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Underlay vs. Interweave: Which one is better?

Fidan Mehmeti, Thrasyvoulos Spyropoulos

Abstract

Cognitive Networks have been proposed to opportunistically discover

and exploit licensed spectrum bands, in which the secondary users’ (SU)

activity is subordinated to primary users (PU). Depending on the nature of

the interaction between the SU and PU, there are two frequently encountered

types of spectrum access: underlay and interweave. While a lot of research

effort has been devoted to each mode, there is no clear consensus about which

type of access performs better in different scenarios and for different metrics.

To this end, in this paper we approach this question analytically, and provide

closed-form expressions that allow one to compare the performance of the

two types of access under a common network setup. This allows an SU to

decide when one type of access technique or the other would provide better

performance, as a function of the metric of interest and key network param-

eters. What is more, based on this analysis, we propose dynamic (hybrid)

policies, that can decide at any point to switch from the one type of access

to the other, offering up to another 50% of additional performance improve-

ment, compared to the optimal “static” policy in the scenario at hand. We

provide extensive validation results using a wide range of realistic simula-

tion scenarios.

Index Terms

Cognitive radio networks, Markov chains, Interweave, Underlay.
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1 Introduction

Lately, we are witnessing a tremendous increase in the number of data-enabled

wireless devices (smartphones, tablets, etc.) as well as in the applications and ser-

vices that they provide. Coupled with the equally large market growth envisioned

for the numerous small and large “things” requiring wireless connectivity [1], this

creates a huge pressure on wireless network operators, and a resulting increase in

spectrum demand.

Because of this, and due to the static spectrum allocation policies followed by

authorities worldwide, spectrum scarcity has become a major problem in today’s

wireless industry. Nevertheless, measurements of the utilization of licensed wire-

less spectrum in fact reveal that the available spectrum is rather under-utilized,

exhibiting high variability across space, frequency and time [2].

To address this issue, dynamic spectrum access techniques have recently been

proposed, with cognitive radio (CR) as its key technology [3]. In a cognitive net-

work, there exist licensed users, known as primary users (PU), which are provided

the spectrum from the regulation authority, as well as unlicensed users that are

known as cognitive or secondary users (SU) utilizing the spectrum opportunisti-

cally. Cognitive users are subordinated to primary users’ activity. Hence, they

have to adapt their transmission parameters, so that there are no impairments on

PU Quality of Service (QoS).

One of the main functions of CRs is spectrum access [3]. Spectrum access

is very important to prevent potential collisions between the SUs and PUs. Spec-

trum access techniques can be classified as: underlay, interweave, and overlay. In

this paper, we are concerned only with the first two techniques. In the underlay

mode (Fig. 1), the SU reduces the transmission power when a PU is utilizing a

given channel such that the maximum interference level a PU can tolerate is not

exceeded. In the interweave mode (Fig. 2), the cognitive user can transmit only

when there is no PU, with the maximum power in accordance with the spectral

mask. Whenever a PU claims a channel back, the SU must immediately cease its

transmission and look for another white space, i.e. a part of the spectrum that is

currently not utilized by its PU. In the overlay mode, the cognitive user serves as

a relay to a licensed user and in turn the PU allows it to access to a portion of its

spectrum. However, the necessity of complete channel knowledge from both PU

and SU increases complexity and makes this mode less attractive.

A large number of works exist for both underlay and interweave access in

CRNs [4, 5]. While some arguments for the one or the other exist (often related

to the potential harm to PUs [6]), there is little consensus regarding which mode

would offer the best performance to SUs.

While the possibility of transmitting without interruptions (usually causing is-

sues to higher layer protocols) is certainly an advantage that underlay access offers,

there are also some drawbacks associated with it. First, the user in this mode can

transmit with maximum rate only when the PU is silent. These periods of time can

be much shorter than the periods with PU, especially when dealing with high duty
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Figure 1: The illustration of the underlay mode with: a) idle PU (high periods), b)

active PU (low periods).
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Figure 2: The illustration of the interweave mode with: a) idle PU (high periods),

b) active PU (low periods).

cycle licensed users. Furthermore, if that PU is located in the vicinity of the SU, the

SU’s transmission rate might have to be significantly reduced. This could signifi-

cantly reduce the effective (average) transmission rate and the resulting throughput.

Contrary to this, in interweave mode the SU can look for another idle chan-

nel when the PU arrives (possibly with a lower duty cycle) and start transmitting

again at full power, possibly improving the average (long-term) throughput. Yet,

the intermittent nature of communication relying on interweave access may delay

some application flows (e.g. a request to transmit a short file, fetching a web page,

etc.) significantly, if they happen to arrive while the SU is scanning for a new

available channel. Such delays can be exacerbated not only if the SU resides in a

relatively busy part of the spectrum (e.g. urban areas at “peak” hours), but even if

the variability of this scanning time is high (e.g. sometimes a new channel is found

quickly, but sometimes the SU might be stuck scanning for a long time).

Based on the above discussion, it is obvious that there are a number of trade-

offs involved, and it is not easy to say, a priori, which mode of spectrum access

would perform better in a given scenario. The relative performance has a close

dependence not only on specific network parameters (e.g. PU duty cycle, allowed

transmission power, etc.), but also on the performance metric of interest, the type

of SU traffic (sparse, frequent), size of requests, and even higher order statistics of

key parameters, such as the time to find a new white space.

To this end, in this paper we approach this problem using an analytical frame-

work to evaluate the individual performance of underlay and interweave access, as
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well as to compare them in a range of settings. Our contributions can be summa-

rized as follows:

(i) We derive closed-form expressions for the expected delay for underlay and in-

terweave spectrum access as a function of key network parameters (average PU idle

time, transmission rates, scanning time statistics), and user traffic statistics (traffic

intensity, file size). This allows us to directly compare the performance of the two,

and derive the conditions that would make the one or the other preferable. Finally,

we also use these insights to propose a “hybrid” policy, that can switch between the

two dynamically, in order to further improve performance. (ii) Using a wide range

of realistic simulation scenarios, we validate our analytical predictions extensively,

explore the conditions under which underlay or interweave policies perform bet-

ter, and show when the dynamic policies can indeed offer additional performance

improvements.

2 Performance modeling of spectrum access

We assume that traffic flows arrive randomly as a Poisson process with rate λ.

The file sizes are assumed to be exponentially distributed. When a file arrives to

find another file in the system, it will be queued. We consider First Come First

Served (FCFS) order of service. The total time a file spends in the system is the

sum of the service and queueing time, and is referred to as the system time. We use

also the term transmission delay interchangeably with system time.

2.1 Problem setup for underlay access

In underlay access, the SU can transmit at full power when there is no PU com-

municating on that channel. When the PU resumes its transmission, the SU has to

reduce its transmission power, so that there are no impairments on the PU trans-

mission quality. Although the actual power allowed depends on the primary and

the interfering channel quality (distance, LoS, etc.), we will assume for simplicity

that the SU power can vary between two levels: “high” power when there is no PU,

and “low” power when there is PU activity (e.g. perceived as an average value).

Consider a channel used by one or more PU. The occupancy of that channel can

be modeled as an ON-OFF alternating renewal process [7]
(

T i
ON , T i

OFF

)

, i ≥ 1,

as shown in Fig. 1. ON periods represent the absence of the PU on that chan-

nel, while the OFF periods denote the periods of time with active PU. i denotes

the number of ON-OFF cycles elapsed until time t. Unless otherwise stated, the

duration of any ON period TON is assumed to be exponentially distributed with

parameter ηH , and is independent of the duration of any other ON or OFF period.

Similarly, the duration of an OFF period is also assumed to be exponential, but with

parameter ηL. While this assumption is necessary for the tractability of the delay

analysis, as we shall see, we consider generic ON/OFF periods in the through-

put analysis. Generic ON/OFF distributions could be introduced also in our delay
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analysis by considering phase-type distributions and matrix analytic methods [8].

However, such methods only yield numerical solutions, that do not allow for direct

analytical performance comparisons. What is more, simulation results (Section 6)

suggest that, even for generic ON/OFF period distributions, the accuracy of our

predictions is sufficient.

The data transmission rate during the ON periods is denoted with cH , while

during OFF periods the date rate is cL. The actual values for these depend on

technology, channel bandwidth, coding and modulation, etc. However, since the

allowed transmission power during OFF periods is higher, it holds that cH > cL.

2.2 Problem setup for interweave access

In the interweave mode, the SU can transmit only when there is no PU ac-

tivity (ON periods). It is again assumed that the periods with no PU activity are

exponentially distributed with parameter ηH , and the data rate is cH .

However, after the arrival of a PU in the channel (at the end of that ON period),

the SU does not continue transmitting (at lower power), as in the underlay case,

but starts looking for another available channel. As soon as it finds one, it resumes

transmission at full power (i.e. with rate cH ). Consequently, we can again model

this system with an alternating renewal process. However, OFF periods now corre-

spond to scanning intervals during which no data can be transmitted, i.e. cL = 0.1

Hence, it changes its operation to the scanning mode. During the scanning mode

(i.e. during an OFF period), the SU moves to a new channel and senses it for

some time. If available, it resides there and goes back to the transmission mode.

Otherwise, it switches to another frequency and senses another channel, and so

on until finally an available channel is found2, and the transmission process is re-

sumed. Hence, the scanning time corresponding to one channel is actually the sum

of the sensing time (TI ) and the switching delay (Tswitch) introduced. So, the total

scanning time can be expressed as

Ts = L (TI + Tswitch) , (1)

where L is a random variable denoting the number of channels a SU has to sense

until it finds the first available. We assume that sensing time per channel is much

shorter than the ON and OFF periods.

1We assume that in both modes a single radio and antenna is used. Hence, a SU can only transmit

or scan at any time, but not both. In contrast, to detect that the PU is back, we could just switch

the radio periodically to receive mode, take a short time sample (in the order of µs) and do energy

detection, to see if there is a PU signal [9]. Since we assume that the sensing time is much shorter than

the actual durations of ON and OFF periods, we can safely ignore these sensing periods. However,

the switching time is usually much higher than the sensing time (order of ms or even seconds) and

cannot be ignored.
2We assume that the SU chooses channels sequentially from a list [10].
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The switching delay while moving from the channel with frequency fs to the

channel with frequency fd can be expressed as [10]

Tswitch = β
|fd − fs|

δ
, (2)

where β is the delay to move to the first contiguous channel, and is hardware de-

pendent [10], while δ denotes the frequency separation between two neighboring

channels.

By looking at Eq.(1), we can infer the following. If the probabilities of finding

each channel available are independent and almost equal, we can say that the ran-

dom variable L is geometrically distributed. If we further assume that the switching

time is the same when moving from one to another channel, and the well known

fact that the geometric distribution can be obtained by rounding the exponential,

we can infer that the scanning time can be approximated by an exponential distri-

bution. For that purpose exponential scanning time distribution is assumed first.

However, the nature of scanning time distribution depends heavily on the avail-

ability of the backup channels and on the frequency distance between them. Under

most scenarios (high discrepancy on the availability probabilities between different

channels, very low duty cycle of all the channels, the existence of available chan-

nels in the more remote parts of the spectrum etc.), the exponential assumption on

the scanning time will not hold. For that reason, we also analyze the system for the

scenarios when the switching time underlies high and low variance distributions.

Let’s assume that the eligible channels have roughly the same duty cycles (%

of time the PU is active on a channel) that are very low (sporadic activity of PUs),

and that they are “neighbors” in the frequency context. Under this scenario, we

would expect that the time needed to find an available channel is almost constant

(most of the time only one channel needs to be sensed) and will not deviate much

from the average value, E[Ts]. Hence, in this case the scanning time distribution

would have a low variance (lower than the exponential distribution). A convenient

and generic way to model such low variance distributions is by using a k-stage

Erlang distribution [11].

As opposed to the previous scenario, there might be a number of channels with

high duty cycles, and there might be one or few channels with much lower duty

cycle located further away in the spectrum. Although there is a low probability, it

may happen that all these channels located close to each other are busy, and the

SU ends up searching the channel that is far away in the spectrum band. Since

the switching time is proportional to the frequency difference, the scanning time

will be considerably larger. So, there is a chance that some of the scanning time

samples will deviate from the average to a considerable extent. Hence, in those

cases the scanning time distribution can be considered as heavy-tailed, and the

exponential assumption cannot capture that behavior. For that purpose, we model

the scanning time with a hyperexponential distribution, in which with a probability

p0 the scanning time will be exponentially distributed with parameter ηL, and with

5
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Figure 3: The distribution of the scanning time for low PU duty cycles.

a small probability 1 − p0 it will be exponentially distributed with parameter ηV .

