pendant une période de trois mois. Pour chaque utilisateur, nous extrayons
les statistiques d’utilisation détaillées, et distillons ces informations dans 74 carac-
téristiques uniques, qui servent à modeler les différents aspects du comportement
de l’utilisateur.

Une fois que nous extrayons toutes les fonctionnalités, nous effectuons une
analyse de corrélation pour voir si elles sont en corrélation avec la probabilité
de visiter des pages web malveillantes. Ensuite, nous misons sur des techniques
d’apprentissage automatique pour fournir des prévisions pour les utilisateurs qui
sont exposés au risque. Les résultats des expériences montrent qu’il est possible de
prédire avec une précision raisonnable quels sont les utilisateurs les plus suscep-
tibles d’être victimes d’attaques web, en analysant uniquement leur historique de
navigation.

134

Chapter 8. Résumé

8.4.1 Introduction

Une grande quantité de recherches ont été menées sur les outils et techniques
adoptées par des attaquants, sur l’identification automatique et l’atténuation des
vulnérabilités logicielles, ou sur comment protéger les navigateurs web de l’ex-
ploitation. Malgré cet effort, le pourcentage de pages Web qui sont soit malveil-
lantes ou qui ont été compromises pour servir du contenu malveillant est en con-
stante en augmentation [55,116,127]. Même si ceci est certainement un phénomène
alarmant, ces chiffres globales sont calculées sur l’ensemble de la population d’In-
ternet, et donc ne parviennent pas à exprimer ce qui est le risque réel pour un
utilisateur unique de rencontrer une page malveillante pendant son activité quoti-
dienne. Le nombre croissant de sites dangereux n’affecte pas nécessairement tout
le monde de la même façon. Par exemple, il est possible que la majorité des util-
isateurs ne naviguent que dans des voisinages “propres” où les pages malveillantes
sont encore extrêmement rares. Dans ce cas, il devrait être possible d’associer à
chaque utilisateur, en fonction de son comportement habituel, un certain profil de
risque. En autres termes, il devrait y avoir une corrélation entre les habitudes de
navigation et la probabilité de se rendre sur des sites potentiellement nocifs. Ce scé-
nario est particulièrement intéressant dans le domaine de la cyber-assurance [9],
dans lequel le profil des utilisateurs est une étape importante vers une évaluation
précise des risques. Par exemple, dans le monde physique, les prémiums des assur-
ances sont normalement calculés sur la base d’une classification des risques. Par
exemple, les assurances automobile sont plus chères dans les grandes villes ou pour
les conducteurs inexpérimentés, parce que ces conditions sont connues pour l’être
positivement corrélées à la probabilité d’accidents de voiture. Malheureusement,
une mesure équivalente de facteurs de risque dans le monde virtuel est toujours
inexistante.

Si l’hypothèse d’une corrélation entre le risque et le comportement de navi-
gation est raisonnable, cela n’implique pas nécessairement la présence d’une re-
lation de causalité. Il doit être souligné, cependant, que notre travail se concen-
tre uniquement sur l’analyse de l’activité volontaire de navigation des utilisateurs.
Nous n’avons donc aucune visibilité sur des visites de URLs qui ne sont pas orig-
inées par des actions de l’utilisateur sur un navigateur Internet (telles que des vis-
ites à des pages qui font partie des infrastructures de C&C ou des URLs visitées
directement via des applications non standard, ou des logiciels malveillants).

Lorsque on traite l’analyse des comportements de navigation des utilisateurs, il
y a aussi d’autres facteurs que l’on doit prendre en compte. Par exemple, indépen-
damment de leur activité quotidienne, les utilisateurs sont souvent poussés à cliquer
sur des liens qui leur sont envoyés par e-mail, à travers de méthodes d’ingénierie
sociale. Par conséquent, il est possible que d’autres attributs tels que l’expérience
informatique d’un utilisateur, comme constaté par Onarlioglu et al. [84] pourraient
être importants pour déterminer les facteurs de risque d’un utilisateur pendant sa
navigation.

135

8.4. Les Utilisateurs

Malheureusement, peu de travaux ont essayé de répondre à cette question et
comprendre si il y a certains comportements ou certaines caractéristiques qui peu-
vent influer sur la probabilité pour des utilisateurs de visiter des pages Web malveil-
lantes. Comme indiqué dans le chapitre 2.3, certains travaux ont tenté de répondre
à des questions similaires en effectuant des études de terrain sur l’utilisation de
l’ordinateur d’un nombre limité de sujets [61]. D’autres ont proposé l’hypothèse
que certains comportements peuvent être liés à de plus grandes chances d’être com-
promis, comme la relation entre navigation sur des sites porno et le fait d’être su-
jets à des infections [130]. Cependant, aucune étude n’a jusqu’à présent été assez
générale pour créer des profils d’utilisateurs et analyser ces informations afin d’é-
valuer s’il existe une relation entre les habitudes spécifiques des utilisateurs et le
fait de visiter des pages Web malveillantes.

Dans cet étude, nous menons la première enquête exhaustive dans ce domaine,
en utilisant les données de télémétrie collectées par une grande société d’antivirus.
En particulier, nous avons analysé les pages Web visitées par 160,229 utilisateurs
sur une période de 3 mois (92 jours). Par le biais des informations anonymes qui
nous ont été fournies, nous avons identifié deux premières catégories d’utilisateurs:
les sûres – ceux qui n’ont jamais visité des pages Web malveillantes au cours de
nos expériences, et les à risque, qui ont visité plusieurs sites malveillants dans le
même laps de temps. Notre objectif était de voir si ce genre de comportement peut
être utilisé pour différencier les deux classes. Pour cette raison, nous avons iden-
tifié et extrait 74 attributs qui peuvent être utilisés pour résumer le comportement
de navigation d’un utilisateur, et nous avons corrélé chacun d’eux avec la classe
d’utilisateur.

Nos expériences confirment que le volume d’activité de l’utilisateur est l’un
des meilleurs indicateurs de la niveau de risque. Le plus une personne navigue tous
les jours, et le plus diversifiée est l’ensemble de pages visitées, plus il est probable
que la personne tombe sur un site Web malveillant. Nous montrons également que
les pages malveillantes sont plus susceptibles d’être rencontrées au cours du week-
end et que les utilisateurs le plus à risque sont plus actifs pendant la nuit que ceux
qui appartiennent à la classe d’utilisateurs sûrs. En regardant les catégories de sites
Web, nous avons constaté que certains d’entre eux – tels que les sites à contenu
adulte et les “URL shorteners” – sont positivement corrélés à la probabilité d’être
à risque. Enfin, les résultats des expériences que nous avons effectuées indiquent
qu’il est possible de combiner toutes ces informations dans un classificateur qui
permette de prédire si un utilisateur est à risque d’infection, tout en analysant son
profil de navigation.

