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Shameless (but useful) Self-references

Multi-cell MIMO cooperative networks : A new look at interference
D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu,
IEEE Journal on Selected Areas in Communications, December 2010.

CSI sharing strategies for transmitter cooperation in wireless
networks, P. de Kerret and D. Gesbert, in IEEE Wireless
Communications Magazine, Feb. 2013.
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The Essence of this Talk

Let’s solve 
our 

conflict! 

Sorry, but I 
don’t have 

time to talk! 

Okay, tell me 
your point of 

view 
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Fundamentals for Transmitter Coordination
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Fundamentals for Transmitter Coordination

The Dimensions of Interference Management

REJECT 

AVOID 

EXPLOIT 

COORDINATE 

CONTAIN 
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Fundamentals for Transmitter Coordination

Transmitter Cooperation Domains

Transmitter 
Cooperation 

Domains 

User 
selection 

time 

codes 

frequency 

Space 
(MIMO) 

power 
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Fundamentals for Transmitter Coordination

Example 1: Interference Coordination using Scheduling and
Power Control

RX k 

TX 3 

TX 2 

TX 1 

0 5 10 15 20 25 30 35 40 45 50
4

6

8

10

12

14

16

R
at

es
 [B

its
/s

/H
z]

K

 

 

No interference
max−SINR Scheduler

Distributed max-SINR scheduler exploits the variability (fading) of
interference

Power control/beamforming couples the decisions at all cells
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Fundamentals for Transmitter Coordination

Example 2: Coordination using Alignment

Interference Alignment 

Conditions with Nr=2: 
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Alignment can be carried out in space, frequency, time domains

A optimal DoF of 1/2 can be achieved (everyone gets half the cake)
[Maddah-Ali et al., 2008, TIT] [Cadambe and Jafar, 2008, TIT]
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Fundamentals for Transmitter Coordination

Interference Alignment: Algorithm Design

Exploiting uplink downlink duality of alignment [Gomadam et al., 2011, TIT]

Notations:

Let Ui be the RX filter at RX i
Let Wj be the TX precoder at TX j
Let Ii be the total noise summed at RX i , with covariance Qi

Algorithm:
1 Take Ui as minimum eigenvector of Qi , ∀i
2 Use Ui as TX precoder from RX i , on reciprocal channel
3 Take Wi as RX vector at TX i , on reciprocal channel
4 Find Wi as minimum eigenvector of noise covariance matrix at base i
5 iterate
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Fundamentals for Transmitter Coordination

Interference Alignment: Finite SNR

IA is optimal at infinite SNR case only

At finite SNR, key is to balance interference canceling with desired
signal enhancement

Maximum SINR [Gomadam et al., 2011, TIT]

Minimum MSE [Peters and Heath, 2011, TVT]

Maximum sum rate [Santamaŕıa et al., 2010, GLOBECOM]

Game theoretic approach (Altruism vs. Egoism) [Ho and Gesbert, 2010,

ICC]

...
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Fundamentals for Transmitter Coordination

Example 3: Cooperation with Joint MIMO Precoding

Joint MIMO Precoding [Hanly, 1993] [Shamai and Zaidel, 2001, VTC]

Backhaul Links (fibers,wireless,..) 
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Fundamentals for Transmitter Coordination

How does Joint MIMO Precoding Work?
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Modify standard MU-MIMO schemes to reflect per base power constraint
(ZF, MMSE, non-linear precoding: Dirty Paper Coding, vector
perturbation, ..)
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Fundamentals for Transmitter Coordination

Performance Modeling of Joint Precoding

Transmission from K TXs to K RXs where the ith TX and the ith
RX are equipped respectively with Mi and Ni antennas

Ntot ,
K∑
i=1

Ni , Mtot ,
K∑
i=1

Mi

Multi-user channel HH ∈ CNtot×Mtot

HH
ik ∈ CNi×Mk channel matrix from TX k to RX i with its elements

i.i.d. as CN (0, ρ2
ik)

Perfect CSI at the RXs treating interference as noise

Linear precoding and filtering
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Fundamentals for Transmitter Coordination

Received Signal

Received signaly1
...
yK

 = HHx + η =

HH
1
...

HH
K

 [t1 . . . tK
]  s1

...
sK

+

η1
...
ηK


with ‖ti‖2 = P,∀i , si i.i.d. NC(0, 1) and ηi i.i.d. NC(0, INi

)
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Fundamentals for Transmitter Coordination

Received Signal

Received signaly1
...
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Fundamentals for Transmitter Coordination

Received Signal

Received signal

y1
...
yK

 = HHx+η =

HH
1
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 [t1 . . . tK
]

Users data symbols (K×1)︷ ︸︸ ︷ s1
...
sK

 +

η1
...
ηK


with ‖ti‖2 = P, ∀i , si i.i.d. NC(0, 1) and ηi i.i.d. NC(0, INi

)
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Fundamentals for Transmitter Coordination

Received Signal

Received signal

y1
...
yK

 = HHx+η =

HH
1
...