Note that ηV << ηL.

To support our aforementioned claims, we consider two scenarios. First, we

assume that there is a group of 20 channels, which are close to each other in the

spectrum. The duty cycles of the channels are all low (0.2), PU activities are i.i.d.,

TI = 1 ms, and Tswitch = 10 ms. Fig. 3 shows the complementary cumulative

distribution function (CCDF) of the scanning time durations. On the same plot,

the CCDFs of the exponential and Erlang distributions for k = 3 and k = 6, are

also shown. The plot demonstrates that the exponential distribution cannot really

capture the behavior of the system. Instead, an Erlang distribution needs to be

used. Similar conclusion for the inability of the exponential distribution to capture

the scanning time can be inferred from Fig. 4. As opposed to the previous scenario,

in this case the channels have very high duty cycles (0.8), and the switching time

between this group and the group with 2 channels (with a duty cycle of 0.2) is

0.5s. The hyperexponential distribution (shown also in the plot) has the following

parameters: p0 = 0.2, λ1 = 90, λ2 = 3. As can be seen, the hyperexponential

distribution can capture to a better extent this scenario.

The above results highlight the need to consider more general distributions for

scanning times directly in our analysis. Surprisingly, as we shall see, closed-form

results for the system delay can still be found for such generic scanning times.
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Before proceeding any further, we summarize in Table 1 some useful notation

that will be used throughout the rest of the paper.

3 Delay analysis of underlay and interweave access

In this section we will derive the formulas for the average file delay for in-

terweave and underlay access. For the former one, we perform the analysis over

different scanning time distributions: exponential, k-stage Erlang and hyper expo-

nential. For that purpose we use 2D Markov chain models, and the Probability

Generating Functions (PGF) approach to derive the delay.

3.1 Delay analysis for interweave access

Exponential scanning time. Due to the assumptions made in Section 2.2 about

the exponential distributions, we can model our system with a 2D Markov chain,

shown in Fig. 5. Each state in this chain indicates the number of files present in

the system and the presence (lower states) or absence (upper states) of the PU. πi,L
(πi,H ) denotes the stationary probability of finding i files when there is (not) a PU

active on that channel. The transition rates ηH and ηL are the parameters of the

exponentially distributed ON and OFF periods. While in the upper parts of the

7



Table 1: Variables and Shorthand Notation.
Variable Definition/Description

TON Duration of PU idle periods

TOFF Duration of PU busy periods or scanning time

λ Average file arrival rate at the mobile user

πi,L Probability of finding i files in the OFF (low) period

πi,H Probability of finding i files in the ON (high) period

πi,V Probability of finding i files in the OFF (V-state) period

ηH(ηL) The rate of leaving the ON (OFF) state

ηV The rate of leaving the V-state

µH = cH
∆ The service (transition) rate while being in a high state

µL = cL
∆ The service (transition) rate while being in a low state

∆ The average file size

E[T ] The average system (transmission) time

0,H 1,H 2,H

0,L 1,L 2,L

i-1,H

i-1,L

i,H i+1,H

i,L i+1,L

λ λ λ λ

λ λ λ λ
ηH ηH ηH ηH ηH ηHηL ηL ηL ηL ηL ηL

µH µH µH µH

Figure 5: The 2D Markov chain for exponentially distributed scanning time.

chain there are transitions between states (i,H) and (i− 1,H) with rates equal to

µH = cH
∆ , in the lower part (corresponding to the active PU), there is no transition

going from state (i, L) to (i− 1, L). This is a consequence of the inability of the

SU to transmit while scanning. The transition rate from low to high periods is ηL,

with exponential scanning time of average duration E[Ts] =
1
ηL

.

Theorem 1. The average file delay in a cognitive radio network with interweave

spectrum access and exponentially distributed scanning time is

E[Texp] =
ηH(ηH + µH)(E[Ts])

2 + 2ηHE[Ts] + 1

(1 + ηHE[Ts])(µH − λ− ληHE[Ts])
. (3)

Proof. As is well known from the theory of Markov chains, a balance equation is

an equation that describes the flow rate in and out of states. Basically, in equilib-

rium, the flow rate into a state is equal to the flow rate out of the same state. For the

state {0, L}(Fig. 5), the possible transitions are to states {1, L} and {0,H}, and

these occur with rates λ and ηH , respectively. So, the flow rate out of state {0, L}
is given by π0,L(λ + ηL). At the same time, the transitions into state {0, L} can

occur only from state {0,H}. So, the flow rate into state {0, L} is ηHπ0,H . The

first balance equation is:

π0,L (λ+ ηL) = ηHπ0,H . (4)

8



The balance equations related to state {0,H} are similar. There are two pos-

sible transitions out of this state: to states {1,H} and {0, L}, with transition rates

λ and ηH , respectively. Hence, the flow rate out of this state is π0,H(λ+ ηH). As

opposed to state {0, L}, transitions into state {0,H} can occur from two states:

{0, L} and {1,H}, with corresponding rates ηL and µH , respectively. As a result,

the flow rate into this state is ηLπ0,L + µHπ1,H . As the flow rates into and out of a

state need to be equal, we obtain the second balance equation

π0,H (ηH + λ) = ηLπ0,L + µHπ1,H . (5)

When it comes to states {i,H} and {i, L}, for i > 0, it can be observed that the

number of possible transitions is higher. There are two possible transitions out of

state {i, L}, with corresponding rates of λ and ηL, leading to a total flow rate out of

this state of πi,L(λ+ηL). There are also two possible transitions into this state. The

first one is from state {i,H} with rate ηH , and the other is from state {i− 1, L}
with rate λ, leading thus to a total flow rate (into the state) of λπi−1,L + ηHπi,H .

Equating the flow rates into and out of this state, we have

πi,L (λ+ ηL) = λπi−1,L + ηHπi,H , i ≥ 1. (6)

When it comes to state {i,H}, there are three possible transitions out of it.

The corresponding rates are λ, ηH , and µH . Hence, the total flow rate out of it is

πi,H(λ + ηH + µH). Transitions to state {i,H} are possible from states {i, L},

{i− 1,H} and {i+ 1,H} with rates ηL, λ, and µH . So, the flow rate into state

{i,H} is ηLπi,L + µHπi+1,H + λπi−1,H . Consequently, we have the following

balance equation

πi,H (λ+ µH + ηH) = λπi−1,H + ηLπi,L + µHπi+1,H , i ≥ 1. (7)

We define the PGFs for this chain as

GL(z) =

∞
∑

i=0

πi,Lz
i, and GH(z) =

∞
∑

i=0

πi,Hzi, |z| ≤ 1, z ∈ C.

Multiplying Eq.(6) with zi and adding it to Eq.(4), we obtain

(λ+ ηL)

∞
∑

i=0

πi,Lz
i = ηH

∞
∑

i=0

πi,Hzi + λ

∞
∑

i=1

πi−1,Lz
i, (8)

that leads to

[λ(1− z) + ηL]GL(z) = ηHGH(z). (9)

9



Similarly, multiplying Eq.(7) with zi and summing with Eq.(5), we get

(ηH + λ)

∞
∑

i=0

πi,Hzi+µH

∞
∑

i=1

πi,Hzi = ηL

∞
∑

i=0

πi,Lz
i+λ

∞
∑

i=1

πi−1,Hzi+µH

∞
∑

i=0

µHπi+1,Hzi.

(10)

Eq.(10) results in

[λz(1− z) + µH(z − 1) + ηHz]GH(z)− ηLzGL(z) = µHπ0,H(z − 1). (11)

Solving the system of equations (9) and (11) leads to

GL(z) =
µHπ0,H(z − 1)

1
ηH

[λz(1− z) + µH(z − 1) + ηHz] [λ(1− z) + ηL]− zηL
, (12)

GH(z) =
1

ηH
[λ(1 − z) + ηL]GL(z). (13)

The only unknown in Eq.(12) is π0,H (the stationary probability of SU having zero

files while there is no PU activity). To find it, we proceed as following. First, we

write the balance equation across the vertical cut between states (i, L) and (i,H)
on one side, and (i, L+ 1) and (i,H + 1) on the other. This gives

λπi,L + λπi,H = µHπi+1,H . (14)

After summing over all the values of i, we have

λ = µH [GH(1)− π0,H ] . (15)

In Eq.(15), GH(1) =
∞
∑

i=0
πi,H is the probability of finding the system in the high

state. So, for the zero probability we have

π0,H =
µHGH(1) − λ

µH

. (16)

Replacing z = 1 into Eq.(9) gives GL(1) = ηH
ηL

GH(1). It is also evident that

GL(1) +GH(1) = 1, resulting in

GH(1) =
1

1 + ηH
ηL

. (17)

Replacing Eq.(17) into Eq.(16) enables us to find π0,H :

π0,H =
1

1 + ηH
ηL

−
λ

µH
. (18)

After finding π0,H and replacing it into Eq.(12), and the later into Eq.(13) we find

GL(z) and GH(z) in closed form.

10



The next step is to find the average number of files in the system. It is the sum

of the derivatives of partial PGFs at point z = 1, i.e.

E[N ] = E[NL] + E[NH ] = G
′

L(1) +G
′

H(1). (19)

Differentiating Eq.(12) with respect to z we have

G
′

L(z) =
µHπ0,HF (z)− µHπ0,H(z − 1)F

′

(z)

F 2(z)
. (20)

In Eq.(20), F (z) = A(z)B(z) − ηLz, where A(z) = λz(1−z)+µH (z−1)+ηHz
ηH

, and

B(z) = λ(1− z) + ηL.

It can easily be proven that Eq.(20) is of the form 0
0 at z = 1. After applying

L′Hôpital’s rule twice, we get

G
′

L(z) =
−µHπ0,HF

′′

(z) + µHπ0,HF
′′′

(z)(1 − z)

2F ′(z)2 + 2F (z)F ′′(z)
. (21)

Based on Eq.(21), we have

E[NL] = lim
z→1

G
′

L(z) =
−µHπ0,HF

′′

(1)

2F ′(1)2
. (22)

After some algebra, we obtain

E[NL] =
λµHπ0,H (ηL + µH + ηH − λ)

ηH

[

1
ηH

(µH + ηH − λ)ηL − λ− ηL

]2 . (23)

The next step is to find E[NH ]. For that purpose, Eq.(13) is differentiated, giving

G
′

H(z) =
1

ηH

{

−λGL(z) + [λ(1− z) + ηL]G
′

L(z)
}

. (24)

Since E[NH ] = limz→1G
′

H(z), substituting z = 1 into Eq.(24) results in

E[NH ] =
1

ηH

[

−λGL(1) + ηLG
′

L(1)
]

. (25)

In Eq.(25), E[NL] = G
′

L(1), and GL(1) =
ηHE[Ts]

1+ηHE[Ts]
. So, Eq.(25) reduces to

E[NH ] = −
λE[Ts]

1 + ηHE[Ts]
+

1

ηHE[Ts]
E[NL]. (26)

After some algebra, we can find that the average number of files in the system is

E[N ] = E[NL] + E[NH ].
Finally, using Little’s law E[N ] = λE[T ] [7], we obtain the average file delay

in the interweave access as in Eq.(3).
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Figure 6: The 2D Markov chain for Erlang-distributed scanning time.

Low-variability scanning time. In the previous section we have derived the

average file delay for exponentially distributed scanning times. However, as ex-

plained in Section 2.2, there exist some cases when the scanning time can have

less variability than the exponential distribution. To capture this low variability an

Erlang k-stage distribution is assumed. Our system can still be modeled with a 2D

Markov chain, as depicted in Fig. 6. However, a transition from a low state (scan-

ning) to a high state (finding and using a new available channel) would now have to

go through an additional k− 1 intermediate states (vertically), as opposed to going

directly to the high state as in the exponential case (see Fig. 5). The transition rate

between these states is kηL. Since there are k stages, the average scanning time is

E[Ts] = k 1
kηL

= 1
ηL

. It is not possible to make a transition backwards while in the

scanning mode (no transmission).