8.4.2 Résultats

Cet étude nous a permis d’analyser les comportements des utilisateurs qui finis-
sent par être victimes d’attaques web. Nous avons présenté une première étape vers
la prédiction du risque des utilisateurs lorsqu’ils naviguent sur Internet. Notre anal-
yse en profondeur d’un grand ensemble de données de télémétrie recueillies par

136

Chapter 8. Résumé

l’une des principales sociétés AntiVirus nous a permis d’acquérir un certain nom-
bre de points de vue sur la relation entre les habitudes de navigation des utilisateurs
et leurs chances de visiter des pages Web malveillantes sur Internet. Par exemple,
nous avons été en mesure de confirmer certaines tendances connues, telles que le
fait que la navigation sur le Web tard dans la nuit et le week-end est généralement
corrélée avec plus de chances de se retrouver sur des sites web malveillants. Une
autre tendance générale confirmée par notre travail est que, en général, plus un
utilisateur navigue sur Internet, plus ses chances sont de se retrouver dans certains
“voisinages dangereux”.

Nous avons également été en mesure d’attester si le profilage des utilisateurs
peut être efficacement utilisé comme une base pour prédire le risque pour un us-
ager de se retrouver sur des sites web malveillants. En utilisant des techniques de
machine learning, nous avons montré que ces profils pourraient effectivement être
utilisés, au moins dans une certaine mesure, dans la prédiction de la classe de risque
d’un utilisateur sur le web, de façon similaire à ce qui se fait actuellement dans le
domaine des assurances et de la prédiction du risque financier.

8.5 Entreprises de Sécurité et Chercheurs

Les derniers acteurs qui ont une importante implication dans l’étude et les
recherches liées aux attaques web sont sont les entreprises de sécurité, ou des
chercheurs en sécurité. Les entreprises de sécurité dépensent beaucoup de ressources
afin de détecter les logiciels malveillants et les sites qui les hébergent, car ce
derniers représentent une menace sérieuse pour tous les internautes. En particulier,
cette partie de la thèse présente le point de vue d’une de entreprise de sécurité qui
doit faire face à l’analyse d’un grand nombre de pages web sur une base quotidi-
enne.

Comme nous le savons, au cours des dernières années, les chercheurs ont mis
au point un certain nombre de systèmes qui analysent les pages Web pour détecter
la présence de code malveillant. La plupart de ces systèmes utilisent techniques
d’analyse dynamique, c’est à dire qu’ils exécutent les scripts associés à une page
Web directement dans un vrai navigateur (en cours d’exécution dans un environ-
nement virtualisé) ou dans un navigateur émulé, et surveillent le code exécuté pour
détecter des activités malveillantes. Alors que ces outils sont très précis, le proces-
sus d’analyse est coûteux, nécessitant souvent des dizaines de secondes, ou voir
plusieurs minutes, pour analyser une seule page. Par conséquent, l’exécution de
cette analyse sur un grand nombre de pages Web peut être prohibitive.

Une approche pour réduire les ressources nécessaires pour effectuer une telle
analyse sur grande échelle est de développer un filtre rapide et fiable qui peut rapi-
dement rejeter toutes les pages qui sont bénignes, en transmettant à un système
d’analyse dynamique seules les pages qui sont susceptibles de contenir du code
malveillant. Nous décrivons ici la conception et la mise en œuvre d’un tel filtre. Le
filtre que nous proposons, appelé Prophiler, utilise des techniques d’analyse sta-

137

8.5. Entreprises de Sécurité et Chercheurs

tique pour examiner rapidement une page web. Cette analyse prend en compte les
caractéristiques dérivées à partir du contenu HTML d’une page, à partir du code
JavaScript associé, et de l’URL correspondant. Nous obtenons automatiquement
des modèles de détection qui utilisent ces fonctionnalités en utilisant des techniques
d’apprentissage automatique appliquées aux ensembles de données étiquetées.

Afin de démontrer l’efficacité de Prophiler, nous avons recueilli des millions de
pages, que nous avons analysées pour individuer des comportements malveillants.
Nos résultats montrent que notre filtre est capable de réduire le temps d’analyse
de plus de 85% par rapport à l’usage d’un outil d’analyse dynamique, avec une
quantité négligeable de détections manqués.

8.5.1 Introduction

Les attaques à partir de pages web malveillantes sont devenus l’un des mécan-
ismes les plus efficaces pour les cyber-criminels d’infecter des utilisateurs sur Inter-
net. En particulier, les attaquants utilisent souvent des exploits drive-by-download
afin de compromettre un grand nombre d’utilisateurs. Pour effectuer une attaque
drive-by-download, l’attaquant développe du code malveillant côté client (générale-
ment écrit en JavaScript) qui cible une vulnérabilité dans un navigateur Web ou
dans l’un des plugins du navigateur. Ce code est injecté dans des sites Web com-
promis ou est simplement hébergé sur un serveur sous le contrôle des criminels.
Quand une victime visite une page web malicieuse, le code malveillant est exécuté,
et, si le navigateur de la victime est vulnérable, le navigateur est compromis. En
conséquence, l’ordinateur de la victime est généralement infecté par des logiciels
malveillants.

Les attaques drive-by-download sont devenus omniprésents au cours des der-
nières années, et des exemples du monde réel montrent que même des sites web
légitimes (et probablement bien entretenus) sont souvent compromis et injectés
avec du code malveillant [33, 34].

Compte tenu de la menace grandissante posée par les pages Web malveillantes,
il n’est pas surprenant que les chercheurs ont commencé à étudier les techniques
pour protéger les internautes. Actuellement, la protection la plus répandue est
basée sur des listes noires d’URLs. Ces listes noires (comme Google SafeBrows-
ing [105]) réunissent des listes de URLs qui ont été détectés comme malveillants.
Les listes sont interrogés par un navigateur avant de visiter une page web. Lorsque
l’URL se trouve sur la liste noire, la connexion est interrompue ou un avertissement
est affiché. Bien sûr, pour être en mesure de construire et d’entretenir une telle liste
noire, des mécanismes de détection automatisées sont nécessaires.