HH
K

 [t1 . . . tK
]  s1

...
sK

+

Noise at the RXs (Ntot×1)︷ ︸︸ ︷η1
...
ηK


with ‖ti‖2 = P, ∀i , si i.i.d. NC(0, 1) and ηi i.i.d. NC(0, INi

)
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Fundamentals for Transmitter Coordination

Figures-of-Merit

Average rate of user i given by [Cover and Thomas, 2006]

Ri,E

[
log2

(
1 +

|gH
i HH

i ti |2
1 +

∑
j 6=i |gH

i HH
i tj |2

)]

Number of Degrees-of-Freedom (DoF) at user i –or prelog factor–
defined as [Tse and Viswanath, 2005]

DoFi , lim
P→∞

Ri

log2(P)
.
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Fundamentals for Transmitter Coordination

Myth and Reality of Transmitter Cooperation

* A. Lozano et al, “Fundamental limits of cooperation”, IEEE Trans. On Information Theory, Sept. 2013. 
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Thinking Practical
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Thinking Practical

Thinking practical

A number of issues arise in the implementation of cooperation
mechanisms:

Hardware impairments

Channel estimation and tracking

Feedback limitation

Inter-transmitter signaling limitation
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Thinking Practical

Channel Estimation

Usually relying on a pilot training phase [Hassibi and Hochwald, 2003,

TIT],[Caire et al., 2010, TIT]

TX transmits α pilots per antenna (α ≥ 1)
Received signals

y =
√
αPh + η

MSE channel estimate

ĥ =

√
αP

N0 + αP
y

This yields [Caire et al., 2010, TIT]

h = ĥ + h̃

with h̃ ∼ NC(0, 1
1+ αP

N0

) being independent of ĥ

y Challenging in massive MIMO [Jose et al., 2011, TWC]
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Thinking Practical

Hardware Impairments

Transceiver impairments leads to a modified RX signal model [Studer

et al., 2010, WSA],[Bjornson et al., 2012, WSA]

y =
√
PH (x + η) + n

with η ∝ tr(E[xxH]) (radiated power)

DoF is shown to be 0

Need for robust signal processing taking the imperfections into
accounts [Bjornson et al., 2012, GLOBECOM]
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Thinking Practical

Modeling Feedback Limitation in TX Cooperation

Quantized feedback

Noisy analog feedback

Delayed feedback
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Thinking Practical

Imperfect Centralized CSIT

Imperfect CSIT at the TX modeled as [Wagner et al., 2012, TIT]

{Ĥ}ik = σik
√

1− 2−Bik{H̃}ik + σik2−Bik{∆}ik , ∀i , k

where {∆}ik ∼ CN (0, 1)

CSIT allocation B defined as

{B}ik = Bik , ∀i , k
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Thinking Practical

Quantized Feedback in MU-MIMO

Assume a total of M antennas across all cooperating BS, single antenna
users

No feedback

Theorem ([Jafar and Goldsmith, 2005, TIT])

With no CSIT, then DoF → 1

Quantized feedback

Theorem ([Jindal, 2006, TIT])

Assume Random Vector Quantization with B bits used to encode the
channel of one user. Then B ≥ α(M − 1) log(SNR) is sufficient to
achieve DoF of Mα.

Crucial assumption: The quantized feedback is ideally shared across
all transmit antennas.
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Thinking Practical

CSIT in Interference Alignement

Current IA schemes are based on

CSIT feedback followed exchange across links
Pilot based CSI estimation + TX-RX iterations
Direct broadcast of the estimates [Ayach and Heath, 2012, TWC]

Quantized feedback in Interference Alignement

Similar results as broadcast channels apply (feedback bits must grow
with K (MN − 1) log SNR, to achieve maximum DoF) [Thukral and

Boelcskei, 2009, ISIT]

Possible to improve over this feedback rate by exploiting rotational
invariance [Rezaee and Guillaud, 2012, ITW]
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Thinking Practical

Inter-transmitter Signaling Limitation

Virtually all cooperation methods require shared channel state
information at the transmitters (CSIT)

Perfect sharing of CSIT is not scalable in large networks

In some networks inter-TX links are capacity limited (e.g. wireless
backhaul, corgnitive radios)

Any exchange of CSIT is likely to induce latency and/or quantization
→ TX-dependent CSIT noise
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Thinking Practical

Transmitter Cooperation with Clustering

Cooperation Clusters

Approaches:

Network-centric clustering
User-centric clustering [Papadogiannis et al., 2008, ICC]

Limitations:

Cluster too big: feedback sharing overhead heavy [Lozano et al., 2013, TIT]

Cluster too small: edge-effects (inter-cluster interference)
predominant27/116



Thinking Practical

Limited Signaling: Backhaul Quantization Model

Backhaul signaling introduces delays and possible quantization noise

LTE compliant feedback: User feeds back to its home eNB only
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Thinking Practical

Over-the-air Signaling: Feedback Broadcast

CSIT can be shared directly over-the-air without backhaul links

)2(j
H

H
(3)

=[h1
(3)

h2
(3)

h3
(3)

]

H
(2)

=[h1
(2)

h2
(2)

h3
(2)

]

H
(1)

=[h1
(1)

h2
(1)

h3
(1)

]

h2

h3

h1

CSI Broadcast 

Scenario

29/116



Thinking Practical

A Distributed Channel State Information Model

Imperfect CSIT at TX j modeled as

{Ĥ(j)}i ,k =

√
1− 2−B

(j)
i,kσi ,k{H}i ,k +

√
2−B

(j)
i,kσi ,k{∆}(j)

i ,k , ∀i , k

where {∆}(j)
i ,k ∼ CN (0, 1)