In general, it is very difficult to solve these kind of Markov chains analytically,

and one needs to use numerical, matrix-analytic methods [8]. However, numerical

methods do not provide any insight on the nature of the solution and its dependency

on certain parameters.

Interestingly, due to the particular structure of the MC at hand, we are never-

theless able to derive a closed form analytical expression. Although there are more

than two states in the “vertical” direction, we can still write down the balance equa-

tions and follow our approach to solve a system of k + 1 equations in the partial

12
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Figure 7: The 2D Markov chain for hyperexponentially distributed scanning time.

probability generating functions. This is the main difference with the scenario for

scanning times that are exponential.

The following theorem gives the expected delay in this scenario.

Theorem 2. The average file delay in the interweave access with Erlang dis-

tributed scanning time is given by

E[Terl] =
ηH

[

ηH + (k+1)
2k µH

]

(E[Ts])
2 + 2ηHE[Ts] + 1

(1 + ηHE[Ts])(µH − λ− ληHE[Ts)]
. (27)

Proof. Following the same procedure for the flow rates into and out of states of this

chain (Fig. 6), as we did for the interweave mode with exponentially distributed

scanning time, we can write the balance equations as follows

πL,1,0 (λ+ kηL) = ηHπH,0 (28)

πL,1,i (λ+ kηL) = ηHπH,i + λπL,1,i−1, i ≥ 1 (29)

πL,j,0 (λ+ kηL) = kηLπL,j−1,0, 2 ≤ j ≤ k (30)

πL,j,i (λ+ kηL) = kηLπL,j−1,i + λπL,j,i−1, i ≥ 1, 2 ≤ j ≤ k (31)

πH,0 (λ+ ηH) = kηLπL,k,0 + µHπH,1 (32)

πH,i (λ+ ηH + µH) = kηLπL,k,i + λπH,i−1 + µHπH,i+1, i ≥ 1 (33)

We define the partial probability generating functions for the scanning phases as

GL,j(z) =
∞
∑

i=1

πj,iz
i, j = 2, . . . , k, |z| ≤ 1, (34)

and for the transmission phase

GH(z) =

∞
∑

i=1

πH,iz
i, |z| ≤ 1. (35)
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Further, we continue with multiplying Eq.(29), Eq.(31), and Eq.(33) by zi and

adding each one of them to Eq.(28), Eq.(30) and Eq.(32), respectively. After that,

we obtain the following system of equations with partial probability generating

functions as unknowns

[λ(1− z) + kηL]GL,1(z) = ηHGH(z) (36)

[λ(1− z) + kηL]GL,j(z) = ηLGL,j−1(z) (37)

[λz(1− z) + µH(z − 1) + ηHz]GH(z) = kηLzGL,k(z) +µHπH,0(z− 1) (38)

Eq.(36) can be expressed as

GL,1(z) =
ηH

[λ(1− z) + kηL]
GH(z). (39)

From Eq.(37), for the states j = 2, . . . , k there are recursions involved. The partial

PGF for the jth states can be written as

GL,j(z) =
kηL

[λ(1− z) + kηL]
GL,j−1(z), j ≥ 2, (40)

and after using this recursion successively we get

GL,j(z) =
(kηL)

j−1 ηH

[λ(1− z) + kηL]
j
GH(z), j ≥ 2. (41)

Solving the system of equations Eq.(36)-Eq.(38), for GH(z) we obtain

GH(z) =
µHπH,0(z − 1)

λz(1− z) + µH(z − 1) + ηHz − ηHz
[

1+ λ
kηL

(1−z)
]k

. (42)

Replacing Eq.(42) into Eq.(39) and Eq.(41), we have the solutions for all the PGFs.

However, there is an unknown component πH,0 appearing in those expressions. We

can find it by taking the vertical cut between the states corresponding to i and i+1
files

λ





k
∑

j=1

πL,j,i + πH,i



 = µHπH,i+1, (43)

which after some rearrangements leads to

πH,0 = GH(1)−
λ

µH
. (44)
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The stationary probability of finding the system in the idle PU state, GH(1), can

be found as follows. Eq.(39), for z = 1 reduces to GL,1 = ηH
kηL

GH(1). Similarly,

for the other scanning phases the following result can be derived

GL,j(1) = GL,j−1(1), j ≥ 2. (45)

Obviously, it holds that

GL,1(1) + . . .+GL,k(1) +GH(1) = 1, (46)

which after solving gives

GH(1) =
1

1 + ηH
ηL

. (47)

The term πH,0 is obtained after replacing Eq.(47) into Eq.(44) as

πH,0 =
1

1 + ηHηL
−

λ

µH
. (48)

After finding all the partial PGFs, we move further in finding the average file delay.

Towards that direction, we need to find first the average number of files in the

system, which is given by

E[N ] = E[N1] + . . . + E[Nk] + E[NH ]. (49)

We find the term E[NH ] = G
′

H(1) as follows. Differentiating Eq.(42) with respect

to z leads to

G
′

H(z) =
µHπH,0F (z) − µHπH,0(z − 1)F

′

(z)

F (z)2
, (50)

with F (z) = λz(1−z)+µH(z−1)+ηHz− ηHz

[1+λkηL(1−z)]k
. It can be easily proven

that F (z) = 0 making both the numerator and denominator equal to 0. Hence, we

need to apply L′Hôpital′s rule twice. After that, we obtain

E[NH ] = lim
z→1

G
′

H(z) = −
µHπH,0F

′′

(1)

2F ′(1)2
, (51)

where F
′

(1) = µH − λ− ληH
ηL

, and F
′′

(1) = λ
[

2 + ηH
ηL

(

λ
ηL

+ λ
kηL

+ 2
)]

. Next,

we need to determine the PGFs related to the scanning part. As shown earlier, the

following relation holds

GL,j(z) =
(kηL)

j−1 ηH

[λ(1− z) + kηL]
j
GH(z), j ≥ 1. (52)

Differentiating Eq.(52) with respect to z yields

G
′

L,j(z) = (kηL)
j−1 ηH ·

[λ(1− z) + kηL]
j G

′

H(z) + jλGH (z) [λ(1− z) + kηL]
j−1

[λ(1− z) + kηL]
2j

.

(53)
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Since E[NL,j] = G
′

L,j(1), for j = 1, . . . , k, after some algebra we obtain

E[NL,j ] =
ηH

ηL
E[NH ] +

ληH

(kηL)2
· j ·GH(1), j ≥ 1. (54)

Replacing Eq.(51) and Eq.(54) into Eq.(49), we find the average number of files in

the system as

E[N ] =

(

1 +
ηH

ηL

)

E[NH ] + ληH
k + 1

2k

1

η2L
GH(1). (55)

Replacing Eq.(47) and Eq.(51) into Eq.(55), we can find the average number of

files in the system. Finally, using Little’s law E[N ] = λE[T ], and expressing the

scanning time as E[Ts] =
1

kηL
, we obtain Eq.(27).

By carefully comparing Eq.(3) and Eq.(27) one can notice that the average de-

lay for exponential scanning time is always higher compared to the delay induced

in the case with Erlang scanning time, since k+1
2k < 1,∀k > 1. This is in accor-

dance with queueing system experience, where higher variability usually reduces

performance.

High-variability scanning time. Finally, we proceed with the case of high

variability scanning time, which is modeled by an hyperexponential distribution

with two branches that will be mapped into two separate states (denoted with the

index L and V). The 2D Markov chain for this model is shown in Fig. 7. While

being in the scanning phase, the SU can be either in one of the (i, L) states (short

time of finding an available channel), or in one of the (i, V ) states (long time

until an available channel is found). The average scanning time in this setup is

E[Ts] =
p0
ηL

+ 1−p0
ηV

. In order to maintain the same E[Ts] as before, but with much

higher variability, we choose a very low value for 1− p0 (e.g. lower than 0.05) and

ηV << ηL.

Once more, the structure of this chain allows us to avoid numerical, matrix-

analytic methods, and instead apply the methodology of PGFs to derive a closed

form expression, given in the following theorem.

Theorem 3. The average file delay in interweave access with hyperexponential

scanning time is given by

E[Thyp] =
(ηHE[Ts])

2 + ηHµH

(

p0
η2L

+ 1−p0
η2V

)

+ 2ηHE[Ts] + 1

(1 + ηHE[Ts])(µH − λ− ληHE[Ts])
. (56)

Proof. Following the same procedure for the flow rates into and out of states of this

chain (Fig. 7), as we did for the interweave mode with exponentially and Erlang-
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distributed scanning times, we can write the balance equations as follows

π0,L (λ+ ηL) = p0ηHπ0,H (57)

πi,L (λ+ ηL) = λπi−1,L + p0ηHπi,H , i ≥ 1 (58)

π0,V (λ+ ηV ) = (1− p0)ηHπ0,H (59)

πi,V (λ+ ηV ) = λπi−1,V + (1− p0)ηHπi,H , i ≥ 1 (60)

π0,H (ηH + λ) = ηLπ0,L + ηV π0,V + µHπ1,H (61)

πi,H (λ+ µH + ηH) = λπi−1,H + ηLπi,L + ηV πi,V + µHπi+1,H , i ≥ 1. (62)

The probability generating function for the V-state is defined as

GV (z) =
∞
∑

i=0

πi,V z
i, |z| ≤ 1. (63)

As in the previous subsections, we multiply Eq.(58), Eq.(60), and Eq.(62) with

zi and add each one of them to Eq.(57), Eq.(59) and Eq.(62), respectively. After

some simple algebra we get the following system of equations with partial PGFs

as unknowns

[λ(1− z) + ηL]GL(z) = p0ηHGH(z), (64)

[λ(1− z) + ηV ]GV (z) = (1− p0)ηHGH(z), (65)

[λz(1− z) + ηHz + µH(z − 1)]GH(z) = ηLzGL(z)+ηV zGV (z)+µHπ0,H(z−1).

Expressing GL(z) and GV (z) through GH(z) in Eq.(64) and Eq.(65), and re-

placing them afterwards into Eq.(66) results in

GH(z) =
µHπ0,H(z − 1)

λz(1− z) + ηHz + µH(z − 1)− ηLzp0ηH
λ(1−z)+ηL

− ηV z(1−p0)ηH
λ(1−z)+ηV

. (66)

We replace the expression for GH(z) into Eq.(64) and Eq.(65) to get the GL(z) and

GV (z), respectively. The only unknown in these equations is the zero probability

for the high state, π0,H . We derive it in the same way as before (using a vertical

cut between neighboring triplets of states). We get

π0,H = GH(1)−
λ

µH

. (67)

A similar approach is used in finding GH(1). Replacing z = 1 into Eq.(65), we

have

GV (1) = (1− p0)
ηH

ηV
GH(1). (68)

In the same way, we replace z = 1 into Eq.(64), which leads to

GL(z) = p0
ηH

ηL
GH(1). (69)
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We next substitute Eq.(68) and Eq.(69) into GH(1)+GL(1)+GV (1) = 1. We get

GH(1) =

[

p0ηH

ηL
+

(1− p0)ηH
ηV

+ 1

]−1

. (70)

To get E[NH ] = G
′

H(1), we need to differentiate Eq.(66). After doing that and

using twice L′Hôpital′s rule, we obtain

E[NH ] =
−µHπ0,HF

′′

(1)

2F ′(1)2
, (71)

where F
′

(1) = F
′

1(1) + F
′

2(1) + F
′

3(1), and F
′′

(1) = −2λ − 2λp0ηH (λ+ηL)
η2L

−

2λ(1−p0)ηH (λ+ηV )
η2V

.

The “low component” of the average number of files is E[NL] = G
′

L(1). The

first derivative of GL(z) is found from Eq.(64), and is

G
′

L(z) =
p0ηHG

′

H(1) [λ(1− z) + ηL] + p0ηHλGH(z)

[λ(1− z) + ηL]
2 . (72)

So, for E[NL] we have

E[NL] =
p0ηHηLE[NH ] + p0ηHλGH(1)

η2L
, (73)

where E[NH ] is given by Eq.(71).