Les outils de choix pour l’identification des pages Web malveillantes sont
les (high-interaction) honeyclients. Ces honeyclients, comme le MITRE Honey-
Client [43], Microsoft HoneyMonkey [124], Capture-HPC [107], ou Google Safe
Browsing [92], lancent un navigateur sur un véritable système d’exploitation dans
une machine virtuelle. Le navigateur est dirigé vers le URL qui doit être analysé.
Après la page web est chargée, les système vérifie la présence d’objets qui in-

138

Chapter 8. Résumé

diquent une attaque réussie, tels que les fichiers exécutables sur le système ou
l’exécution de procès inattendus. Bien que la présence de ces objets soit une preuve
solide qu’une page est malveillante, l’inconvénient des systèmes à haute interac-
tion est le fait que l’analyse est chère. Alors qu’une parallélisation peut aider dans
le traitement de plusieurs pages plus efficacement, le contenu actif (comme le Java-
Script) doit toujours être exécuté. En outre, après chaque exploit réussi, la machine
virtuelle doit être restauré, car la plate-forme d’analyse ne peut plus être consid-
érée comme fiable. En conséquence, l’analyse d’une seule URL peut facilement
nécessiter plusieurs minutes.

Outre que les honeyclients à haute interaction, les chercheurs ont proposé des
approches alternatives pour la détection de pages Web malveillantes. En particulier,
un certain nombre d’outils ont été proposés (comme Wepawet [17], PhoneyC [79],
JSUnpack [54]) qui s’appuient sur l’instrumentation de l’environnement d’exécu-
tion JavaScript afin de détecter l’exécution de scripts malveillants, ou seulement
un certain type d’attaques (comme NOZZLE [98], un outil pour la détection des
attaques de type heap-spraying sur les pages Web malveillantes). Par rapport aux
honeyclients à haute interaction, ces systèmes fournissent une meilleure vue dans le
fonctionnement interne des scripts malveillants, et ils exigent moins d’effort pour
le support d’une large gamme de plugins vulnérables. Cependant, ils ne sont pas
sensiblement plus rapides, avec des temps d’analyse allant de quelques secondes à
quelques minutes pour une seule page [17].

Malheureusement, le temps d’analyse limite directement l’échelle à la quelle
ce type de systèmes peuvent être appliqués. Par conséquent, il devient très coûteux
(sinon impossible) d’analyser des millions d’URL en une journée. Cette situation
est problématique, tant pour les organisations qui cherchent à maintenir des listes
noires avec une bonne couverture (comme Google), mais aussi, plus généralement,
pour tous ceux dont le but est d’obtenir une vaste et détaillé compréhension des
activités malveillantes sur Internet. Une approche pour dépasser ce problème est
de concevoir un filtre efficace qui puisse rapidement “jeter” les pages bénignes.
En utilisant un tel filtre en frontal à un système d’analyse plus coûteux, on pour-
rait économiser une grande quantité de ressources, car l’analyse plus précise mais
coûteuse est réalisée uniquement sur les pages qui sont susceptibles de contenir
du code malveillant. Bien sûr, il faut être en mesure de régler la sensibilité du fil-
tre en fonction de la capacité d’analyse disponible et le niveau acceptable de faux
négatifs (détections manquées). Dans ce contexte, les faux positifs sont moins cri-
tiques parce que même s’ils conduisent à un gaspillage de ressources (c’est à dire
pages bénignes analysés en utilisant des procédures coûteuses), ils n’augmentent
pas l’exposition des utilisateurs aux menaces.

Nous présentons ici la conception et la mise en œuvre d’un système de filtrage,
appelé Prophiler, dont le but est de distinguer rapidement entre les pages qui sont
susceptibles d’être malveillantes, et les bénignes. Prophiler analyse les caractéris-
tiques de la page HTML, du code JavaScript, et de l’URL associé de façon statique,
à l’aide d’un certain nombre de modèles qui sont dérivés en utilisant un apprentis-
sage automatique (machine learning) supervisé. Les pages qui sont détectés comme

139

8.5. Entreprises de Sécurité et Chercheurs

malveillantes par Prophiler peuvent ensuite être analysés plus en profondeur par
un système de détection plus précis (et coûteux), tel que Wepawet.

Vue que la page Web en cours d’analyse n’est pas rendue et aucun scripts est
exécuté, l’analyse est rapide. Par rapport aux travaux antérieurs qui tentent de dé-
tecter les pages Web malveillantes en fonction du contenu de la page, notre anal-
yse s’appuie sur un ensemble beaucoup plus complet de fonctionnalités, et, par
conséquent, donne des résultats plus précis. Les chercheurs ont également suggéré
l’identification des pages malveillantes basée sur des caractéristiques extraites de
la seule URL. Cette approche fournit de bons résultats pour des pages de scam ou
phishing, car les URL correspondantes sont souvent fabriqués par les attaquants
afin de tromper les utilisateurs. Toutefois, lorsque le contenu malveillant (tel qu’un
drive-by-download) est injecté dans une page légitime, l’URL n’est pas affecté.
Par conséquent, dans notre scénario, les systèmes basés exclusivement sur les car-
actéristiques d’URL souffrent d’une quantité importante de faux négatifs, comme
indiqué dans nos expériences.

La nécessité d’un filtre rapide pour permettre l’analyse à grande échelle des
pages malveillantes a déjà été reconnue par Provos et al. [92]. Malheureusement,
pour des raisons évidentes, très peu de détails ont été révélés sur le filtre de Google.
Bien sûr, l’existence de la liste noire de Google apporte la preuve que l’ensemble du
système fonctionne. Néanmoins, nous pensons qu’il y a des avantages significatifs
en décrire les détails techniques de notre approche de filtrage dans la littérature:
d’abord, nous introduisons un ensemble complet de caractéristiques de la page
et de l’URL pour identifier les pages web malveillantes. Cela permet de constru-
ire d’autres filtres similaires, faisant un meilleur usage des ressources disponibles.
Deuxièmement, nous discutons des compromis entre les faux négatifs et les faux
positifs, et nous comparons les performances de notre filtre à un certain nombre de
systèmes précédents. Troisièmement, nous démontrons que notre filtre nous permet
d’améliorer considérablement la portée de l’analyse qui peut être effectuée dans le
cas d’un système accessible au public, appelé Wepawet.