CSIT allocation B(j) at TX j defined as {B(j)}i ,k = B
(j)
i ,k , ∀i , k

x1 = wH
1 (Ĥ

(1))s

x2 = wH
2 (Ĥ

(2))s

TX 1

TX 2

•

•

Ĥ(1), s

Ĥ(2), s

x1

x2

•

1

•

2
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Thinking Practical

Joint Precoding with Distributed CSIT

x1 = wH
1 (Ĥ

(1))s

x2 = wH
2 (Ĥ

(2))s

TX 1

TX 2

•

•

Ĥ(1), s

Ĥ(2), s

x1

x2

•

1

•

2

Key questions:

1 What kind of CSI should over-the-air feedback convey?

2 What should be exchanged over the signaling links?

3 Assuming TX 1 finally has H(1) and TX 2 has H(2), how should
precoders w1(H(1)) and w2(H(2)) be designed?
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Thinking Practical

Three Coordination Problems

Team 
Decision

Information 
allocation

Signaling

Coordination with limited signaling
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Team Decisions Problems in Wireless Networks
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Team Decisions Problems in Wireless Networks

Wireless Coordination Problems

K nodes in a network seek to cooperate towards the maximization of
a common utility
Each node i must make best decision based on:

local measurement or feedback
finite rate signaling with neighbor nodes

TX1 

TX2 

TX𝑗 

TX𝑖 

TX𝐾 

 
 

Message/interference 

Coordination domains: 
• Power 
• Time/freq/code 
• Antenna/beam 
• … 
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Team Decisions Problems in Wireless Networks

Coordination Problems

The coordination problem is decomposed into three related optimizations:

Problem 1: Channel state information allocation

What should the local information Ĥ(i) be? (under a typical feedback
constraint)
How uncorrelated can it be?

Problem 2: Signaling

What to communicate over Rij bits? → Zij

Very challenging as it involves second problem

Problem 3: (Team) decision making

Wi (Ĥ(i),Q1,Q2, ..QK ,Z1i ,Z2i , ..ZKi )
Team decision optimization (challenging enough..)
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Team Decisions Problems in Wireless Networks

One-shot Coordination Graph
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𝐻 (𝑗) 
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𝐻 (𝐾) 
{𝑄𝑖 , 𝑖 = 1,… , 𝐾} 

 

𝐻 (.): local CSI 
𝑄𝑖: Error covariance 
 
 

A priori information: Coordination link rates:  

From i to j: R ij 
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Team Decisions Problems in Wireless Networks

Problem 1: Channel State Information Allocation

The nodes to be coordinated are initially assigned some CSIT-related
data. The spatial distribution of CSIT is called the information
structure.

A CSI structure is perfect if Ĥ(i) = H, ∀i .
A CSI structure is centralized if Ĥ(i) = Ĥ(j), ∀i , j .
A CSI structure is distributed if there exist i and j such that
Ĥ(i) 6= Ĥ(j).

maximize objective
(

H, {H(j)}Kj=1

)
subject to size({B(j)}Kj=1) ≤ τ
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Team Decisions Problems in Wireless Networks

Some Distributed Information Structures

Incomplete CSIT: A CSI structure is incomplete if Ĥ(i) takes the
form ∀i Ĥ(i) = {Hkl , k ∈ Stx , l ∈ Srx}, where Stx (resp. Srx) are
subsets of the transmitter set (resp. receiver set).

Hierarchical CSIT: A CSI structure is hierarchical if there exists an
order of transmitter indices i1, i2, i3.. such that
Ĥ(i1) ⊂ Ĥ(i2) ⊂ Ĥ(i3) ⊂ ...
Master Slave: Hierarchical where Ĥ(i1) = [], and Ĥ(i2) = H (can be
extended to K > 2.)
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Team Decisions Problems in Wireless Networks

Typical Distributed Information Structures

Consider the K transmitter (N antennas each) K user (single antenna)
channel. Let hH

ij be the 1× N vector channel between the jth transmitter
and the ith user.

Local CSIT with TDD reciprocity

(Ĥ(j))H =

0 hH
1j 0

...
...

...
0 hH

Kj 0


Local CSIT with LTE feedback mode

(Ĥ(j))H =

 0 0 0
hH
j1 . . . hH

jK

0 0 0


Fully local CSIT

(Ĥ(j))H =

0 0 0
0 hH

jj 0

0 0 0
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Team Decisions Problems in Wireless Networks

Problem 2: Signaling for Coordination

What is most relevant to communicate of the signaling link?

Many interesting heuristics (precoding decisions, measurements, etc.)

Optimal signaling an open problem

Optimal signaling strategy coupled with optimum decision making Wi
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Team Decisions Problems in Wireless Networks

Signaling for Coordination

Heuristic strategies:
1 Local decision Wi based on Ĥ(i) and Qi , i = 1, ..,K , exchange

quantized decisions over Rij bits

But poorly informed nodes make bad decisions !

2 Exchange quantized CSI Ĥ(i) over Rij bits

But this ignores Qi !