Next, we pursue the same procedure for the V-states. First, from

GV (z) =
(1− p0)ηH

λ(1− z) + ηV
·GH(z), (74)

we get the first derivative as

G
′

V (z) =
(1− p0)ηHG

′

H(z) [λ(1− z) + ηV ] + λ(1− p0)ηHGH(z)

[λ(1− z) + ηV ]
2 , (75)

and at point z = 1, E[NV ] is given by

E[NV ] = G
′

V (1) =
(1− p0)ηHE[NH ] + λ(1− p0)ηHGH(1)

η2V
. (76)

The average number of files in the system is E[N ] = E[NH ] + E[NL] + E[NV ].
Applying the Little’s law E[N ] = λE[T ], we obtain the average file delay as in

Eq.(56).
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Let’s consider now the term in brackets in the numerator of Eq.(56). It can be

rewritten as

p0

η2L
+

1− p0

η2V
=

1

η2V
+ p0

(

1

η2L
−

1

η2V

)

=
1

η2V
+

(

1

ηL
+

1

ηV

)

· p0

(

1

ηL
−

1

ηV

)

.

(77)

The average scanning time for this scenario is

E[Ts] =
p0

ηL
+

1− p0

ηV
=

1

ηV
+ p0

(

1

ηL
−

1

ηV

)

.

From the last equation, we have

p0

(

1

ηL
−

1

ηV

)

= E[Ts]−
1

ηV
.

Replacing the last equation into Eq.(77), we obtain

p0

η2L
+
1− p0

η2V
=

1

η2V
+

(

1

ηL
+

1

ηV

)(

E[Ts]−
1

ηV

)

>
1

η2V
+E[Ts]

(

E[Ts]−
1

ηV

)

= (E[Ts])
2 +

1

ηV

(

1

ηV
− E[Ts]

)

> (E[Ts])
2 . (78)

Since p0 < 1 it holds that 1
ηL

+ 1
ηV

> p0
ηL

+ 1−p0
ηV

= E[Ts]. Further, the average

scanning time is much lower than the average (occasional) long periods, i.e., 1
ηV

>

E[Ts]. This way we arrive at Eq.(78).

The corresponding term in the numerator of Eq.(3) is (E[Ts])
2
, and the other

terms in both the numerator and denominator are identical to the terms of Eq.(56).

This way we have shown that E[Thyp] > E[Texp], which is expected from queue-

ing systems. To conclude, we have shown that the following relation holds E[Thyp] >
E[Texp] > E[Terl]. This means that the variability of the scanning time plays a

crucial role on the average delay in the interweave access mode.

3.2 Delay analysis for underlay access

As we have already explained in Section 2.1, in the underlay CRN the SU can

transmit all the time (both when in high and low states). We can again model the

system with a 2D Markov chain, as shown in Fig. 8. Note the difference with

Fig. 5. While in Fig. 5 there is no transition backwards in the low states, in the

underlay CRN these transitions exist with rate µL = cL
∆ .

We should mention that π0,H (π0,L) denote, as before, the stationary probability

of finding the SU with no files to transmit while being in a high (low) period.

Theorem 4. The average file delay in the underlay access mode is given by

E[Tu] =
ηH + ηL + µH(1− π0,H) + µL(1− π0,L)− λ+ µLµH

λ
(π0,L + π0,H − 1)

µHηL + µLηH − λ(ηH + ηL)
(79)
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Figure 8: The 2D Markov chain for the underlay model.

Proof. There are two possible transitions out of state {0, L} (Fig. 8), with rates ηL
and λ, respectively. Hence, the total flow rate out of this state is π0,L(λ + ηL).
As far as the transitions into this state are concerned, there are two possibilities.

The first one is from state {0,H} with rate ηH , whereas the second one is from

state {1, L} with rate µL. Hence, the flow rate into this state is π0,HηH + π1,LµL.

Equating the flow rates into and out of state {0, L}, we get

π0,L(λ+ ηL) = π1,LµL + π0,HηH . (80)

For state {i, L}, when i > 0, there are three possible transitions out of it, with

rates λ, µL, and ηL, respectively. The total flow rate out of this state is πi,L(λ +
ηL+µL). Transitions from the following three states into state {i, L} are possible:

{i+ 1, L}, {i,H}, and {i− 1, L}. The rates for these transitions are µL, ηH , and

λ, respectively. Hence, the total flow rate into state {i, L} is πi−1,Lλ+πi+1,LµL+
πi,HηH , and the balance equation for states {i, L} , i > 0 is

πi,L(λ+ ηL + µL) = πi−1,Lλ+ πi+1,LµL + πi,HηH , (i > 0). (81)

Obviously, the upper part of the chain is identical to the upper part of the chain

corresponding to the interweave mode with exponential scanning time (Fig. 5). As

a result, Eq.(5) and Eq.(7) from the previous analysis do not change. We rewrite

those equations here:

π0,H(λ+ ηH) = π1,HµH + π0,LηL. (82)

πi,H(λ+ ηH + µH) = πi−1,Hλ+ πi+1,HµH + πi,LηL, (i > 0). (83)

Similarly as before, we define the probability generating functions for both the

low and high states as

GL(z) =
∞
∑

i=0

πi,Lz
i, and GH(z) =

∞
∑

i=0

πi,Hzi, |z| ≤ 1.
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After multiplying Eq.(81) by zi, adding it to Eq.(80), and rearranging (in the

same direction as we did for interweave CRN), we obtain

(λ+ ηL + µL)GL(z) = λzGL(z) + ηHGH(z)

+
µL

z
(GL(z) − π0,L) + π0,LµL. (84)

Multiplying Eq.(83) by zi, adding it to Eq.(82), and rearranging, we get

(λ+ ηH + µH)GH (z) = λzGH(z) + ηLGL(z)

+
µH

z
(GH(z) − π0,H) + π0,HµH . (85)

Solving the system of equations Eq.(84)-(85) gives

f(z)GL(z) = π0,HηHµHz + π0,LµL [ηHz + (λ− zµH)(1− z)] , (86)

where

f(z) = λ2z3 − λ(ηL + ηH + λ+ µH + µL)z
2

+ (ηLµH + ηHµL + µLµH + λµH + λµL)z − µLµH . (87)

It can be proven that the polynomial in Eq.(87) has only one root in the open

interval (0, 1) [12]. This root is denoted as z0. Setting z = z0 into Eq.(86), and

after performing some simple algebra we get π0,L and π0,H , as

π0,L =
ηH

(

ηHµL+ηLµH

ηH+ηL
− λ

)

z0

µL(1− z0)(µH − λz0)
, (88)

π0,H =
ηL

(

ηHµL+ηLµH

ηH+ηL
− λ

)

z0

µH(1− z0)(µL − λz0)
. (89)

Finally, using Little’s law E[N ] = λE[T ] [7], we obtain Eq.(79).

3.3 Underlay access with multiple power levels

In the underlay spectrum access technique, the assumption of two power levels

for the SU might not be very realistic. Instead, depending on its position, an SU

would be able to adjust its transmission power to multiple power levels, leading

thus to a set of multiple data rates. Furthermore, if we assume that the time an SU

spends being on a level with a given rate, then the corresponding Markov chain

would have more states vertically. In the following, we derive the average system

time for a file in such a scenario, considering that there are M different data rates

(power levels).

We model the SU time intervals with the multilevel scheme as shown in Fig. 9.

The duration of each period is exponentially distributed with rate ηi, i = 1, . . . ,M .
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Figure 9: The multi-power underlay model.

Each period Ti corresponds to the time during which the SU is having the same data

rate. We call these periods levels or phases.

The durations of any level are mutually independent, and at the same time

independent of durations of other levels. The data transmission rates during periods

with different power levels are denoted by µi, i = 1, . . . ,M . As before, the traffic

arrival process is Poisson and file sizes are exponentially distributed. Again, we

consider the FCFS scheduling discipline.

Based on the assumptions we have made, our system can be modeled with a

2D Markov chain that is bounded in one dimension (the dimension that represents

the number of levels). This is shown in Fig. 10. The same Markov chain, but used

in a different context is given in [13]. The interested reader can find more details

there.

The possible level transitions are shown only for the state (0, 1) and partially

for (j, 2) to avoid making the figure look more complex. πk,i denotes the stationary

probability of being in level i (where i corresponds to the power level resulting in

a data rate of µi), and having k files in the buffer. There are a number of possible

transitions corresponding to the following events:

new arrival: From any state, the chain moves to the right (horizontally) with

rate λ.

flow finishes transmission: From any state {k, i} (k > 0), the chain moves to

the left (horizontally) with rate µi.

change in the power level: The chain moves (vertically) from level i to another

level j (transition to all the levels are possible with no exception) with rate ηi,j, i 6=
j.

If we denote by ηi the (total) rate at which a user leaves power level i, it holds

that ηi =
M
∑

j=1
ηi,j , for i 6= j.

We start by writing the balance equations for this Markov chain as

(λ+ ηi)π0,i = µiπ1,i +

M
∑

j=1

ηj,iπ0,j, (90)
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Figure 10: The 2D Markov chain for multilevel underlay model.
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for i = 1, . . . ,M , k = 0, and

(λ+ µi + ηi)πk,i = λπk−1,i + µiπk+1,i +

M
∑

j=1

ηj,iπk,j, (91)

for i = 1, . . . ,M and k > 0. Summing Eq.(90) and Eq.(91) multiplied by zk, and
then summing up over all k, we get

λ

∞∑

k=0

πk,iz
k + µi

∞∑

k=1

πk,iz
k +

∞∑

k=0

πk,iz
k

M∑

j=1

ηi,j

= λ

∞∑

k=1

πk−1,iz
k + µi

∞∑

k=1

πk,iz
k−1 +

M∑

j=1

ηj,i

∞∑

k=0

πk,jz
k
. (92)

We define the PGF for each level as

Gi(z) =

∞
∑

k=0

πk,iz
k, |z| ≤ 1, i = 1, . . . ,M. (93)

Eq.(92) is now transformed into

λGi(z) + µi [Gi(z)− π0,i] +Gi(z)
M
∑

j=1

ηi,j

= λzGi(z) +
µi

z
[Gi(z)− π0,i] +

M
∑

j=1

ηj,iGj(z). (94)

After performing some algebra, we have

[λz(1− z) + µi(z − 1) + ηiz]Gi(z)−

M
∑

j=1

ηj,izGj(z)

= µi(z − 1)π0,i, i = 1, . . . ,M. (95)

In Eq.(95), after introducing the substitution

fi(z) = λz(1− z)− µi(1− z) + ηiz, (96)

we obtain the following equation

F(z)g(z) = (z − 1)θ, (97)

where

F(z) =













f1(z) −η2,1z −η3,1z . . . −ηM,1z

−η1,2z f2(z) −η3,2z . . . −ηM,2z

...
...

... . . .
...

−η1,Mz −η2,Mz −η3,Mz . . . fM(z)













,
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g(z) =













G1(z)

G2(z)

...

GM (z)













,θ =













µ1π0,1

µ2π0,2
...

µMπ0,M













.

Applying Cramer’s rule to Eq.(97), we obtain

|F(z)|Gi(z) = |Fi(z)| (z − 1). (98)

|Fi(z)| is the determinant obtained after replacing the ith column of |F(z)| with

θ. As can be observed from Eq.(96), at point z = 1, f1(1) = η1. Also, at this

same point the sum of the elements in rows 2 to M of the first column (−η1,2z −
η1,3z− . . .− η1,Mz) represents the sum of transition rates out of state 1 multiplied

by −1. If we substract row 1 from the sum of the other rows, we have 0 at the

element {1, 1} of the determinant |Fi(z)|. Similar conclusions can be drawn for

the other elements of the first row. Hence, we can obtain an equivalent determinant

|F(z)| with all the elements of the first row equal to 0. So, z = 1 is one root of this

determinant. Hence, we can write

|F(z)| = (z − 1)Q(z). (99)

Replacing Eq.(99) into Eq.(98) we get

Q(z)Gi(z) = |Fi(z)| . (100)

In order to get the partial probability generating functions Gi(z), we need first

to find the zero probabilities π0,1, π0,2, . . . , π0,M . To do this, we proceed in the

following way. First, we find the roots of Q(z). Since our system is of order

M > 2, these solutions can only be obtained numerically. The polynomial Q(z)
is of degree 2M − 1. However, only M − 1 of its roots lie in the interval (0, 1)
(which is our interval of interest)3. We denote these roots by z1, . . . , zM−1. Since

Gi(z) 6= 0 (all the probabilities pk,i are positive), then from Eq.(100), we have that

|Fi(zj)| = 0, i = 1, . . . ,M, j = 1, . . . ,M − 1. However, from Eq.(100) we can

observe that, for each zj , and any pair 1 ≤ i, l ≤ M ,
|Fi(zj)|
|Fl(zj)|

= const. This means

that for each zj we have M homogeneous linear equations that differ from each

other only by a constant factor. Hence, |Fi(zj)| = 0 gives only one independent

equation for each root zj . Given that there are M − 1 different roots zj , it turns out

that there are in total M − 1 independent equations. Since we have M unknown

probabilities π0,1, π0,2, . . . , π0,M , and only M − 1 equations, we cannot obtain

unique solutions for these probabilities. So, we need another condition that relates

these zero probabilities, and that is independent of the other M − 1 equations.