8.5.2 Résultats

Nous avons ici décrit la mise au point et l’évaluation de Prophiler, un sys-
tème dont le but est de réaliser un filtre qui permet de réduire le nombre de pages
Web qui doivent être analysés de manière dynamique, afin d’identifier les pages
Web malveillantes. Nous avons déployé notre système comme un front-end pour
Wepawet, un système bien connu pour l’analyse dynamique de pages web, qui est
accessible à tout public. Les résultats montrent que Prophiler est en mesure de ré-
duire considérablement la charge du système Wepawet avec un très faible taux de
faux négatifs. L’outil est actuellement disponible sur demande, en tant que projet
open source fourni sous la licence GNU Affero General Public License (AGPL).
Nous croyons que l’approche décrite dans ce chapitre peut être utilisé par toute
entreprise de sécurité ou de recherche afin de classer et de filtrer des centaines de
milliers de pages web par jour de manière efficace. Par ailleurs, en couplant un tel

140

Chapter 8. Résumé

système avec une outil d’analyse dynamique, Prophiler permettrait de construire
de manière pro-active des listes noires de pages web hébergeant des exploits drive-
by download d’une manière très efficace, permettant la protection des internautes
en temps opportun.

8.6 Conclusions

Au cours des dernières années, nous avons été témoins d’un nombre toujours
croissant d’incidents de sécurité sur le web. Comme nous l’avons présenté au début
de cette thèse, quatre sont les principaux acteurs impliqués dans la grande majorité
des attaques web qui se propagent à partir de code ou de sites web compromis
et malveillants. Ces acteurs sont: les attaquants, les sites vulnérables hébergées
dans les locaux des fournisseurs d’hébergement, les victimes d’attaques (utilisa-
teurs Internet), et les entreprises de sécurité et les chercheurs qui combattent les
cyber-criminels en détectant et en analysant toute sorte de code malveillant sur le
web.

La littérature existante a souvent analysé chacun de ces quatre acteurs en adop-
tant un point de vue externe, par exemple, en analysant a posteriori les traces d’une
compromission, mais sans avoir visibilité sur ce que l’attaquant a effectivement
fait lors de l’attaque. Il était donc nécessaire d’adopter une nouvelle approche pour
analyser les attaques web du point de vue de chacun de ces quatre acteurs. Cette
thèse est, à notre connaissance, la première étude d’attaques web et des sites web
compromis qui ait analysé ces phénomènes en adoptant les quatre points de vue
différents de ses différents acteurs. En outre, tous les quatre points de vue consid-
érés ont été analysées à travers des études à grande échelle, ce qui rend nos analyses
importantes et significatives sur une échelle mondiale.

Dans le chapitre 3, nous avons présenté une étude à échelle mondiale sur la
façon dont les sociétés d’hébergement partagé gèrent la sécurité de leurs clients.
Les résultats montrent que, même si une bonne partie des sociétés d’hébergement
mettent en place des mécanismes de prévention d’attaque simples, presque aucun
d’entre eux est capable de détecter des signes évidents de compromission sur les
comptes de leurs clients. En outre, nous avons montré que les plaintes d’abus ne
sont pas toujours traitées de manière opportune et appropriée, laissant parfois l’es-
pace à un utilisateur malveillant de tromper les fournisseurs en visant des sites Web
légitimes avec des plaintes illégitimes.

Le chapitre 4 a ensuite rapporté sur une étude à grande échelle des comporte-
ments des attaquants web, réalisé par la mise en place d’un réseau de 500 sites web
entièrement fonctionnels et vulnérables, et en observant les actions des attaquants
pendant et après l’exploitation des vulnérabilités sur les applications web. Cela
nous a permis de gagner un point de vue unique sur les raisons derrière les attaques
qui frappent la majorité des sites de petites et moyennes entreprises sur Internet.
En particulier, alors que la majorité des attaques semblent utiliser une combinai-
son de techniques d’exploitation automatisés pour compromettre les vulnérabilités

141

8.6. Conclusions

connues sur les sites web, nous avons vérifié qu’il y a encore une fraction non nég-
ligeable d’attaques réalisés par des “novices”, qui mènent des attaques à la main et
semblent effectuer ce type d’actions seulement pour le plaisir ou pour se vanter.

Nous avons également présenté, comme indiqué dans le chapitre 5, une pre-
mière étude des risques web basé sur le profil des utilisateurs, où nous avons
analysé un grand ensemble de données comprenant 3 mois d’historique de navi-
gation des clients d’une des majeurs entreprises de sécurité. Cela nous a permis
d’analyser et de comprendre les relations entre le comportement d’un utilisateur, et
sa probabilité de tomber sur des sites Web malveillants. Par exemple, nous avons
assisté à une augmentation du pourcentage de sites Web malveillants visités pen-
dant la nuit et les week-ends, et une augmentation de la possibilité de visiter les
sites Web malveillants pour les utilisateurs qui naviguent sur Internet beaucoup, ou
qui visitent une grande variété de sites Web. Nous avons également montré que le
profil des utilisateurs pourrait être un moyen viable pour prédire la classe de risque
d’un utilisateur sur le web, de façon similaire à ce qui se fait actuellement dans le
domaine des assurances et de la prédiction du risque financier.

Enfin, tel que présenté dans le chapitre 6, nous avons introduit une nouvelle
approche pour les entreprises de sécurité et les chercheurs de détecter les pages
Web qui lancent des attaques de type drive-by-download. Notre approche, mise
en œuvre dans un système appelé Prophiler, utilise analyse statique et des tech-
niques d’apprentissage automatique pour la détection à grande échelle des pages
Web malveillantes. Nous montrons que ce système peut être appliqué avec succès
dans des scénarios du monde réel, et qu’il est capable de filtrer efficacement les
pages bénignes à partir de grandes quantités de pages Web, permettant d’épargner
l’analyse coûteuse de la plupart des pages web non suspectes.

Bien que certains des points de vue que nous avons explorés dans cette thèse
ont été largement étudiés dans les universités (par exemple, la détection de pages
Web malveillantes par des chercheurs), ceci n’est pas le cas pour d’autres. Pour
cette raison, il peut être envisagé de travailler sur des orientations futures dans ce
domaine de recherche. Par exemple, afin de fournir même un aperçu plus complet
sur les facteurs humains liés à la visite de pages Web malveillantes, il serait intéres-
sant d’avoir accès à des informations sociales des utilisateurs, telles que leur sexe,
âge, profession et les intérêts personnels, dans une étude similaire à celle que nous
avons présenté dans le chapitre 5. Ceci permettrait d’améliorer l’exhaustivité, et
sans doute la précision de détection des risques, des profils d’utilisateurs construits
avec une telle approche. Malheureusement, il y a des soucis éthiques à considérer
avant d’être en mesure d’accorder aux chercheurs le droit d’accéder à toutes ces in-
formations, et de publier les résultats de leurs travaux. C’est pourquoi, dans notre
étude, nous nous sommes limités à analyser des informations anonymisées sur les
habitudes de navigation des clients.