3 Exploit coordination graph for CSI improvement:

Use Rij bit signaling to create optimal estimates ˆ̂H(i)

Optimal strategy (source coding with side-information): Create
locally optimal codebooks, that are function of local CSI and neighbor
CSI qualities [Li et al., 2014]
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Team Decisions Problems in Wireless Networks

Some Open Problems

Coordination over more than one shot
No constraint over number bits exchanged: Convergence? Speed?
Constraint on total number of bits exchanged

With more signaling slots, opportunity to learn from past actions
With fewer signaling slots, less latency effects

Implicit coordination [Larrousse and Lasaulce, 2013, ISIT]

Sequential coordination over the graph
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A priori information: Coordination link rates:  

From i to j: R ij 
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Team Decisions Problems in Wireless Networks

Problem 3: Team Decisional Coordination

Team Decision theoretic problems:

Several network agents wish to cooperate towards maximization of a
common utility

Each agent has its own limited view over the system state

All need to come up with consistent actions

Classical ”robust” design does not work...

Introduced first in economics and control [Ho, 1980, IEEE], recently in
wireless [Zakhour and Gesbert, 2010, ITA]
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Team Decisions Problems in Wireless Networks

Team Decision with Finite Signaling
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𝐻�(.): local CSI 
𝑄𝐾: Error covariance, i=1..K 
𝑍𝑚𝐾: Coordination signal from TX𝑚 to TX𝑖 
 

Local information at TXi after signaling 

Decision making: Example, precoder W 𝑖 
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Team Decisions Problems in Wireless Networks

Team Decision Theory: Buying a Baguette or not?

In 1936, a french couple returns separately from work and wants baguette
for dinner. Personal cost for stopping at the baker is ci . Each person
knows its own cost ci ,. We assume that the ci are uniformly distributed
over [0, 1]. 

Goal: maximize expectation of joint utility given by: 
 

 

 

 

 

 

 

Person 2\Person 1 Buy bread Go home 

Buy bread a-c1-c2 1-c1 

Go home 1-c2 0 

When should each person buy bread? 

Optimal decision              of threshold form 
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Team Decisions Problems in Wireless Networks

The Distributed Rendez-vous Problem

Two visitors arrive independently in Firenze and seek to meet as
quickly as possible.
They have different and imprecise information about their own and
each other’s position.
Problem: Pick a direction to walk into

1p
2p

)2(
2p

)1(
2p

)1(
1p

)2(
1p

)(i
jp Estimated position of person j available at person i  

Meet! 

No meet  
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Team Decisions Problems in Wireless Networks

Team Decisional Transmitter Cooperation

Let us consider the following K -transmitter framework:

1 Distributed information structure:
Each transmitter i has knowledge of Ĥ(i), which exhibits some
arbitrary correlation with H

2 Zero rate coordination links (Rij)

3 Decision space for each transmitter i
Example: Wi (Ĥ(i)) where wi is a complex matrix. (e.g. Wi ∈ CN×K

for K -user network MIMO)

4 A network utility

u =
K∑
i=1

ui (W1(Ĥ(1)), ..,WK (Ĥ(K)),H)
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Team Decisions Problems in Wireless Networks

Can Team Problems be Solved with Games?

Key idea: Let autonomous transmitting devices interact to solve their
interference conflicts
Players → transmitters
Actions → transmit decision (power, frequency, beam, ..)
Strategy → Utility maximization (max rate, min power, min delay,..)
Timing → simultaneous, sequential,..
Equilibrium → Nash, Stackelberg, Nash Bargaining,..
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Team Decisions Problems in Wireless Networks

From Selfish Games to ”Team Playing”

Why interference coordination can be different from a typical
”game”’:

Team agents (network nodes) are not conflicting players (different
from players in a cooperative game)

Agents seek maximization of the same network utility

It is the lack of shared information which hinders cooperation, not the
selfish of their interests

Agents are not required to improve over the performance of the Nash
equilibrium

Connections to Bayesian games (see work by 1994 Nobel Prize winner
John Harsanyi [Harsanyi, 1967] )
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Team Decisions Problems in Wireless Networks

Team Decision Making

Distributed coordination = team decision making = A difficult problem in
general! (functional optimization).

max
Wi (Ĥ(i)),i=1..K

E

{∑
i

ui (W1(Ĥ(1)), . . . ,WK (Ĥ(K)),H)

}
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Team Decisions Problems in Wireless Networks

Model-based Decision Making

The model-based approach:

Replace wi (Ĥ(i)) by f(ai , Ĥ
(i)) where f(., .) is a functional model and

ai a vector of deterministic parameters to be determined at
transmitter i .

Solve for (still hard ;-) )

max
ai ,i=1..K

E

{∑
i

ui (f(a1, Ĥ
(1)), .., f(aK , Ĥ

(K)),H)

}

51/116



Team Decisions Problems in Wireless Networks

Solving the Problem

We now target the following problems:

What information is really needed where?

Distributed cooperative precoding: conventional and robust solutions

We use the following approaches:

The high SNR regime

The large scale analysis
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Information Allocation

Study here the CSI feedback allocation
problem

No signaling possible between TXs

Intuitively: CSI allocation should be TX
dependent

y Can we quantify this intuition?

)2(j
H

H
(1)

H
(2)

H
(3)

Is it optimal for each TX to receive the same information?