3The proof to this claim is rather long and complicated, and we do not show it here. It was proven

by Mitrani and Itzhak in [14], pp. 632-634.
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Let’s consider the vertical cut between states k and k+1. The balance equation

through this cut is

λ(πk,1 + πk,2 + . . .+ πk,M) = µ1πk+1,1 + . . .+ µMπk+1,M . (101)

Summing over all k yields

λ

M
∑

i=1

πi = µ1(π1 − π0,1) + . . .+ µM (πM − π0,M ). (102)

πi =
∞
∑

k=0

πk,i denotes the percentage of time the system is in level i. Eq.(102) can

be rewritten as

µ− λ =

M
∑

i=1

µiπ0,i, (103)

where µ =
M
∑

i=1
µiπi is the average service rate of the system. Eq.(103) is the

M th equation of the system we need to solve in order to get the zero probabilities.

However, we do need to determine the probabilities πi first.

We can find πi by following a standard embedded MC approach for the (col-

lapsed) chain with only M states (corresponding to the M levels). If we denote by

qi,j the transition probabilities in the embedded chain, then qi,j =
ηi,j
ηi

, and

πi =

ri
ηi

M
∑

i=1

ri
ηi

, (104)

where ri are the solutions to the global balance equations for the embedded Dis-

crete Time Markov Chain (DTMC):
M
∑

i=1
ri = 1, and rj =

M
∑

i=1
riqi,j .

Replacing Eq.(104) into Eq.(103), we have the M th equation of our system.

Now, solving that system we get all the zero probabilities. The partial PGFs are

found from Eq.(100) as

Gi(z) =
|Fi(z)|

Q(z)
, i = 1, . . . ,M. (105)

The average number of files in the system is

E[N ] =

M
∑

i=1

G
′

i(1). (106)

Using Little’s law E[N ] = λE[T ], we get the following result:

Result 5. The average file delay in a multilevel underlay spectrum access tech-

nique is given by

E[T ] =
1

λ

M
∑

i=1

(

|Fi(z)|

Q(z)

)′

z=1

. (107)
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3.4 SU with multiple channels

Our model can be easily adapted to capture the SU activity utilizing multiple

channels concurrently (channel bonding). Depending on the policy the SU follows

after losing a channel, different scenarios will arise. In the scenario we will illus-

trate in the following, after losing the first channel (we assume one PU per channel,

but this can easily be generalized) the SU does not initiate the scanning procedure.

Rather, she continues transmitting with a lower number of channels, until she loses

all of them. We assume that the maximum number of channels the SU can bond

together is M . After getting all of them together, the SU will transmit at the high-

est rate. Once the SU starts losing the channels one after another, the data rate will

decrease accordingly. After the last available channel is lost, only then will the SU

initiate the scanning procedure. In the following, we will consider the interweave

mode first.

a) Interweave mode: We assume that the distribution of the PU idle periods is

identical exponentially distributed with rate ηH . This is in line with our assump-

tions in the original single channel model. The arrival process is Poisson with rate

λ. The scanning time is exponentially distributed (but now to bond M channels)

with rate ηL. The scanning time can be also Erlang or hyperexponential, with no

major changes in the analysis. The Markov chain to mimic this system has more

than two states vertically. Each state is described by the couple {j, i}, where j is

the number of files in the SU buffer, and i represents the number of channels the

SU is currently transmitting on. The 2D Markov chain is shown in Fig. 11. There

are a number of possible transitions corresponding to the following events:

New arrival: From any state of any level, the chain moves to the right (horizontally)

with rate λ.

File finishes transmission: From any state {j, i} , (i > 0), the chain moves to the

left (horizontally) with a different rate. This rate depends on the number of chan-

nels the user is currently having. If the rate of a channel is µH , then with i channels

having identical exponential distribution, the transition rate is iµH . So, going from

the first row down, these rates are MµH , (M − 1)µH , . . . , µH . Needless to say,

when all the channels are lost, the SU initiates scanning and there is no transmis-

sion. Hence, no transition backwards in the last row (for states {j, 0}).

Losing a channel due to PU return in that channel: When such an event occurs the

chain moves vertically from level i (state j, i) to level i− 1 (state {j, i − 1}) (tran-

sitions only to the neighboring states are possible vertically). The rate at which the

chain moves vertically depends on the number of channels she is currently using.

Namely, if the SU is communicating on all the M channels, then the transition rate

to level M − 1 is MηH . The reason is that we are looking at the minimum of M

exponentially distributed random variables (the first channel to lose), and the rate

of such a random variable is equal to the sum of the rates of the individual random

variables, which is MηH . When transmitting on M − 1 channels, the chain moves

downwards at rate (M − 1)ηH . Finally, after being left with only one channel,

the chain moves to the last level (row) with rate ηH . Obviously, due to the pol-
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Figure 11: The 2D Markov chain for the multichannel interweave model.

28



icy used that after losing a channel transmission goes on, it is not possible to have

transitions vertically upwards. Only when the chain is in one of the states {j, 0} a

transition upwards is possible. Namely, then the scanning for M channels starts,

and the chain moves to the first level after bonding M channels together. We as-

sume that this happens according to an exponential distribution with rate ηL. This

model can also capture, with a slight modification, the Erlang and hyperexponen-

tially distributed scanning times too.

Having introduced all the possible transitions with the corresponding transition

rates, we can proceed to solve the Markov chain. Its solution will lead to the

average file delay in the multichannel interweave mode.

If we look carefully at the chain in Fig. 11, we can infer that this chain is

actually a special case of the more general chain we have already solved. That

is the chain corresponding to the M different power levels in the underlay mode

(Fig. 10).

Our chain is a special case of the chain in Fig. 10 with the following rates:

µM = MµH , µM−1 = (M − 1)µH , . . . , µ1 = 0, η1,M = ηL, ηi,i−1 = iηH , and

all the other ηi,j = 0.

b) Underlay mode: The Markov chain for the multichannel underlay model is

slightly different compared to the interweave model (Fig. 11). There is no scanning

time involved here. The rate at which the PU leaves the channel, in line with the

single channel case, is exponentially distributed with rate ηL. The SU uses always

the same set of M channels. Once a channel is lost due to PU return, the rate

contribution from that channel is µL and (M − 1)µH from the idle channels. The

2D Markov chain is shown in Fig. 12. There are a number of possible transitions

corresponding to the following events:

New arrival: From any state of any level, the chain moves to the right (horizontally)

with rate λ.

File finishes transmission: From any state {j, i} , (i > 0), the chain moves to the

left (horizontally) with a different rate. This rate depends on the number of chan-

nels the user is currently having idle and busy. If the rate of a channel is µH , then

with i idle channels the transition rate is iµH + (M − i)µL. The reason is that if

there are i idle channels, the SU will transmit at full power on those, and on the

remaining M − i channels that are busy, she can transmit at the lower rate of µL.

Hence, the total rate in this case is iµH + (M − 1)µL.

Losing (getting) a channel due to PU return (departure) in (from) that channel: Since

we are dealing with the underlay mode, there is no scanning of other channels in-

volved. The SU is stuck with a given set of M channels. When an event of losing

a channel occurs the chain moves vertically from level i (state {j, i}) to level i− 1
(state {j, i− 1}) (transitions only to the neighboring states are possible vertically).

The rate at which the chain moves vertically depends on the number of channels

she is currently using. Namely, if the SU is communicating on all the M channels,

the transition to level M −1 is MηH . The reason is that we are looking at the min-

imum of M exponentially distributed random variables (the first channel to lose),

and the rate of such a random variable is equal to the sum of rates of the individ-
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Figure 12: The 2D Markov chain for the multichannel underlay model.
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ual random variables, which is MηH . When transmitting on M − 1 channels, the

chain moves downwards with rate (M − 1)ηH . Finally, after being left with only

one channel, the chain moves to the last level (row) with rate ηH .

In case a channel becomes idle while being at state {j, i}, the chain moves

vertically upwards to state {j, i+ 1}. The rate at which the chain moves vertically

depends on the number of channels that are occupied by the corresponding PUs.

For instance, if 5 channels are busy, then the rate at which the first one leaves is

exponentially distributed with rate 5ηL (the minimum of 5 identical exponentially

distributed variables). So, if the chain is in state {j, i}, the transition rate to state

{j, i + 1} is iηL. Having introduced all possible transitions with the corresponding

transition rates, we can proceed solving this Markov chain. Its solution will lead to

the average file delay in the multichannel underlay mode.

This chain is also a special case of the chain of Fig. 10, with the following

rates: µM = MµH , µM−1 = (M − 1)µH +µL, . . . ,MµL, ηi,i−1 = iηH , ηi,i+1 =
(M − i)ηL. The solution to this chain is then similar to that of Fig. 10.

We would like to point out again that depending on the scanning policy, dif-

ferent chains will arise. Nevertheless, most of them will be special cases of the

M -level model.

3.5 Miss-detections and false alarms

So far, we have been assuming that spectrum sensing is perfect. However, in

practice that is not the case, since often the SU cannot detect the presence of a PU

signal. When that happens, we say that there is a miss-detection. We assume that

the probability of miss-detection is equal to pmd [15]. On the other hand, if the SU

is very sensitive and can detect even a very low power signal (not coming from a

PU), the SU will perceive it wrongly as PU signal. This is known as false alarm,

and the corresponding probability is denoted by pfa.

Let’s consider the underlay mode (Fig. 8). We assume that an SU periodically

senses the channel. Let’s denote with E[Tis] the average inter-sensing time (the

average time between two consecutive sensing instants). We assume w.l.o.g. that

it is constant, and each trial is Bernoulli with a probability of “success” (the prob-

ability of a PU arriving to the channel) p = E[TOFF ]
E[TON ]+E[TOFF ] . In the ideal case (no

false alarms nor miss-detections), the average ON period would be

E[TON ] =
1

p
E[Tis]. (108)

In case we consider both miss-detections and false alarms, then the proba-

bility of a PU arrival as perceived by the SU is p(1 − pmd), i.e., there is an ar-

rival and it is correctly detected. In order the SU to remain in the high period,

there must be no arrivals nor false alarms. The probability for this to happen is

(1− p (1− pmd)) (1− pfa). From this we get the probability of an SU leaving

the high state at the moment of sensing as 1− (1− p (1− pmd)) (1− pfa), which
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after rearranging leads to

p
′

= pfa + (1− pmd) · p · (1− pfa) . (109)

The actual average duration of an ON period when we take into account these

imperfections is

E[TON,im] =
1

p
′
E[Tsense] =

p

p
′
E[TON ], (110)

E[TON,im] =
p

pfa + (1− pmd) · p · (1− pfa)
·E[TON ], (111)

and for the transition rate out of an ON period

η
′

H =
1

E[TON,im]
=

pfa + (1− pmd) · p · (1− pfa)

p
· ηH . (112)

We consider next the average duration of an OFF period when imperfections

are considered. In the ideal scenario, the average duration of the OFF period would

be

E[TOFF ] =
1

q
E[Tis], (113)

where q = E[TON ]
E[TON ]+E[TOFF ] is the probability that at a given sensing time the PU

has left (equivalent to no PU).

As opposed to the ideal scenario, the probability of a PU leaving the observed

channel as perceived by the SU is q · (1 − pfa), i.e., there is a PU “departure”

and the SU can “see” it. The event of moving out of a low (OFF) period can be

due to a miss-detection or to the fact that PU has really left. The probability for

an SU to stay in the OFF period is simply (1− pmd) (1− q · (1− pfa)), while the

probability to leave is 1− (1− pmd) (1− q · (1− pfa)), leading to

q
′

= pmd + (1− pfa) · q · (1− pmd) . (114)

For the average duration of the low periods, we obtain

E[T
′

OFF ] =
1

q
′
E[Tis] =

q

q
′
E[TOFF ], (115)

and

E[T
′

OFF ] =
q

pmd + (1− pfa) · q · (1− pmd)
·E[TOFF ]. (116)

From Eq.(116) we get the transition rate out of a low period as

η
′

L =
1

E[T
′

OFF ]
, (117)

resulting in

η
′

L =
pmd + (1− pfa) · q · (1− pmd)

q
· ηL. (118)
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The other transition rate parameters of Fig. 8 remain unchanged. Although the

result expressed through Eq.(79) will not be the same, the procedure is identical.