D’autres études pourraient être menées pour faire avancer nos recherches sur
les attaquants web, par exemple en déployant des sites pot de miel sur des sites
célèbres ou de grande taille, tels que des plates-formes d’information, des maga-
sins en ligne, des banques et des sites web gouvernementaux. Cela permettrait aux

142

Chapter 8. Résumé

chercheurs d’acquérir des connaissances aussi sur le comportement des attaquants
visant à des objectifs de haut niveau, qui, nous croyons, devrait être tout à fait
différent des buts de l’attaquant moyen que nous avons dépeint dans le chapitre 4.

Une extension similaire pourrait être prévue également pour une analyse plus
complète sur le comportement des fournisseurs d’hébergement en relation avec
le sites web compromis. Outre les fournisseurs d’hébergement mutualisé et les
services de protection de sites web pas chers, en fait, aucune recherche n’a encore
été menée sur la façon dont les hébergeurs haut de gamme (par exemple, ceux
qui fournissent des serveurs cloud ou des serveurs dédiés virtuels) et les services
coûteux de sécurité du site Web gèrent les compromissions sur les sites de leurs
clients. Cela pourrait être une extension intéressante de notre étude.

En conclusion, cette thèse a montré que l’assurer aux utilisateurs de pouvoir
naviguer sur le Web en toute sécurité est aujourd’hui une tâche très difficile. Les
cyber-criminels sont nombreux et bien organisés, et ont souvent accès à des bonnes
techniques et ressources financières. Heureusement, d’un côté, de nombreuses en-
treprises de sécurité et des nombreux chercheurs sont constamment en train de
monitorer Internet, à la recherche de code malveillant, dans le but d’arrêter les
criminels et la mise en place de sites Web malveillants. Les mêmes sociétés de
sécurité protègent habituellement les utilisateurs et d’autres entreprises avec des
moyens de protection qui peuvent être utilisés pour protéger un utilisateur régulier
pendant sa navigation Internet, jusqu’à un certain point. De l’autre côté, cepen-
dant, nous avons vu que les sites web compromis et malveillants sont la méthode
de choix pour les criminels de propager leur code malveillant sur Internet. Comme
montré dans le chapitre 3, la majorité des fournisseurs d’hébergement web, qui
accueillent la majorité des sites sur le web, font très peu ou rien afin de détecter
même les signes les plus simples de compromission, et ne sont souvent même pas à
l’hauteur de gérer des plaintes d’abus. Une bonne capacité de détection de compro-
mission, et la réponse rapide aux plaintes d’abus sont les moyens nécessaires pour
permettre de détecter – et arrêter – en temps opportun des sites web malveillants.
Pour ces raisons, nous croyons que les fournisseurs d’hébergement Web doivent
jouer un rôle clé pour faire d’Internet un lieu plus sûr. Même une petite amélio-
ration dans la façon dont ils gèrent les compromissions de sites Web et les notifi-
cations d’abus, signifierait beaucoup plus de chances d’arrêter les attaques Web à
leurs premiers stades, par rapport à ce qui est fait aujourd’hui. En conséquence, la
mise en place de sites web compromis et malveillants deviendrait sans doute une
tâche beaucoup plus difficile pour la grande majorité des attaquants web.

143

8.6. Conclusions

144

Bibliography

[1] Alexa. Alexa Browse by Category. http://www.alexa.com/
topsites/category/Top, 2013.

[2] Alexa. Alexa Top Websites. http://www.alexa.com/topsites,
2013.

[3] Alexa.com. Alexa Top Global Sites. http://www.alexa.com/
topsites/.

[4] amada.abuse.ch. Malware Database (AMaDa) :: AMaDa Block-
list. http://amada.abuse.ch/blocklist.php?download=
domainblocklist, 2013.

[5] Angelo Dell’Aera. Thug: a new low-interaction honeyclient. http://
www.honeynet.org/files/HPAW2012-Thug.pdf, March 2012.

[6] Anonymous. How to join Anonymous. http://anoninsiders.net/
how-to-join-anonymous-1527/index.html, April 2013.

[7] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated
black-box web application vulnerability testing. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 332–345. IEEE, 2010.

[8] C. M. Bishop. nformation Science and Statistics. In Pattern Recognition
and Machine Learning. Springer, 2006.

[9] R. Böhme and G. Schwartz. Modeling cyber-insurance: Towards a unifying
framework. In Ninth Workshop on the Economics of Information Security
(WEIS), 2010.

[10] K. Borgolte, C. Kruegel, and G. Vigna. Delta: Automatic identification
of unknown web-based infection campaigns. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2013.

[11] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-per-
install: The commoditization of malware distribution. In Proceedings of the
USENIX Security Symposium, 2011.

[12] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker. Shared information
and program plagiarism detection. Information Theory, IEEE Transactions
on, 50(7):1545–1551, 2004.

[13] Cisco Systems, Inc. SpamCop. http://www.spamcop.net/.

145

Bibliography

[14] Clam AntiVirus. http://www.clamav.net/, 2010.

[15] A. Clark and M. Guillemot. CyberNeko HTML Parser. http://
nekohtml.sourceforge.net/.

[16] Commtouch and StopBadware. Compromised Websites - An Owner’s
Perspective. http://stopbadware.org/pdfs/compromised-
websites-an-owners-perspective.pdf, February 2012.

[17] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-by-
Download Attacks and Malicious JavaScript Code. In Proceedings of the
International World Wide Web Conference (WWW), 2010.

[18] N. Cristianini and J. Shawe-Taylor. An introduction to support vector ma-
chines and other kernel-based learning methods. In Cambridge University
Press, 2000.

[19] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert. Zozzle: Fast and
precise in-browser javascript malware detection. In USENIX Security Sym-
posium, pages 33–48, 2011.

[20] Cyberoam Technologies and Commtouch. Internet Threats Trend Re-
port October 2012. http://www.cyberoam.com/downloads/
ThreatReports/Q32012InternetThreats.pdf, october 2012.

[21] W. de Vries. Hosting provider antagonist automatically fixes vulnerabilities
in customers’ websites. https://www.antagonist.nl/blog/
2012/11/hosting-provider-antagonist-automatically-
fixes-vulnerabilities-in-customers-websites, Novem-
ber 2012.

[22] J. Delgado and R. Davidson. Knowledge bases and user profiling in travel
and hospitality recommender systems. In Proceedings of the ENTER 2002
Conference, pages 1–16. Citeseer, 2002.