How does the required information accuracy depend on the network
geometry?
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Key Intuition with IA
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Key Intuition with IA

H22

t1 t2 t3

H21 H23

RX 1 RX 2
RX 3

H12t2

H13t3

H21t1

H23t3 H32t2

H31t1

Interference free

Interfe
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e

Interfe
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e

55/116



Information Allocation in Wireless Networks Interference Alignment with Incomplete CSIT Sharing

Exploiting Distributed Precoding

Can we reduce the CSIT requirements in general antenna configurations
without additional antennas?
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Model for Incomplete CSIT

Hik either known perfectly or not at all at TX j

F(j) ∈ {0, 1}Ntot×Mtot the CSIT matrix such that

Ĥ(j) = F(j) �H

Size(F) the size of a CSIT allocation F = {F(j)|j = 1, . . . ,K}

Size(F) =
K∑
j=1

‖F(j)‖2
F
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Example

(1, 1)(2, 3)(2, 3) IC:

Conventional CSIT allocation

F(1) = F(2) = F(3) = 15×7

IA possible with

F(1) = 05×7,F
(2) = 15×7,F

(3) = 15×7

58/116



Information Allocation in Wireless Networks Interference Alignment with Incomplete CSIT Sharing

Minimal CSIT Allocation

Fcomp complete CSIT allocation:

Size (Fcomp) = K (Size (1Ntot×Mtot))

Study only feasible settings: IA feasible with Fcomp

Study only single-streams transmissions

Optimization Problem

Find the most incomplete CSIT allocation where IA remains feasible
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Tightly-Feasible and Super-Feasible Settings

Definition

Tightly-feasible IC ⇔ feasible IC and removing any antenna makes IA
unfeasible⇔ feasible and

∑K
i=1 Ni + Mi = K (K + 1)

Definition

Super-feasible IC ⇔ feasible IC and it is possible to remove at least one
antenna without making IA unfeasible

Definition

A sub-IC is the (generalized) IC formed by any subset SRX of RXs and any
subset STX of TXs
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Feasibility Condition

Theorem (reformulation of [Razaviyayn et al., 2012, TSP])

IA is feasible if and only if,

Nvar(SRX,STX) ≥ Neq(SRX,STX), ∀STX,SRX ⊆ {1, . . . ,K}

where

Nvar(SRX,STX) ,
∑
i∈SRX

Ni − 1 +
∑
i∈STX

Mi − 1

Neq(SRX,STX) ,
∑

k∈STX

∑
j∈SRX,j 6=k

1
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Tightly Feasible Setting

Theorem

In a tightly-feasible [
∏K

k=1(Nk ,Mk)] IC, if there exists a tightly-feasible
sub-IC formed by the set of TXs STX and the set of RXs SRX, i.e.,

Nvar(SRX,STX) = Neq(SRX,STX),

then the incomplete CSIT allocation F = {F(j)|j ∈ K} preserves IA
feasibility, if

F(j) = FSRX,STX
, ∀j ∈ STX

F(j) = FK,K = 1Ntot×Mtot , ∀j /∈ STX.
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Example (IC (5, 4), (2, 2), (2, 2), (2, 2), (5, 4))

TX 1

RX 1

TX 2 TX 3 TX 4 TX 5

RX 2 RX 3 RX 4 RX 5

Tightly-feasible IC

Remark: Tightly-feasible approach exploits heterogeneity of antenna configuration
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Example (IC (5, 4), (2, 2), (2, 2), (2, 2), (5, 4))

TX 5

RX 5

TX 2 TX 3 TX 4

RX 2 RX 3 RX 4

TX 1

RX 1

ZFZF

CSIT allocation for tightly-feasible and super-feasible settings in
[de Kerret and Gesbert, 2014b, TWC]

Remark: Tightly-feasible approach exploits heterogeneity of antenna configuration
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Super-feasible Settings

1..83 2 2.16 2.33 2.5 2.66
0

20

40

60

80

100

120

Average number of antenna per node

A
ve

ra
ge

 s
iz

e 
of

 th
e 

C
S

IT
 a

llo
ca

tio
n

 

 
Complete CSIT allocation
Proposed approach
Exhaustive search

Figure: Average feedback size for K = 3 users with the antennas allocated
uniformly at random to the TXs and the RXs
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Key Aspects

Perfect IA possible without full CSIT sharing

Adapted CSI allocation provides strong gains with no DoF reduction

In fact, we also designed a new IA algorithm: Joint CSI
allocation/precoding design
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CSIT Reduction in Centralized IA

Large literature on IA feasibility assume perfect centralized CSIT
[Razaviyayn et al., 2012, TSP],[Gonzalez et al., 2014, TIT]

Previous intuition developed in [Rao et al., 2013, TSP]

Investigate trade-off Antenna/CSI/DoF
Propose new precoding schemes and new IA feasibility conditions

Exploit Grassmanian invariance to reduce feedback from the RXs
[Rezaee and Guillaud, 2012, ITW]
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Exploiting Distributed Precoding

CSI exchange is reduced by using iterative exchange between TXs in
[Cho et al., 2012, TSP]

Only for particular stream/antenna configurations
Requires iterations between the TXs/RXs
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TX Cooperation in Large Networks

Joint precoding: user’s data symbols are shared

Consider large networks: TX cooperation even more challenging

Channel estimation
CSI exchange
Amount of CSI increases quickly

Recent results suggest that even with perfect transmitter cooperation,
performances are fundamentally limited as the network size increases
[Lozano et al., 2013, TIT]

Is it possible to manage interference via TX cooperation in asymptotically
large networks?
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Goal

