
A Semantic Engine for Internet of Things: Cloud,
Mobile Devices and Gateways

Amelie Gyrard, Soumya Kanti Datta, Christian Bonnet
Mobile Communication

Eurecom
Biot, France

Email: {gyrard, dattas, bonnet}@eurecom.fr

Karima Boudaoud
Rainbow team

Laboratoire I3S-CNRS/UNSA
Biot, France

Email: karima@polytech.unice.fr

Abstract—Semantics is becoming a requirement in Internet of
Things (IoT). Recent works underline future challenges for IoT:
(1) integrate semantic web technologies, (2) provide interoper-
ability, (3) interpret IoT data, (4) ease the development of IoT
applications, and (5) fit to the different requirements of people
and applications. In this paper, we design a semantic engine to
meet these requirements and integrate it in different components
available in IoT architectures. To the best of our knowledge, the
main novelty of this paper is the semantic engine flexible enough
for different IoT architectures where semantics is integrated in:
(1) cloud, (2) devices such as smart phones or tablets, and (3)
M2M gateways. As proof of concepts, we discuss deployment
of the proposed semantic engine at cloud systems and mobile
devices. Moreover, we show that such deployments are coherent
with ETSI M2M and oneM2M standardizations.

Keywords—Internet of Things (IoT), Machine-to-Machine
(M2M), Semantic Web of Things (SWoT), Architectures, Applica-
tions.

I. INTRODUCTION

Miorandi et al. [1] clearly explain a lack of standard-
ization related to models and data formats and describe the
need for: (1) cross-domain applications, and (2) semantic
interoperability and data management for exchanging and
analyzing IoT/M2M data to infer useful information and to
ensure interoperability among IoT applications and for rea-
soning. Ozpinar explains that resolving the meaning of data
is a challenging problem and without processing it, the data
is useless [2]. He also discusses the challenging problems
regarding heterogeneity of billions of devices and he outlines
that the challenge of resource-constrained devices has to be
taken into account. In 2014, Chen et al. introduce the need for
intelligent processing for IoT data and explain the issue related
to domain specific-applications: applications cannot combine
the data from different silos [3].

We analyzed recent works and we highlight the following
requirements in future semantic-based IoT architectures:

• Requirement A: Provide interoperability among appli-
cations, even from heterogeneous domains.

• Requirement B: Interpret IoT data.

• Requirement C: Ease the development of IoT applica-
tions.

• Requirement D: Fit to the different needs of people
(e.g., constrained devices, ensure privacy).

The semantic engine addresses such requirements. The
main novelty of this work is to show that the semantic engine
can be integrated in different components of IoT architectures:
cloud, mobile devices and gateways to fulfill the requirements
mentioned above of different applications and the needs of
various existing projects.

The rest of the paper is structured as follows. Section II
presents the state of the art and clearly explains the limitations.
Section III describes semantic-based IoT architectures for
cloud, mobile devices and gateways. Section IV is focused on
proof of concepts. Section V demonstrates the applicability of
the semantic engine on standardizations such as ETSI M2M
and oneM2M and on a distributed architecture. Finally, we
conclude the paper in section VI.

II. STATE OF THE ART

In this section, we present existing works related to:
(1) integrating semantics in IoT architectures, (2) integrating
semantics in gateways, (3) integrating semantics in embed-
ded devices, and (4) semantic-based distributed architecture.
Finally, we highlight the limitations of the existing works.

A. Semantic-based IoT

Bassi et al. design the IoT-A architecture reference model
(ARM) [4]. They are not focused on the interpretation of data
and do not ease the development of interoperable applications.
Kiljander et al. design a semantic-based architecture for Per-
vasive Computing and Internet of Things [5]. They underline
the need for a common way to abstract the heterogeneity of
devices. In their architecture, agents share semantic informa-
tion with each other. They do not employ semantic to enrich
IoT data. Their architecture is based on the IoT-A ARM.

B. Semantic-based Gateways

Bonino et al. design the Domotic OSGi Gateway (Dog)
Gateway, an ontology-powered middleware based on the OSGi
framework and the DogOnt ontology to support the integration
of different networks and support logic-based intelligence [6].
Dog is an open-source solution capable of running on low cost
hardware such as Rasperry Pi. This work is focused on smart
buildings and has not be applied to other domains. Further, the
reasoning part is not explained in detail. The dog gateway has
been deployed in two real use cases.



Desai et al. design the Semantic Gateway as Service (SGS),
a bridge between sensors and end-user applications [7]. They
integrate the W3C SSN ontology, the SemSOS tool and domain
ontologies in their gateway to semantically annotate sensor
data. They explicitly describe that for domain specific appli-
cations, the gateway can be equipped with additional domain
specific ontologies. They do not underline the difficulties to
reuse domain ontologies relevant for IoT and interoperability
issues to interpret heterogeneous sensor data descriptions.