[23] Department of Homeland Security. Stop.Think.Connect. https://www.
dhs.gov/stopthinkconnect.

[24] Dshield web honeypot project. https://sites.google.com/
site/webhoneypotsite/, 2009.

[25] B. Eshete, A. Villafiorita, and K. Weldemariam. Binspect: Holistic analysis
and detection of malicious web pages. In Security and Privacy in Commu-
nication Networks, pages 149–166. Springer, 2013.

[26] S. Esser. evalhook. http://www.php-security.org/
downloads/evalhook-0.1.tar.gz, may 2010.

[27] European Cybercrime Centre. European Cybercrime Centre (EC3) calls on
young crime fighters everywhere. https://www.europol.europa.
eu/ec3/safer-internet-day-2013, 2013.

[28] B. Feinstein and D. Peck. Caffeine Monkey: Automated Collection, Detec-
tion and Analysis of Malicious JavaScript. In Proceedings of the Black Hat
Security Conference, 2007.

146

Bibliography

[29] fyicenter.com. Credit card number generator - test data gen-
eration. http://sqa.fyicenter.com/Online_Test_Tools/
Test_Credit_Card_Number_Generator.php, 2010.

[30] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A Framework for Detec-
tion and Measurement of Phishing Attacks. In Proceedings of the Workshop
on Rapid Malcode (WORM), 2007.

[31] Google Hack Honeypot. http://ghh.sourceforge.net/, 2005.

[32] Global Research & Analysis Team (GReAT), Kaspersky Lab. The
“Red October” Campaign - An Advanced Cyber Espionage Net-
work Targeting Diplomatic and Government Agencies. http:
//www.securelist.com/en/blog/785/The_Red_October_
Campaign_An_Advanced_Cyber_Espionage_Network_
Targeting_Diplomatic_and_Government_Agencies, Jan-
uary 2013.

[33] D. Goodin. SQL injection taints BusinessWeek.com. http://www.
theregister.co.uk/2008/09/16/businessweek_hacked/,
September 2008.

[34] D. Goodin. Potent malware link infects almost 300,000 web-
pages. http://www.theregister.co.uk/2009/12/10/mass_
web_attack/, December 2010.

[35] Google Security Team. Making the web safer. http://www.google.
com/transparencyreport/safebrowsing/.

[36] Gregg Keizer. Is Stuxnet the ’best’ malware ever? http://www.
infoworld.com/print/137598, September 2010.

[37] Y. G.U. and K. M.G. An Introduction to the Theory of Statistics (14th ed.).
.Charles Griffin & Co., 1968.

[38] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA Data Mining Software: An Update. SIGKDD Explorations,
11(1):10–18.

[39] Heritrix. http://crawler.archive.org/.

[40] M. Hines. Malware SEO: Gaming Google Trends and Big Bird.
http://securitywatch.eweek.com/seo/malware_seo_
gaming_google_trends_and_big_bird.html, November 2009.

[41] W. Hobson. Cyber-criminals use SEO on topical trends. http:
//www.vertical-leap.co.uk/news/cybercriminals-use-
seo-on-topical-trends/, February 2010.

[42] M. Hofer and S. Hofer. ftp-deploy. http://bitgarten.ch/
projects/ftp-deploy/, 2007.

[43] HoneyClient Project Team. HoneyClient. http://www.
honeyclient.org/, 2010.

147

Bibliography

[44] A. Ikinci, T. Holz, and F. Freiling. Monkey-Spider: Detecting Malicious
Websites with Low-Interaction Honeyclients. In Proceedings of Sicherheit,
Schutz und Zuverlässigkeit, 2008.

[45] Imperva Inc. Imperva’s Web Application Attack Report. http:
//www.imperva.com/docs/HII_Web_Application_Attack_
Report_Ed2.pdf, january 2012.

[46] informationisbeautiful.net. Information is Beautiful: Data Breaches (pub-
lic). http://bit.ly/bigdatabreaches, July 2013.

[47] L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel, M. Cova, and
G. Vigna. Evilseed: A guided approach to finding malicious web pages.
In Security and Privacy (SP), 2012 IEEE Symposium on, pages 428–442.
IEEE, 2012.

[48] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and G. Vi-
gna. A static, packer-agnostic filter to detect similar malware samples. In
Detection of Intrusions and Malware, and Vulnerability Assessment, pages
102–122. Springer, 2013.

[49] J. Jang, M. Woo, and D. Brumley. Towards Automatic Software Lineage
Inference. In Proceedings of the USENIX Security Symposium, 2013.

[50] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi. deseo: combating
search-result poisoning. In Proceedings of the 20th USENIX conference
on Security, SEC’11, pages 20–20, Berkeley, CA, USA, 2011. USENIX
Association.

[51] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi. deSEO: Com-
bating Search-Result Poisoning. In Proceedings of the USENIX Security
Symposium, 2011.

[52] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi. Heat-seeking
honeypots: design and experience. In Proceedings of the 20th international
conference on World wide web, WWW ’11, pages 207–216, New York, NY,
USA, 2011. ACM.

[53] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi. Heat-seeking
honeypots: design and experience. In Proceedings of the International
World Wide Web Conference (WWW), 2011.

[54] JSUnpack. http://jsunpack.jeek.org, 2010.

[55] Kaspersky. Kaspersky Security Bulletin 2012. http://www.
securelist.com/en/analysis/204792255/Kaspersky_
Security_Bulletin_2012_The_overall_statistics_for_
2012, 2012.

[56] C. Ke, J. Oliver, and Y. Xiang. Analysis of the Australian Web
Threat Landscape. http://www.trendmicro.com.au/cloud-
content/au/pdfs/security-intelligence/white-

148

Bibliography

papers/australian_web_threat_landscape_-v7.pdf,
May 2013.

[57] J. Kornblum. Identifying almost identical files using context triggered piece-
wise hashing. Digital Investigation, 3, Supplement(0):91 – 97, 2006.

[58] Larry Ullman. Understand your hosting, five critical e-commerce
security tips in five days. Peachpit Blog, Feb. 2011. http:
//www.peachpit.com/blogs/blog.aspx?uk=Understand-
Your-Hosting-Five-Critical-E-Commerce-Security-
Tips-in-Five-Days.

[59] T. B. Lee. Here’s Everything We Know About PRISM to Date.
http://www.washingtonpost.com/blogs/wonkblog/wp/
2013/06/12/heres-everything-we-know-about-prism-
to-date/, June 2013.