Find a CSIT allocation verifying

TX coordination: Global
interference management
Scalability: Two users
asymptotically far away should
not exchange any CSI
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RX
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RX
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TX

RX

TX

RX

TX

RX

TX

RX TX

RX

TX
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RX
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Received Signal

Received signaly1
...
yK

 = HHx + η =

h
H
1
...
hH
K

 [t1 . . . tK
]  s1

...
sK

+

η1
...
ηK


with

‖ti‖2 = P,∀i
si i.i.d. NC(0, 1)
ηi i.i.d. NC(0, 1)
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Generalized DoF and Interference Level Matrix

Define the generalized DoF

DoFi (Γ), lim
P→∞

Ri

log2(P)
, subject to σ2

i ,j = P−{Γ}i,j , ∀i , j

Define Γ ∈ [0,∞]K×K the interference level matrix

Γ represents the network geometry:

Transmission at SNR P0 with channel variances σ2
i,j,0

Define Γ as

Γi,j , −
log(σ2

i,j,0)

log(P0)
, ∀i , j
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Example (Generalized DoF)

2-user IC, single-antenna nodes, α2 = 10−12, Hi ,j ∼ NC(0, 1)

H11 H22

P P

α  H12
α  H21

RX 1 RX 2

TX 1
TX 2

DoF analysis: DoFi = 0.5 [Etkin et al., 2008, TIT]

Generalized DoF analysis: For P = 20dB,

Γ =

[
0 6
6 0

]
and DoFi (Γ) = 1
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Distributed CSIT

Imperfect CSIT at TX j modeled as

{Ĥ(j)}i ,k =

√
1− 2−B

(j)
i,kσi ,k{H}i ,k +

√
2−B

(j)
i,kσi ,k{∆}(j)

i ,k , ∀i , k

where {∆}(j)
i ,k ∼ CN (0, 1)

CSIT allocation B(j) at TX j defined as {B(j)}i ,k = B
(j)
i ,k , ∀i , k

CSIT allocation characterized by {B(j)}Kj=1
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Distributed Zero Forcing

TX j computes T(j) = [t
(j)
1 , . . . , t

(j)
K ] ∈ CK×K where

t
(j)
i ,

(
Ĥ(j)

)−1
ei

‖
(

Ĥ(j)
)−1

ei‖

√
P, ∀i

TX j transmits only xj = eHj T(j)s such that

TDCSI,


eH1 T(1)

eH2 T(2)

...

eHK T(K)
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Size of the CSIT Allocation

Size of the CSIT allocation B(j) at TX j

Size(B(j)), lim
P→∞

∑
i ,k B

(j)
i ,k

log2(P)
.

Size of the CSIT allocation {B(j)}Kj=1

Size({B(j)}Kj=1),
K∑
j=1

Size(B(j))
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Optimization Problem

DoF-achieving CSIT allocation BDoF(Γ) as

BDoF(Γ),{{B(j)}Kj=1|∀i ,DoFi ({B(j)}Kj=1,Γ) = 1}

with Γ ∈ [0,∞]K×K the interference level matrix

Optimization problem

minimize Size
(
{B(j)}Kj=1

)
, subject to {B(j)}Kj=1 ∈ BDoF(Γ).
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Conventional CSIT Allocation

Proposition

The following “conventional” CSIT allocation {Bconv,(j)}Kj=1 such that

{Bconv,(j)}k,i = [dlog2(Pσ2
k,i )e]+, ∀k, i , j

= d[1− Γk,i ]
+ log2(P)e

is DoF achieving, i.e., {Bconv,(j)}Kj=1 ∈ BDoF.

Remark

Size(Bconv,(j)) ≥ O(K ), ∀j
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Shortest Path: Example Γ1→3

Example

RX 1 RX 2

TX 1
TX 2

RX 3

TX 3

Γ31 Γ21 Γ32 

Γ1→3 = min (Γ2,1 + Γ3,2, Γ3,1) .
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Shortest Path

Definitions

(j , a2 . . . , an−1, k): Path from TX j to RX k
L(a1, . . . , an): Length of the path (a1, . . . , an):

L(a1, . . . , an),
n−1∑
i=1

Γai+1,ai

Γj→k : Shortest path from TX j to RX k :

Γj→k, min
(a2...,an−1)

L(j , a2 . . . , an−1, k)
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Distance Based CSIT Allocation

Theorem ([de Kerret and Gesbert, 2014a, TIT])

We define the Distance-based CSIT allocation {Bdist,(j)}Kj=1

{Bdist,(j)}k,i , d[1− Γk,i − γ(j)
k,i ]

+ log2(P)e, ∀k , i , j

with

γ
(j)
k,i,min

(
Γk→j ,min

`
(Γ`→i + Γj ,`)

)
Then Bdist ∈ BDoF
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Interpretation (1)

P−Γk,i is the variance of the quantized element

γ
(j)
k,i is the CSIT reduction relative to Hk,i at TX j

γ
(j)
k,i = Γk→j gives

E[‖eHj (H(j))−1ei − eHj H−1ei‖2]
.