Hence, the obtained results will still be in closed-form. The same conclusion can

be drawn for the interweave access mode as well.

3.6 Analytical comparison of delays in underlay and interweave mode

Having derived the formulas for the mean delay in underlay and interweave

CRNs in Sections 3.1 and 3.2, we are able to compare the delays incurred in each

of them. As could have been noticed, the delay depends on the statistics of the

PU activity, data rate, traffic intensity, and scanning time. In a first scenario, we

assume that the SU has to decide at the beginning which of the access modes to

use: underlay (i.e. always stay on same channel and transmit with the permitted

power), or interweave (i.e. become silent whenever a PU arrives on the channel

and scan for a new one). We will refer to this simply as “the static policy”. While

not a real policy per se (in practice, a node will always be able to scan and switch

channels eventually), it allows us to gain some insights as to the relative parameters

affecting the performance in each case. In Section 3.7, we will consider a more

realistic, dynamic policy.

In general, for interweave access to outperform underlay access, the expected

scanning time E[Ts] should be short enough to ensure that the opportunity cost of

not transmitting/receiving any data for some time (which is allowed in underlay)

is amortized by the quick discovery of a new white space. In Table 2, we provide

analytical expressions for the maximum E[Ts] values for which interweave access

has lower delays. As can be seen from Table 2, there is a complex dependency

on the various system parameters. What is more, this “boundary” point further

depends on the variability of the scanning time.

From Table 2 we can observe the following relations: B2 = 2kA2, B3 =
2kA3, and B1 < 2kA1. So, for the crossing point of the Erlang distributed scan-

ning time, we have

−B2 +
√

B2
2 − 4B1B3

2B1
=

−2kA2 +
√

4k2A2
2 − 4B1 · 2kA3

2B1
>

>
−2kA2 +

√

4k2A2
2 − 8kA1 · 2kA3

2B1
>

−2kA2 +
√

4k2A2
2 − 16k2A1A3

4kA1
=

=
−A2 +

√

A2
2 − 4A1A3

2A1
(119)

From Eq.(119) we can observe that for the interweave mode to outperform

underlay access, in the case of exponentially distributed scanning time a smaller

scanning time is needed compared to the case of Erlang distributed scanning time.

Similar conclusions can be drawn by comparing the parameters of hyperexponen-

tial distribution with the two previous ones, i.e., for hyperexponential distributed

scanning time the scanning time is required to have the lowest value, so that the
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Table 2: The analytical comparison of underlay and interweave modes.
Ts Condition Notation

Erlang E[Ts] <
−B2+

√
B2

2
−4B1B3

2B1

B1 = 2η2
Hk + ηH(k + 1)µH + 2kE[Tu]λη

2
H

B2 = ηH(4k − 2kµHE[Tu] + 4kE[Tu]λ)

B3 = 2k(1− (µH − λ)E[Tu])

Exponential E[Ts] <
−A2+

√
A2

2
−4A1A3

2A1

A1 = ηH(µH + ηH) + λη2
HE[Tu] > 0

A2 = 2ηH − ηH(µH − 2λ)E[Tu]

A3 = 1− (µH − λ)E[Tu]

Hyperexponential E[Ts] <
−C2+

√
C2

2
−4C1C3

2C1

C1 = ηLηV η2
H (1 + λE[Tu])

C2 = ηH [µH(ηV + ηL) + ηLηV (2 + 2λE[Tu]− µHE[Tu])]

C3 = ηLηV − ηHµH − ηLηV (µH − λ)E[Tu]

interweave mode still outperforms the underlay access. We can observe that the

variability of the scanning time has an important impact on the boundary scanning

time. The higher the variability of the scanning time, the lower the scanning time

needed for the interweave mode to outperform the underlay access.

3.7 The delay minimization policy

In the previous section, we have compared underlay and interweave access, in a

“static” context, where the decision between the two is made once, at the beginning.

In practice, a node with a cognitive radio will normally be able to choose to stay at

the current channel and transmit at low(er) power, or scan for a new white space at

any time. Such a hybrid policy might lead to a further improvement in performance,

if designed properly. We next define such a hybrid policy, identify the conditions

under which it offers gains, and derive an optimal switching rule (from the one

mode to the other).

Definition 1. Delay minimization policy.

• The SU will reside on the current channel if it is idle (no PU activity) and

continue its activity there.

• If a PU is detected, the SU will continue transmitting with lower power, until

a time t, called the “turning point”.

• If the PU does not release the channel by time t, then the SU ceases trans-

mission and starts scanning for a new idle channel.

• If the PU leaves the channel before t, then the SU resumes transmitting at

higher power, and resets the turning point to t time units ahead.

The above policy is generic. Our goal is to find an optimal value for t. Let

us consider some cases, to better understand the tradeoffs involved. First, if the

static interweave policy, as described in the previous section is better than the static

underlay policy, then it is easy to see that the optimal value of t is 0: it is always
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better to start scanning immediately when a PU arrives. Hence, we are interested

only in cases where the underlay is better on average (i.e. the respective condition

in Table 2 not satisfied), but there are instances when the current channel remains

busy for too long and it then becomes better to start scanning instead.

In the above context, assume that the PU activity (OFF) periods are exponen-

tially distributed. Assume further that a PU arrived at the current channel and t

units have already elapsed and the channel is still busy. Due to the memoryless

property of the exponential distribution, the remaining time until the PU leaves

is still the same, as in the beginning (when the PU just arrived), i.e. equal to

E[TOFF ]. Hence, if at time 0 it was better to stay on the channel and transmit

at lower rate rather than initiate scanning (which is what we assumed above), for

any elapsed time t it is still better to stay on the channel and not start scanning.

A similar conclusion can be drawn for PU activity periods with increasing failure

rate (IFR)4, i.e. lower variability than exponential. There, if at t = 0 one cannot

gain by scanning (i.e. static underlay is better on average), then as t increases, the

expected gain from staying in the underlay mode in fact increases.

Hence, we can conclude that a dynamic policy (i.e. an optimal value of t

strictly larger than 0) may offer gains only for PU activity periods with decreasing

failure rate (DFR). There, although at the beginning, when the PU arrives, it might

be on average better to do underlay, as time elapses, the expected remaining PU

busy time keeps increasing (above the average), until at some point it becomes

profitable to stop and scan for a new empty channel. This allows the dynamic

policy to outperform any of the static policies, as we show later, by essentially

“pruning” the long OFF periods from the underlay mode.

In deriving the optimal turning point for the dynamic delay policy we make the

assumption that files are not excessively large (average size ∆), and that they can

be transmitted in 1-2 ON and OFF periods and that the arrival rate is not high. We

use these approximations to keep the analysis tractable. Under these assumptions,

the total transmission delay is almost equal to the average service time. If by

pON = E[TON ]
E[TON ]+E[TOFF ] we denote the probability that an arriving file will find the

system in an ON state, and by pOFF = E[TOFF ]
E[TON ]+E[TOFF ] the probability of finding

the system in an OFF state, then the average service time would be

E[S] = pONE[TX,ON ] + pOFFE[TX,OFF ]. (120)

In Eq.(120), E[TX,ON ] (E[TX,OFF ]) denotes the average service time of a file that

arrives during an ON (OFF) period. Each arriving file (in an ON period) will be par-

tially transmitted during the time T e
ON , which is the remaining (excess) duration of

the ON period. Then, at the beginning of the OFF period, the remaining file size is

∆0. There are two options for the OFF periods (larger or smaller than t). With

probability P [TOFF < t] = FOFF (t) (FOFF (t) is the cumulative distribution

function (CDF) of the OFF period at t), the next OFF period will be short enough,

4The distributions with increasing (decreasing) failure rate are those for which
f(x)

1−F (x)
is an

increasing (decreasing) function of x.
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so the SU will reside on the current channel and transmit with low power. In that

case, the file will be completely transmitted in the next ON period. On the other

hand, with probability P [TOFF > t] = F̄OFF (t), the next OFF period will be

larger than the turning point. Note that P [TOFF > t] = 1−FOFF (t) = F̄OFF (t)
is the complementary cumulative distribution function (CCDF) of the OFF period

at t. After that, the SU will initiate the scanning procedure and will start looking

for another available channel (for Ts time units). During that period of time, there

will be no transmissions. After finding an available channel, the SU will transmit

with rate cH . So, the average service time of a file arriving during an ON period is

E[TX,ON ] = E[T
(e)
ON ] + FOFF (t)

{

E[TOFF |TOFF < t] +
∆0 − cLE[TOFF |TOFF < t]

cH

}

+ F̄OFF (t)

{

t+ E[Ts] +
∆0 − cLt

cH

}

+ΩON . (121)

Note that in Eq.(121), the term ΩON represents the contribution to the average

delay of other scenarios not included in the other term (the file transmitted during

the first ON period, during the first OFF period, or eventually if it needs more ON

and OFF periods to complete the transmission). However, as we have assumed that

file sizes are exponentially distributed, and hence with a low variance, and that their

sizes are such that in most cases it will suffice 1-2 ON-OFF periods to complete

the transmission, the term ΩON is negligible (ΩON− > 0).

For files arriving during an OFF period, there are also two possibilities. They

could either arrive to an OFF period whose remaining time, T
(e)
OFF , is shorter than

the turning point, or to an OFF period with excess time larger than t. The probabil-

ity for the first scenario is P
[

T
(e)
OFF < t

]

= F
(e)
OFF (t) , while for the second one it

is P
[

T
(e)
OFF > t

]

= F̄
(e)
OFF (t). In the first case, the SU will remain on the current

channel and continue its transmission with rate cL, and the file will be transmitted

during the next ON period (when the rate is cH ). In the second case, after time t,

the SU will initiate the scanning process (no transmission) that will last Ts until an

idle channel is found, and then will transmit with rate cH . The file will be trans-

mitted during that ON period. So, the average service time of a file arriving during

an OFF period can be expressed as

E[TX,OFF ] = F
(e)
OFF (t)







E
[

T
(e)
OFF |T

(e)
OFF < t

]

+
∆− cLE

[

T
(e)
OFF |T

(e)
OFF < t

]

cH







+ F̄
(e)
OFF (t)

{

t+ E[Ts] +
∆− cLt

cH

}

+ΩOFF . (122)

For the same reasons as for ΩON in Eq.(121), the term ΩOFF in Eq.(122) can be

neglected.

In Eq.(121), the following two terms are equivalent to

E
[

T
(e)
ON

]

=
E[T 2

ON ]

2E[TON ]
, (123)
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E[TOFF |TOFF < t] =

∫ t

0

xfOFF (x)

FOFF (t)
dx. (124)

Similarly, we have the following relations for the terms in Eq.(122)

F
(e)
OFF (t) =

∫ t

0
f
(e)
OFF (x)dx, (125)

E
[

T
(e)
OFF |T

(e)
OFF < t

]

=

∫ t

0

xf
(e)
OFF (x)

F
(e)
OFF (t)

dx. (126)

In the two previous equations we have

f
(e)
OFF (x) =

1− FOFF (x)

E[TOFF ]
. (127)

Replacing Eq.(121) and Eq.(122) into Eq.(120), we find the average service time.

We are assuming that the average transmission delay is almost identical to the

average service time, i.e. E[T ] ≈ E[S]. Further, to find the value of turning point

that minimizes the delay, we need to solve the following equation

∂E[T ]

∂t
= 0. (128)

So, the solution to Eq.(128) is the optimal turning point. For illustration purposes,

after solving Eq.(128), the following result provides an analytical expression for

the case of Pareto distributed OFF periods (with parameters L,α), a popular distri-

bution with decreasing failure rate, and for exponential ON periods.

Result 6. The optimal turning point, topt, in a Cognitive Radio Network can be

found as the solution to

ηH

ηH + ηL
·
cH − cL

cH

((

1−
1

α

)

t1+α +
1

α
Lα−1t2

)

+
ηH

ηH + cH
∆

·
ηL

ηH + ηL

(

cH − cL

cH
Lαt− E[Ts]αL

α

)

= 0. (129)

The solution to Eq.(129) can be obtained numerically. Table 3 summarizes all

the possible scenarios.