[60] C. Leita and M. Dacier. Sgnet: A worldwide deployable framework to sup-
port the analysis of malware threat models. In Dependable Computing Con-
ference, 2008. EDCC 2008. Seventh European, may 2008.

[61] F. L. Lévesque, J. Nsiempba, J. M. Fernandez, S. Chiasson, and A. So-
mayaji. A Clinical Study of Risk Factors Related to Malware Infections.
In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), Nov. 2013.

[62] A. Liaw and M. Wiener. Classification and regression by randomforest. In
R News, volume 2/3, page 18, 2002.

[63] P. Likarish, E. Jung, and I. Jo. Obfuscated Malicious Javascript Detection
using Classification Techniques. In Proceedings of the Conference on Mali-
cious and Unwanted Software (Malware), 2009.

[64] M. D. List. Malware Domains List. http://www.
malwaredomainlist.com/, 2013.

[65] URL Shortening Services - A List of URL Shorteners. http://
longurl.org/services, 2013.

[66] L. Lu, R. Perdisci, and W. Lee. Surf: detecting and measuring search poi-
soning. In Proceedings of the 18th ACM conference on Computer and com-
munications security, CCS ’11, pages 467–476, New York, NY, USA, 2011.
ACM.

[67] J. Ma, L. Saul, S. Savage, and G. Voelker. Beyond Blacklists: Learning to
Detect Malicious Web Sites from Suspicious URLs. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2009.

[68] G. Maier, A. Feldmann, V. Paxson, R. Sommer, and M. Vallentin. An as-
sessment of overt malicious activity manifest in residential networks. In
Detection of Intrusions and Malware, and Vulnerability Assessment, pages
144–163. Springer, 2011.

149

Bibliography

[69] Malcode. Malcode. http://malc0de.com/bl/BOOT, 2013.

[70] D. W. McDonald and M. S. Ackerman. Expertise recommender: a flexi-
ble recommendation system and architecture. In Proceedings of the 2000
ACM conference on Computer supported cooperative work, pages 231–240.
ACM, 2000.

[71] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure. Ontological user pro-
filing in recommender systems. ACM Transactions on Information Systems
(TOIS), 22(1):54–88, 2004.

[72] T. Moore and R. Clayton. Examining the impact of website take-down on
phishing. In Proceedings of the anti-phishing working groups 2nd annual
eCrime researchers summit, eCrime ’07, pages 1–13, New York, NY, USA,
2007. ACM.

[73] T. Moore and R. Clayton. The consequence of non-cooperation in the fight
against phishing. In eCrime Researchers Summit, 2008, pages 1 –14, oct.
2008.

[74] T. Moore and R. Clayton. Evil searching: Compromise and recompromise
of internet hosts for phishing. In Financial Cryptography, pages 256–272,
2009.

[75] T. Moore and R. Clayton. Financial cryptography and data security. chap-
ter Evil Searching: Compromise and Recompromise of Internet Hosts for
Phishing, pages 256–272. Springer-Verlag, Berlin, Heidelberg, 2009.

[76] A. Moshchuk, T. Bragin, S. Gribble, and H. Levy. A Crawler-based Study
of Spyware in the Web. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS), 2006.

[77] Mozilla Foundation. Rhino: JavaScript for Java. http://www.
mozilla.org/rhino/.

[78] M. Müter, F. Freiling, T. Holz, and J. Matthews. A generic toolkit for con-
verting web applications into high-interaction honeypots, 2007.

[79] J. Nazario. PhoneyC: A Virtual Client Honeypot. In Proceedings of the
USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET),
2009.

[80] V. Nicomette, M. Kaâniche, E. Alata, and M. Herrb. Set-up and deployment
of a high-interaction honeypot: experiment and lessons learned. Journal in
Computer Virology, june 2010.

[81] NIST. Guide to Intrusion Detection and Prevention Systems (IDPS).
http://csrc.nist.gov/publications/nistpubs/800-
94/SP800-94.pdf, 2007.

[82] Number 7. osCommerce ’categories.php’ Arbitrary File Upload Vulner-
ability, November 2010. http://www.securityfocus.com/bid/
44995/info.

150

Bibliography

[83] L. Olejnik, C. Castelluccia, and A. Janc. Why Johnny Can’t Browse in
Peace: On the Uniqueness of Web Browsing History Patterns. In 5th Work-
shop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2012),
Vigo, Espagne, July 2012.

[84] K. Onarlioglu, U. O. Yilmaz, E. Kirda, and D. Balzarotti. Insights into User
Behavior in Dealing with Internet Attacks. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS), Feb. 2012.

[85] D. Oswald. HTMLParser. http://htmlparser.sourceforge.
net/.

[86] OWASP foundation. OWASP Top Ten Project. https://www.owasp.
org/index.php/Category:OWASP_Top_Ten_Project, 2013.

[87] OWASP foundation and TrustWave SpiderLabs. Owasp modsecurity
core rule set project. https://www.owasp.org/index.php/
Category:OWASP_ModSecurity_Core_Rule_Set_Project,
2012.

[88] Y. Peng, G. Wang, G. Kou, and Y. Shi. An empirical study of classification
algorithm evaluation for financial risk prediction. Applied Soft Computing,
11(2):2906 – 2915, 2011. <ce:title>The Impact of Soft Computing for the
Progress of Artificial Intelligence</ce:title>.

[89] F. Pouget, M. Dacier, and V. H. Pham. V.h.: Leurre.com: on the advantages
of deploying a large scale distributed honeypot platform. In In: ECCE 2005,
E-Crime and Computer Conference, pages 29–30, 2005.

[90] O. D. Project. DMOZ Open Directory Project. http://www.dmoz.
org/, 2013.

[91] N. Provos. A virtual honeypot framework. In Proceedings of the USENIX
Security Symposium, pages 1–14, 2004.

[92] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All Your iFrames
Point to Us. In Proceedings of the USENIX Security Symposium, 2008.

[93] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The
ghost in the browser analysis of web-based malware. In Proceedings of the
first conference on First Workshop on Hot Topics in Understanding Botnets,
HotBots’07, pages 4–4, Berkeley, CA, USA, 2007. USENIX Association.

[94] N. Provos, M. A. Rajab, and P. Mavrommatis. Cybercrime 2.0: When the
cloud turns dark. Queue, 7(2):46–47, Feb. 2009.

[95] QiQ Research, Inc. Data leak probe to PI industry. http:
//www.japanpi.com/jp_investigations/pinews/data-
leak-probe-concerning-pi-industry.html, September 2012.