= P−1, ∀i

γ
(j)
k,i = min` (Γ`→i + Γj ,`) gives

E
[∣∣∣‖(H(j))−1ei‖2 − ‖H−1ei‖2

∣∣∣] .= P−1, ∀i

Remark (Reminder)

γ
(j)
k,i,min

(
Γk→j ,min

`
(Γ`→i + Γj ,`)

)
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Interpretation (2)

Symmetric: If Γk,i = Γi ,k ,∀i , k ,

γ
(j)
k,i = min (Γk→j , Γi→j)

Distance: If Γk,j ≤ Γk,i + Γi ,j , ∀i , j , k ,

Γk→j = Γj ,k

TX

RX

TX

RX

TX

RX

TX

RX

TX

RX

TX RX

TX

RX

TX

RX

TX

RX

TX

RX TX

RX

TX

RX

TX

RX

TX
RX

TX

RX

TX

RX

TX

RXTX

RX

TX

RX

TX

RX

TX

RX

j

k

i

Remark (Reminder)

{Bdist,(j)}k,i , d[1− Γk,i − γ(j)
k,i ]

+ log2(P)e, ∀k , i , j
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Scaling Properties

Denote by Kj the set containing the user’s data symbols which have
to be shared to TX j

Assume symmetric interference level matrices

Finite number of significant interferers

lim
K→∞

|{i |Γi→j < 1}| <∞, ∀j

Corollary

lim
K→∞

Size(Bdist,(j)) <∞, ∀j

Corollary

lim
K→∞

|Kj | <∞, ∀j
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In Wireless Networks

RX 4

TX 4

RX 7

TX 7
RX 9

TX 9

RX 6

TX 6

RX 8

TX 8

RX 2

TX 2

RX 3

TX 3

RX 5

TX 5

(d47)-ε
 

(d32)-ε
 

P0

P0

Interference level matrix

Γi ,j = −
log(d−εi ,j )

log(P0)
, ∀i , j

It holds
Γi ,j > 1, if dij > d0

with

d0,P
1
ε

0
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Global Coordination with Local Cooperation

Corollaries apply:

⇒ Each TX requires CSIT from only a neighborhood
⇒ Each TX requires data symbols from only a neighborhood

Distance-based CSIT allocation has the desired properties!

Hard boundary of clusters are replaced by a smooth decrease of the
cooperation strength
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Key Messages

Provide each TX with the CSI needed

y Uniform/conventional CSI allocation is very inefficient

y Adapt to network geometry

Overcome fundamental limitations of clustering

y Achieve global coordination with local cooperation
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Impact of Distributed CSIT

First, fix precoding to ZF: avoid team decision problem

Focus on performance evaluation

Results for centralized CSIT do not apply any longer
How can we relate CSI qualities to performance?
Little investigated: simulations results provided in [Fritzsche and Fettweis,

2011, VTC]

Are the guidelines for system designs impacted by distributed CSIT?
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Distributed CSIT

Imperfect CSIT at TX j modeled as

{Ĥ(j)}i ,k =

√
1− 2−B

(j)
i,kσi ,k{H}i ,k +

√
2−B

(j)
i,kσi ,k{∆}(j)

i ,k , ∀i , k

where {∆}(j)
i ,k ∼ CN (0, 1)

Define CSIT scaling coefficients A
(j)
i at TX j such that

A
(j)
i , lim

P→∞

∑K
k=1 B

(j)
i ,k

K log(P)
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Distributed Zero Forcing

TX j computes T(j) = [t
(j)
1 , . . . , t

(j)
K ] ∈ CK×K where

t
(j)
i ,

(
Ĥ(j)

)−1
ei

‖
(

Ĥ(j)
)−1

ei‖

√
P, ∀i

TX j transmits only xj = eHj T(j)s such that

TDCSI,


eH1 T(1)

eH2 T(2)

...

eHK T(K)
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DoF in the Centralized MIMO BC

MIMO BC with M antennas at the TX and M single-antenna RXs

Channel estimate of channel to user i denoted by ĥi quantized using
Bi bits

CSI scaling coefficients Ai , limP→∞
Bi

(M−1) log2(P) with Ai ∈ [0, 1]

DoF achieved by user i equal to [Jindal, 2006, TIT]

DoFi = Ai

With distributed CSI, how does it extend?
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Degrees of Freedom with Conventional ZF

Theorem

The DoF achieved with conventional ZF for user i is equal to [de Kerret and

Gesbert, 2012, TIT]

DoFZF = K min
i ,j∈{1,...,K}

A
(j)
i .

Feedback quality of RX i impacts all RXs!

Cost of distributedness
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An example of transmission using Conventional ZF

Feedback scaling coefficients:

At TX 1 A
(1)
1 = 1,A

(1)
2 = 0

At TX 2 A
(2)
1 = 1,A

(2)
2 = 1 –essentially perfect–

ZF precoder T? with central perfect CSI:

T? =

[
10.3181− 10.4874i −3.6281− 7.0377i
23.3905 + 7.3537i 8.9583 + 6.2782i

]
At TX 1, computes

T(1) =
(H(2))−1

√
P

‖(H(2))−1‖F
=

[
−3.6624 + 15.0075i −0.5470− 4.0157i
−24.8765 + 6.5603i 6.4073 + 6.4812i

]

At TX 2, computes T(2) ≈ T?