Table 3: Summary of the delay policies.

Scenario Optimal dynamic policy

Static interweave better Static interweave (topt = 0)

Static underlay better + IFR OFF Static underlay (topt = ∞)

Static underlay better + Exp. OFF Static underlay (topt = ∞)

Static underlay better + DFR OFF Dynamic policy with topt ∈ (0,∞)
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Figure 13: The Markov chain illustrating the dynamics of the number of idle chan-

nels.

It is interesting to note that, unlike the variability of OFF periods for underlay

access, the variability of the scanning time distribution (the “OFF” periods in the

interweave mode) does not affect the dynamic policy decisions. It only enters

the picture for the comparison between the static underlay and interweave modes

(Table 2).

It is also positive that in all but few cases the optimal policy is just the static

one. This reduces the complexity of the algorithm significantly, as one needs to

make this decision only once. In practice, some recalculation of this threshold (and

thus the optimal mode) might still be necessary periodically, in order to account

for qualitative (e.g. non-stationarity) changes in the behavior of the system and

estimated statistics.

4 Throughput analysis of underlay and interweave access

4.1 Analytical comparison of throughput

The content of this subsection can be found in our journal submission.

4.2 Throughput model with multiple channels

Our approach based on the renewal-reward theory still holds. The policy is

the same as for the delay models presented above. We will consider first the in-

terweave model. For the sake of simplicity we will show the analysis assuming

exponentially distributed OFF periods. If at first the user transmits on M channels,

assuming the same capacity on all of them, the average amount of data sent during

the time the user has all the M channels available is McH
MηH

= cH
ηH

. From the moment

losing the first channel to the moment losing the second one, the average amount

of transmitted data is the same, because
(M−1)cH
(M−1)ηH

= cH
ηH

. In the second case, we

have the minimum of (M − 1) exponentially distributed random variables, hence
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Figure 14: The delay for underlay spectrum access.

the factor (M − 1) in the denominator. The same result propagates to any number

of available channels. During the scanning phase, there is no transmission. The

average duration until the first channel is lost is 1
MηH

, then for the second channel

to become occupied after the first one is already busy is 1
(M−1)ηH

, and so on. The

average duration between losing the penultimate and the last channel is 1
ηH

. The

average duration of the scanning time is 1
ηL

. So, the average cycle duration is

E[Ti,cycle] =
1

ηH

(

1

M
+

1

M − 1
+ . . .+ 1

)

+ E[Ts].

For the average reward rate (average throughput) during a cycle for the multi-

channel interweave mode we have

E[Xi] =
E[Ri]

E[Ti,cycle]
=

M cH
ηH

1
ηH

∑M
i=1

1
i
+ E[Ts]

. (130)

As far as the throughput model for the multichannel underlay mode is con-

cerned, the situation is slightly different, although the approach relies on renewal-

reward theory. As a first step, we need to define the cycle duration and the amount

of data transmitted during a cycle. To that direction, we define the cycle as the du-

ration from the moment the SU collects all the M channels until the next moment
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Figure 15: The delay for interweave spectrum access in a cellular scenario.
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Figure 16: The delay for interweave spectrum access in a WiFi scenario.
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when she will have collected M channels. Since we are dealing with exponen-

tially distributed random variables and Markov chains, due to the strong Markov

property, the moment the SU collects all the M channels can be considered to be

the point when the system probabilistically restarts itself. Hence, that moment can

be considered to be a renewal. We have already established the transition rates of

a given state depending on the fact whether there is a channel gained or lost (see

Fig. 12). The corresponding Markov chain is illustrated in Fig. 13. Basically, this

chain is the same as any of the vertical chains of Fig. 12. The state i, i = 0, . . . ,M
denotes the number of idle channels the SU is transmitting on.

Before obtaining the average cycle duration, we need to determine the station-

ary probabilities of the states of the chain, i.e., πi, for i = 0, . . . ,M .

The local balance equations for this chain are:

1) for states 0 and 1: ηHπ1 = MηLπ0 => π1 =
MηL
ηH

π0;

2) for states 1 and 2:

2ηHπ2 = (M − 1)ηLπ1 => π2 =
(M−1)ηL

2ηH
π1 =

M(M−1)
2 ( ηL

ηH
)2π0;

3) for states 2 and 3:

3ηHπ3 = (M − 2)ηLπ2 => π3 = (M−2)ηL
3ηH

π2 = M(M−1)(M−2)
3·2 ( ηL

ηH
)3π0 =

(

M
3

)

( ηL
ηH

)3π0;

. . .

4) for states M-1 and M: MηHπM = (M − 1)ηLπM−1 => πM = ηL
MηH

πM−1 =

( ηL
ηH

)Mπ0 =
(

M
M

)

( ηL
ηH

)Mπ0.

Carefully observing the series of equations in 1)-4), it can be deduced that the

stationary probability of any state i can be written as πi =
(

M
i

)

( ηL
ηH

)iπ0.

From the normalization condition
∑M

i=0 πi = 1, we obtain π0 from
∑M

i=0

(

M
i

)

( ηL
ηH

)iπ0 =

1 => π0 =
1

∑M
i=0 (

M
i )(

ηL
ηH

)i
= 1

(

1+
ηL
ηH

)M =
(

ηH
ηL+ηH

)M

.

Hence, for the equilibrium distribution of any state we have πi =
(

ηH
ηL+ηH

)M
(

M
i

)

(

ηL
ηH

)i

=

(

M
i

)

(

ηL
ηL+ηH

)i (
ηH

ηL+ηH

)M−i

, for i = 0, . . . ,M . So, the probability of being in

one of the states is binomially distributed, with parameter (probability) ηL
ηL+ηH

.

If the average duration of a cycle is E[Tu,cycle], then during this cycle the SU

will have i idle channels for πiE[Tu,cycle] time units. Given that when there are i

idle channels, there are M − i busy channels, the transmission rate during this time

is icH + (M − i)cL, whereas5 the total amount of transmitted data during a cycle

is given by

E[Ru] = E[Tu,cycle]
M
∑

i=0

(icH + (M − i)cL)πi, (131)

5Note that, as mentioned in previous sections, µH = cH
∆

and µL = cL
∆

, where ∆ is the average

file size.
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which leads to an average throughput of

E[Xu] =
E[Ru]

E[Tu,cycle]
=

M
∑

i=0

(icH + (M − i)cL)πi = McL + (cH − cL)
M
∑

i=0

iπi.

The term
∑M

i=0 iπi is apparently the expectation of the Binomial distribution

with parameter ηL
ηL+ηH

, which is known to be M ηL
ηL+ηH

. Finally, for the average

throughput, after some simple algebra, we have

E[Xu] =
M

ηH + ηL
(ηHcL + ηLcH). (132)

Comparing Eq.(130) and Eq.(132), we can find for what values of E[Ts] the

interweave mode outperforms the underlay mode in the multichannel case.

Obviously, our models can be extended to the multichannel case for both met-

rics, the delay and throughput, relying partly on the single channel theory. Hence,

the significant advantage our models offer in predicting the performance, showing

that the contribution is not limited.

4.3 Throughput maximization policy

Theorem 7. The optimal value of the turning point that maximizes the average

throughput for Pareto OFF, and exponential ON periods is the solution to

cH − cL

ηH
tα − αE[Ts]

(

cH

ηH
− cLL

α

1− α

)

t(α−1) −
cLE[Ts]L

α

1− α
= 0. (133)

Proof. We will show here only the part of the proof that was omitted in the original

journal submission. Up to that point, the procedure is the same.

The term E
[

T
(e)
ON

]

is given by Eq.(123), and for an exponential ON period,

due to its memoryless property, it reduces to E[TON ].
For Pareto distributed OFF periods, their probability density function is

fOFF (x) =
αLα

xα+1
, x ≥ L.

The CDF of Pareto distribution is

FOFF (x) = 1−

(

L

x

)α

, x ≥ L.

After some algebra, we can also find the conditional expectation E[TOFF |TOFF <

t] for a Pareto distribution, as

E[TOFF |TOFF < t] =

∫ t

0

xfOFF (x)

FOFF (t)
dx =

αLα

(1− α)
(

1− Lα

tα

)

(

t1−α − L1−α
)

.

(134)
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The average data rate is given by

E[X] =
E[R]

E[Tcycle]
, (135)

where

E[R] = (cLE[TOFF |TOFF < t] + cHE[TON ])FOFF (t)+
(

cLt+ cHE[T
(e)
ON ]

)

F̄OFF (t)

and

E[Tcycle] = (E[TOFF |TOFF < t] + E[TON ])FOFF (t)+
(

(t+ E[Ts]) + E[T
(e)
ON ]

)

F̄OFF (t).

The optimal value of the turning point t that maximizes the throughput can be

found by solving the equation

∂E[X]

∂t
= 0. (136)

Solving Eq.(136), we find the optimal turning point that maximizes the throughput

in our dynamic throughput policy.

5 Multi-SU scenario

Considering multiple SUs unavoidably involves the contention or scheduling

phase, and because of that, the issue of MAC scheduling needs to be addressed.

Consider a specific secondary user. She can be interrupted either by a PU or by

another SU. This is oblivious to the given SU, and she perceives it only as if the

channel is busy with only PU activity. When this SU gets channel access, she

resumes file transmission from the point of interruption and the new files (or flows)

that have arrived in the meantime will be served conforming to an FCFS scheduling

discipline. Consequently, we can either assume a MAC protocol providing the

specific SU exclusive access to the medium for the entire flow, or a TDMA scheme

where each SU can utilize only a fraction of the ON (high) period for transmission,

leading to larger OFF periods for that SU. Nevertheless, this assumption preserves

the validity of our model.

We would like to point out that the common assumption made in the rich body

of literature is that at any given time and over any given channel, it is assumed at

most one SU active link in a given neighborhood [16]. This means that different

SU links do not interfere with each other. Various spectrum access protocols have

been proposed to handle SU-SU interference. For more details see [17, 18].

SU-SU interference is eliminated by enforcing an “exclusive channel occu-

pancy” policy among SUs. Specifically, a channel is allocated to only a single

SU link in a given geographical area. This is done using a modified version of
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Figure 17: The delay for generic interweave spectrum access.

contention-based channel access approaches (e.g., CSMA/CA). Further, accord-

ing to [16], SUs can communicate over a non-dedicated common control channel

(CCC) and perform a threeway handshake to exchange different control informa-

tion. During this handshake, the channel assignment and transmission duration

are announced. Neighboring SUs defer from using the channel until the ongoing

transmission ends. The latter is in line with our TDMA scheme mentioned above.

6 Simulation results

The first goal of this section is to validate the various analytical expressions

we have derived, against simulated scenarios, including ones where one or more of

the assumptions do not hold. We will also show the improvements offered by the

dynamic policy.

In the first scenario, we will assume that the average ON and OFF durations

correspond to those measured in [19] and are equal to E[TOFF ] = 10 s (ηL =
0.1 s−1), and E[TON ] = 5 s (ηH = 0.2 s−1). We will refer to this as the cellular

network scenario. In the second scenario, we fit the average ON and OFF dura-

tions to the values observed in [20], with E[TOFF ] = 9 s (ηL = 0.11 s−1), and

E[TON ] = 4 s (ηH = 0.25 s−1). We will refer to this as the WiFi scenario. For

both scenarios, unless otherwise stated, we assume exponential distributed periods.
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Figure 18: The static delay policy for different λ and exp. scanning times.

We consider other distributions later in Sections 6.1 and 6.2. The data rates for the

cellular scenario are cL = 1.2 Mbps and cH = 8 Mbps. For the WiFi scenario

the data rates are cH = 10 Mbps, and cL = 2 Mbps.6 Finally, we assume that file

arrivals at the SU are Poisson distributed with rate λ, and file sizes exponentially

distributed with mean size 125 KB.7

6.1 Validation of the delay models

Fig. 14 compares simulation results to our analytical model predictions for the

average delay of SU files as the file arrival rate increases. The system parameters

correspond to the cellular scenario. As can be seen, our theoretical results match

with the results obtained from simulations. As is expected in queueing systems,

the delay increases when the arrival rate (and thus the utilization of the system)

6These values are taken to be of the same order of magnitude as the actual values encountered

in practice [21]. Although these correspond to PUs, and the actual data rates for SUs depend on the

distance of the SUs from the BTS or WiFi AP, channel width, channel conditions, modulation/coding,

etc., we assume w.l.o.g. that the data rates of the SU in a WiFi network are higher than in a cellular

network.
7This value is normalized for the arrival rates considered, to correspond approximately to the

traffic intensities reported in [19] and [20]. We have also considered other values with similar con-

clusions drawn.
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increases. The delay incurred in the cellular scenario is larger, since WiFi data

rates are considered to be higher and the PU is less active there.