[96] J. Quinlan. C4.5: Programs for machine learning. In Morgan Kaufmann
Publishers, 1993.

151

Bibliography

[97] D. Ramsbrock, R. Berthier, and M. Cukier. Profiling attacker behavior fol-
lowing ssh compromises. In in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2007.

[98] P. Ratanaworabhan, B. Livshits, B., and Zorn. Nozzle: a defense against
heap-spraying code injection attacks. In Proceedings of the USENIX Secu-
rity Symposium, 2009.

[99] K. Rieck, T. Krueger, and A. Dewald. CUJO: Efficient Detection and
Prevention of Drive-by-Download Attacks. Technical Report TR-2010-10,
Berlin Institute of Technology, 2010.

[100] L. Rist, S. Vetsch, M. Koßin, and M. Mauer. Glastopf. http://
honeynet.org/files/KYT-Glastopf-Final_v1.pdf, novem-
ber 2010.

[101] Robots IP Address Ranges. http://chceme.info/ips/.

[102] M. Roesch. Snort – Lightweight Intrusion Detection for Networks. In Pro-
ceedings of LISA ’99: 13th Systems Administration Conference, November
1999.

[103] V. Roussev. Data fingerprinting with similarity digests. In K.-P. Chow and
S. Shenoi, editors, Advances in Digital Forensics VI, volume 337 of IFIP
Advances in Information and Communication Technology, pages 207–226.
Springer Boston, 2010.

[104] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code
clones in binary executables. In Proceedings of the eighteenth international
symposium on Software testing and analysis, ISSTA ’09, pages 117–128.
ACM, 2009.

[105] Google Safe Browsing API. http://code.google.com/apis/
safebrowsing/, 2008.

[106] Security Ninja. Share prices and data breaches. https:
//www.securityninja.co.uk/data-loss/share-prices-
and-data-breaches/, May 2011.

[107] C. Seifert and R. Steenson. Capture-HPC. https://projects.
honeynet.org/capture-hpc, 2008.

[108] C. Seifert, I. Welch, and P. Komisarczuk. Identification of Malicious Web
Pages Through Analysis of Underlying DNS and Web Server Relationships.
In Proceedings of the LCN Workshop on Network Security (WNS), 2008.

[109] C. Seifert, I. Welch, and P. Komisarczuk. Identification of Malicious Web
Pages with Static Heuristics. In Proceedings of the Australasian Telecom-
munication Networks and Applications Conference (ATNAC), 2008.

[110] S. Shin and G. Gu. Conficker and beyond: a large-scale empirical study.
In Proceedings of the 26th Annual Computer Security Applications Confer-
ence, ACSAC ’10, pages 151–160, New York, NY, USA, 2010. ACM.

152

Bibliography

[111] R. Sommer and V. Paxson. Outside the Closed World: On Using Machine
Learning For Network Intrusion Detection. In Proceedings of the IEEE
Symposium on Security and Privacy, 2010.

[112] IP Addresses of Search Engine Spiders. http://www.iplists.com/.

[113] S. Stigler. Fisher and the 5CHANCE, 21(4):12–12, 2008.

[114] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kem-
merer, C. Kruegel, and G. Vigna. Your Botnet is My Botnet: Analysis of a
Botnet Takeover. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2009.

[115] B. Stone-Gross, M. Cova, C. Kruegel, and G. Vigna. Peering through the
iframe. In INFOCOM, 2011 Proceedings IEEE, pages 411 –415, april 2011.

[116] Symantec. 2013 Internet Security Threat Report. http:
//www.symantec.com/security_response/publications/
threatreport.jsp, 2013.

[117] Symantec. Internet Security Threat Report 2013. http:
//www.symantec.com/content/en/us/enterprise/other_
resources/b-istr_appendices_v18_2012_221284438.en-
us.pdf, April 2013.

[118] Symantec. Norton Safe Web. https://safeweb.norton.com/,
2013.

[119] TBLOP - The Big List of Porn. http://www.tblop.com/, 2013.

[120] The Spamhaus Project Ltd. SpamHaus. http://www.spamhaus.
org/.

[121] Torrent Sites. http://www.torrentresource.com/, 2013.

[122] S. J. Vaughan-Nichols. How the Syrian Electronic Army took out the
New York Times and Twitter sites. http://www.zdnet.com/how-
the-syrian-electronic-army-took-out-the-new-york-
times-and-twitter-sites-7000019989/, August 2013.

[123] VirusTotal - Free Online Virus, Malware and URL Scanner. https://
www.virustotal.com/.

[124] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated Web Patrol with Strider HoneyMonkeys: Finding Web
Sites that Exploit Browser Vulnerabilities. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS), 2006.

[125] webhosting.info. Country-wise top hosts. http://www.webhosting.
info/webhosts/tophosts/Country/, 2012.

[126] Websense. 2013 Threat Report. http://www.websense.com/
assets/reports/websense-2013-threat-report.pdf,
2013.

153

Bibliography

[127] Websense. Websense 2013 Threat Report. http://www.websense.
com/content/websense-2013-threat-report.aspx?
cmpid=prnr2.13.13, 2013.

[128] Wikipedia, the free encyclopedia. Anonymous (group). http://en.
wikipedia.org/wiki/Anonymous_(group), September 2013.

[129] F. Wilcoxon. Individual comparisons by ranking methods. In S. Kotz and
N. Johnson, editors, Breakthroughs in Statistics, Springer Series in Statis-
tics, pages 196–202. Springer New York, 1992.

[130] G. Wondracek, T. Holz, C. Platzer, E. Kirda, and C. Kruegel. Is the internet
for porn? An insight into the online adult industry. In WEIS 2010, 9th
Workshop on the Economics of Information Security, 7-8 June 2010, Boston,
USA, Boston, UNITED STATES, 06 2010.

[131] List of File Hosting and Sharing Websites. http://xboxpirate.
eu/forums/topic/280-list-of-file-hosting-and-
sharing-websites-137-entries/, 2013.

[132] H. Zhang. The Optimality of Naive Bayes. In FLAIRS2004 conference,
2004.

[133] J. Zhang, C. Seifert, J. W. Stokes, and W. Lee. Arrow: Generating signatures
to detect drive-by downloads. In Proceedings of the International World
Wide Web Conference (WWW), WWW ’11, pages 187–196, New York, NY,
USA, 2011. ACM.

[134] zx2c4. Linux Local Privilege Escalation via SUID /proc/pid/mem Write.
http://blog.zx2c4.com/749, january 2012.

154