Precoding matrix used to transmit:

T =

[
−3.6624 + 15.0075i −0.5470− 4.0157i
23.2421 + 6.7577i 8.9867 + 6.2038i

]
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Impact of Distributed CSIT

DoF

Strong impact over the DoF
Heterogeneous CSIT quality is disastrous

Need for new precoding paradigms when faced with distributed CSIT

Remark

Similar insights hold for Interference Alignment
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Robust Precoding

Distributed ZF very sensitive to CSI having unequal qualities

Are there more robust precoding schemes?

Consider here the Team Decision problem
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Conventional Robust Zero Forcing

Robust counterpart from literature [Shenouda and Davidson, 2006, ICASSP]

t
rZF(j)
i ,

√
P

2

(R
(j)
∆ + H(j)HH(j))−1H(j)Hei∥∥∥(R
(j)
∆ + H(j)HH(j))−1H(j)Hei

∥∥∥
with R

(j)
∆ the covariance matrix of the multiuser channel estimation

error at TX j

Theorem

Conventional robust ZF precoder achieves the same number of DoFs as
conventional ZF.
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Beacon Zero Forcing (K = 2)

Beamformer tbZFi = [t
bZF(1)
1i , t

bZF(2)
2i ]T, where ∀j ∈ {1, 2} ,

[
t
bZF(j)
1i

t
bZF(j)
2i

]
,

√
P

2

Π⊥
h̃

(j)

ī

(ci )

‖Π⊥
h̃

(j)

ī

(ci )‖

with ci a given vector revealed beforehand to the TXs: the beacon.

Theorem ([de Kerret and Gesbert, 2012])

The number of DoFs achieved with Beacon ZF at user i is

DoFbZF = min
j∈{1,2}

A
(j)
1 + min

j∈{1,2}
A

(j)
2
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Active-Passive Zero Forcing (K = 2)

Assume w.l.o.g. that A
(2)

ī
≥ A

(1)

ī
, then

tAPZF
i ,

√
P

2 log2(P)

 1

−{h̃
(2)

ī
}1

{h̃(2)

ī
}2


Theorem

Active-Passive ZF achieves the number of DoFs at user i

DoFAPZF = max
j∈[1,2]

A
(j)
1 + max

j∈[1,2]
A

(j)
2
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Discussion Active-Passive ZF

Assume wlog that A
(2)

ī
≥ A

(1)

ī
(best estimate of h̃ī at TX 2) then

tAPZF
i ,

√
P

2 log2(P)

 1

−{h̃
(2)

ī
}1

{h̃(2)

ī
}2


Achieves coordination based on the statistical common information:
Choose common precoding strategy

102/116



Team Decision for Multi-Antenna Precoding Robust Precoding for Imperfect and Imperfectly Shared CSI

Example

Consider the distributed CSI with the coefficients

A =

[
A

(1)
1 A

(1)
2

A
(2)
1 A

(2)
2

]
=

[
1 0.5
0 0.8

]

Conventional ZF: DoF fixed by the worst CSI:

DoFcZF = 0 (Twice the minimum over the matrix)

Beacon ZF: DoF fixed by the worst CSI for each channel h̃i :

DoFbZF = 0.5 (Sum of the minimum over the columns)

A-P ZF: DoF fixed by the best CSI for each channel h̃i

DoFAPZF = 1.8 (Sum of the maximum over the columns)

103/116



Team Decision for Multi-Antenna Precoding Robust Precoding for Imperfect and Imperfectly Shared CSI

Simulations
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Simulations
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With K TX/RX Pairs

Robust schemes proposed are efficient with K = 2

No strong improvement for larger K

y Need for a new approach
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Hierarchical Feedback

Introduce Hierarchical/Layered Quantization [Ng et al., 2009, TIT]

CSI encoded such that each TX decodes up to a number of bits
depending on the quality of the feedback link

If h
(j1)
i more accurate than h

(j2)
i , then TX j1 has also knowledge

of h
(j2)
i

Remark: If A
(j1)
i = A

(j2)
i , then h

(j1)
i = h

(j2)
i
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Degrees of Freedom with Hierarchical Feedback

Theorem

The number of DoFs achieved by user i with Conventional ZF and
hierarchical feedback is

DoFcZF =
K∑
i=1

min
j∈{1,...,K}

A
(j)
i .

Strong improvement of the number of DoFs achieved

CSI scaling of user i impacts solely number of DoFs of user i

y Hierachical quantifization enforces coordination between TXs
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Key Messages

Fundamental impact of distributed CSIT

Team Decision Problem: consistency between TXs is critical

Coordination based on statistical information
Use common precoding stragegy

y Functional optimization problem

Large cost of distributedness: Strong coordination gains are possible
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Outline

1 Fundamentals for Transmitter Coordination

2 Thinking Practical

3 Team Decisions Problems in Wireless Networks

4 Information Allocation in Wireless Networks

5 Team Decision for Multi-Antenna Precoding

6 Key Aspects and Open Problems
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Keys Aspects of the Coordination Problem

Wireless networks can strongly benefit from coordination mechanisms

Distributed approaches are likely to be more robust and scalable

Coordination of distant TXs

y Uniform/conventional CSI allocation are very wasteful

y Conventional precoding schemes are inefficient

Promizing solutions exploiting

y TX dependent CSI
y Team precoding schemes
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Open Problems

Many

Making those approaches more practical (intermediate SNRs, small
systems)
Signaling problem mostly open
Extension to other settings of wireless networks? (e.g., multi-hops)
Many other applications in general
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