We move next to validating our analytical predictions for the interweave sce-

nario. Fig. 15 and 16 show the theoretical vs. simulated results for the cellular

and WiFi network scenarios for three types of scanning time distributions (expo-

nential, 4-stage Erlang, hyperexponential), all with the same mean E[Ts] = 1 s.

For the hyperexponential scanning time, we take ηL = 1.9 s−1 and ηV = 0.1 s−1.

The probability of having a large scanning time (far away channel) is 0.05. The

coefficient of variation for this distribution is around 3.

As the plot shows, the theory is correct and provides an excellent match with

simulations for different scanning time distributions. Another outcome is that the

average delay has the lowest value for Erlang distributed scanning time, while the

worst performance is achieved for hyperexponential distribution. The above con-

clusion is in line with our analytical outcome of Section 3. As our analysis suggest,

higher (lower) variability in scanning time leads to higher (lower) variability in the

service time, which leads further to higher (lower) delays. Observing the curve

corresponding to the cellular case in Fig. 14 and Fig. 15, it can be noticed that

the delay in the interweave access is lower than in the underlay. For the cellular

scenario with exponential scanning time, and λ = 1 s−1, Table 2 suggests that

the maximum average scanning time should be 2.8 s. In our case E[Ts] is much

smaller (1 s). Hence, the interweave mode is superior.

In the previous scenarios we have used realistic values for the transmission

rates and WiFi availabilities, but we have assumed exponential distributions for

ON and OFF periods, according to our model. While the actual distributions are

subject to the PU activity pattern, measurement studies [19, 20] suggest these dis-

tributions to be “heavy-tailed”. It is thus interesting to consider how our model’s

predictions fare in this (usually difficult) case. To this end, we consider a scenario

with “heavy-tailed” ON/OFF distributions (Bounded Pareto-BP), with parameters

LON = 1.31,HON = 200, αON = αOFF = 1.2, LOFF = 2.9,HOFF = 200.

Due to space limitations, we focus on the cellular scenario. The other parameters

are the same as for the scenarios of Fig. 14 and 15. Figure 17 compares the average

file delay for the interweave access against our theoretical prediction. The scanning

time is exponential with mean 1 s. Interestingly, our theory still offers a reasonable

prediction accuracy, despite the considerably higher variability of ON/OFF periods

in this scenario. Although we cannot claim this to be a generic conclusion for any

distribution, the results emphasize the utility of our models in practice.

6.1.1 Validation of the multiple power level model

Finally, we would like to consider the case of multiple power levels (M > 2)

in the underlay spectrum access technique. Although the assumption of two power

levels was made for analytical tractability, in most practical scenarios there would

be more than two levels. In that case, the corresponding Markov chain would

have more states vertically. The solution of such a Markov chain can be obtained
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numerically, as we showed in this report (Eq.(107)). Another way of dealing with

this problem would be by lumping the
⌊

M
2

⌋

levels (if there are M possible power

levels) with lower power into a single level. The data rate in this new level would

be the weighted average of the corresponding data rates, while the average time

spent in this level would be the sum of the average times of all the levels that get

lumped into this new level. The same approach can be followed for the remaining

M −
⌊

M
2

⌋

higher power levels. In this way we would obtain the Markov chain

with 2 levels (Fig. 8), with other transition rates, whose solution is, as shown, in

closed-form.

To illustrate the above mentioned approach, we consider the scenario with

M = 4 power levels, where the data rates for each one of them are shown in

Table 4. In Table 4 we also give the average time a SU has a given data rate. These

are exponentially distributed. Hence, the rate of leaving a level is ηi =
1

E[Ti]
. We

sort the levels according to the data rates (from the highest to the lowest) a SU ex-

periences in each one of them. Then we place these levels into 2 groups: in the first

group there would be the 2 “best” levels (1,3), and in the other one the 2 “worst”

levels (2,4). For each of these groups we calculate the average data rate, and the

average time spent there. So, for group 1 we have:

E[Rg1] =
1

3
· 2.5 +

2

3
· 2 = 2.17 Mbps,

E[Tg1] = 10 + 5 = 15 s.

Similarly, for the second group we get

E[Rg2] = 1.19 Mbps,

E[Tg2] = 8 s.

In the next step we use the Markov chain of Fig. 8 to capture approximately the

scenario with multiple levels. We keep the same average size of the files as before,

i.e., ∆ = 125 KB. For the values considered here, we have the following transition

rates for the new levels: µH =
E[Rg1]

∆ = 2.17 s−1, ηH = 1
E[Tg1]

= 0.07 s−1,

µL =
E[Rg2]

∆ = 1.19 s−1, and ηL = 1
E[Tg2]

= 0.125 s−1. Fig. 19 shows the actual

average system time for this scenario vs. the result obtained from Eq.(79), which

is an approximation.

As it can be observed from Fig. 19, there is a good match between simulations

and the theoretical approximation with the mismatch not exceeding 7-8%. Hence,

even if we have multiple power levels, we can use our result. We just need to lump

all the best levels in one new level, and all the worst levels in another level, and

then use the result for 2 levels.

For a higher accuracy of the multi-power level, we need to use the M-level

Markov chain model of Section 3.3. We consider a scenario with 4 different

power levels, leading to 4 different data rates: c1 = 2 Mbps, c2 = 1 Mbps,

c3 = 1.5 Mbps, and c4 = 10 Mbps. The corresponding average times an SU sees
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Figure 19: The average delay for multiple power levels.

a given rate are: 10, 3, 5 and 5 s, respectively. Files are exponentially distributed

with average size of 125 kB, and the arrival process is Poisson. The probability of

moving to any specific level is 1/3. Fig. 20 shows the average file delay for this

system. As we can see from Fig. 20, our theoretical result of Eq.(107) matches the

simulated result.

Table 4: The data rate and average spending time for each level.

Level Data rate (Mbps) Average time spent in the level (s)

1 c1 = 2 E[T1] = 10
2 c2 = 1 E[T2] = 5
3 c3 = 2.5 E[T3] = 5
4 c4 = 1.5 E[T4] = 3

6.2 Validation of the throughput models

See the journal submission for this section.
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Figure 20: M-level model validation.

6.3 Delay minimization policies

In this section, we would like to perform a more detailed comparison of the

underlay and interweave access modes. Our first goal is to examine the “static”

version of the two policies, and validate our analytical predictions regarding when

the one or the other will perform better. Our second goal is to consider the dynamic

policy, and see if and when it can outperform both simple policies.

As another interesting scenario, we consider the underlay access with parame-

ters: ηH = 0.1 s−1, ηL = 1 s−1, cH = 10 Mbps, cL = 0.5 Mbps. Fig. 18 shows

the average file delay (denoted by I) against different average scanning times (exp.

distributed), for three different traffic intensities (low, medium, high). On the same

plot, for each traffic intensity the corresponding underlay delay (denoted by U) is

shown as well. Finally, the theoretical maximum values for the expected scanning

times (Table 2), for which the interweave access mode outperforms underlay access

are depicted with small circles. For the sparse traffic case, the interweave starts to

become better for scanning times lower than 0.8 s. The first thing to observe is

that the predicted maximum value for the scanning time (i.e. the crossing point)

is correct. The second important outcome is that this boundary is higher when the

load increases. This is due to the fact that for higher loads the queueing delay is the

largest delay component. Hence, it is worth waiting some time, find an idle chan-

nel and then get rid of the queued data at higher rate. We have also noticed that
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Figure 21: The static delay policy for different λ and hyperexp. scan. times.

increasing the load further leads to smaller and smaller increases of this crossing

point.

Next, we consider the hyperexponential distribution for the scanning times with

parameters ηL = 6 s−1, ηV = 0.4 s−1, and the probability p0 taking values such

that a given average scanning time is achieved. The observed coefficient of varia-

tion observed is in the range (2,2.5). The other parameters are identical as for the

previous scenario. Fig. 21 shows the average delay. Due to the higher variance of

the scanning time, the crossing point between underlay and interweave are lower

compared to the scenario of Fig. 18.

Dynamic delay policy. As discussed in Section 3.7, the dynamic policy can

offer additional performance benefits, when the PU activity periods (i.e. the OFF

periods in the underlay mode) are subject to a probability distribution with a de-

creasing failure rate (i.e. with very high variability). We consider a scenario where

the low (OFF) periods have Bounded Pareto distribution, with parameters L = 0.2,

H = 100, α = 1.2. The average scanning time is E[Ts] = 1s. The other param-

eters are the same as for the cellular scenario. Fig. 22 shows the average delay vs.

the arrival rate. According to the static policy, the underlay mode is better than the

interweave. However, the best result is achieved with the dynamic policy, which

offers an additional delay reduction of 20-50%.
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Figure 22: The dynamic delay policy for Pareto OFF periods.

7 Related Work

Much fewer studies exist about the per file/flow delay in such systems [22–24].

In [25], authors propose an M/G/1 queueing system with finite buffer and timeout,

and derive different metrics, among which the delay as well. However, their re-

sults can be obtained only numerically and as such are difficult to be interpreted

and used in solving different optimization problems. A similar conclusion can be

drawn for [26]. The authors there also model the SU activity with an M/G/1 queue.

However, they do not show how to find the second moment of the service time in

the P-K formula. On the other hand, we propose an analytical queueing model that

leads to a closed-form expression for delay, which not only provides more insight

into the effect of system parameters, but also allows to analytically compare and

optimize the policies.

As far as interweave CRNs are concerned, there exist more analytical works

that aim to derive the average packet delay. Most of the works model the PU activ-

ity with stochastic ON-OFF process. Some recent work [22,23] have capitalized on

the measurement-based study of [27], in which the Poisson approximation seems to

be decent for call arrivals, but call duration is generically distributed. These works

model SUs together with PUs, as an M/G/1 system with priorities and preemption.

Nevertheless, there are some important caveats in the above models. First, they

consider the problem in the packet level and model the problem as an M/G/1 sys-
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tem with preemptive-resume, while in reality SU packets will collide with a PU

when it reclaims channel back, and have to retransmit in the next available pe-

riod. On the other hand, our model can capture both the resume and retransmitting

feature of real wireless systems. Second, the M/G/1 systems with priorities can

capture only exponential scanning times. Our interweave model holds for generic

scanning times. We do not need the Poisson assumption for the PU traffic, as op-

posed to the priority models, since in our model the time between two PU arrivals

is the sum of an exp. (ON period) and a generic (scanning time) random variable,

which is generic.

Very few studies exist that directly compare the performance between the ac-

cess modes. Comparing results from different papers is not straightforward due to

different assumptions, non-closed form expressions, etc. In this paper, we propose

models that enable us to do analytical comparisons between the modes. A study

closer to ours in its aim is [28], where a hybrid CR system is investigated, in which

a SU probabilistically changes its mode of operation for throughput optimization.

However, the delay metric is not considered there, and the arrival process at the PU

is quite restrictive (Bernoulli). On the other hand, we propose policies that are able

to optimize the delay, and our models hold for generic PU arrivals.

Summarizing, the main novelties of this paper compared to different related

works revolve around the following key points: (i) we make a direct analytical

comparison of interweave and underlay access delays; (ii) we provide closed form

expressions for all cases; (iv) we use our results to propose an optimal hybrid

policy.

8 Conclusion

In this paper, we have proposed queueing analytic models for the delay analysis

of interweave and underlay spectrum access, and we validated them against real-

istic scenarios. Besides that, we have proposed models relying on renewal-reward

theory to determine the average throughput in both modes. We have also provided

the bounds on the scanning times for which the interweave access outperforms the

underlay. We have also proposed a dynamic policy to further improve the perfor-

mance (up to additional 50%), and we have validated our results extensively for

realistic scenarios. In future work, we plan to extend our model to capture generic

file sizes.
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