C. Semantics in embedded devices

Hasemann et al. design the Wiselib TupleStore to store
RDF data in embedded devices [8]. The database is stored in
either the flash memory or RAM. It runs on different platforms
specific to sensors such as Contiki and TinyOs operating
systems or more popular operating system for mobile phones
such as Android and iOS.

D. Semantic-based distributed architecture

The following works use semantics for distributed reason-
ing or storage but they have not been applied in the context
of IoT.

In 2005, the Distributed Reasoning Architecture for a
Galaxy of Ontology (DRAGO) distributed reasoning system,
implemented as a peer-to-peer architecture, is designed by
Serafini et al. [9]. The goal of DRAGO is to reason on
distributed ontologies. Kaonp2p has been designed by Haase
et al. to query over distributed ontologies [10]. LarKC (Large
Knowledge Collider) is a scalable distributed platform [11].
Marvin is a scalable platform for parallel and distributing
reasoning on RDF data [12]. Schlicht et al. propose a peer-
to-peer reasoning for interlinking ontologies [13]. In 2012,
Abiteboul et al. see the Web as a distributed knowledge base
and propose an automated reasoning over this knowledge base
[14].

In 2013, WebPIE (Web-scale Parallel Inference Engine) is
an inference engine for semantic web reasoning (OWL and
RDFS) based on the Hadoop platform designed by Urbani
et al [15]. WebPIE is scalable over 100 billion triples [16].
Coppens et al. propose an extension to the SPARQL query
language to support distributed and remote reasoning. For their
implementation, they extend the Jena ARQ query engine [17].
In 2014, Park et al. propose a semantic reasoning based on
their XOntology and SPARQL. They use the Hadoop platform,
HDFS and MapReduce to deal with thousands of sensor data
nodes [18].

Hartig et al. discover datasets which could be relevant
for a specific SPARQL query to interact with the Web of
Data [19]. Khadilkar et al. propose Jena-HBase, a distributed,
scalable and efficient triple store [20]. Since, the triple store
provided by Jena is TDB, a single-machine RDF storage, they
propose to combine the Jena triple store with the Hadoop
framework, more precisely, the HBase distributed database,
the distributed files system HDFS to store data, MapReduce
for processing data stored in HDFS. Husain et al. propose
a scalable, distributed and highly fault tolerant framework to
handle billions of RDF triples, they describe a scheme to store
RDF data in HDFS (Hadoop Distributed File System) and use
Hadoops MapReduce framework to answer the queries [21]

[22]. Kulkarni et al. propose a distributed SPARQL query
engine using MapReduce [23]. Quilitz et al. propose DARQ, a
query engine for federated SPARQL queries. The user executes
one SPARQL query which queries several SPARQL endpoints
[24] .

1) Limitations of these works: We scrutinized the related
works and highlighted the following limitations:

• Semantic-based distributed architectures have not been
applied to the context of Internet of Things.

• Existing semantic-based IoT architectures are not
enough flexible for cloud, mobile devices and gate-
ways. Further, they do not fulfill all of the require-
ments mentioned in the introduction.

• Few works propose concrete approaches to combine
domains.

• Most of the semantic-based architectures are not fo-
cused on the processing of data to infer high-level
abstractions.

• In addition to these limitations, semantic web tech-
nologies are not considered in some IoT architecture
[25] [26].

III. SEMANTIC-BASED IOT ARCHITECTURES

We designed a semantic-based IoT architecture flexible
enough to support the requirements mentioned in the intro-
duction.

The main novelty of the semantic engine (see Figure 1) is
that it can be adapted inside different architecture components:
1) cloud, (2) devices, and (3) gateways. To build IoT applica-
tions on constrained devices, there is a need to filter and get
only what we need to build the application. For this reason,
our semantic engine has been adapted to constrained devices,
by filtering only a subset of the components that are required
to build the applications. Our semantic engine is composed of
five main semantic-based components, as displayed in Figure
1 and Figure 2:

• Template Catalogue is a dataset of pre-defined
semantic-based IoT templates with pre-selected in-
teroperable domain ontologies, datasets and rules re-
quired to interpret IoT data. Each template is adapted
to a specific sensor type and the domain where the
sensor is deployed. The knowledge (ontologies, rules
and datasets) associated to this template enables to se-
mantically annotate IoT data, infer high-level abstrac-
tions and even provide suggestions. This component
is essential to meet: (1) Requirement A to provide
interoperability among applications, (2) Requirement
B to interpret IoT data, and (3) Requirement C to ease
the development of IoT applications.

• Converter that semantically annotates data. Since
data comes from heterogeneous and common projects,
there is a necessity to describe data in an interoperable
manner. An unified language to describe interoperable
IoT data has been implemented in the converter [27].
This language is a basis to later interpret IoT data.
This component is essential to meet: (1) Requirement



B to interpret IoT data, and (2) Requirement C to ease
the development of IoT.

• Reasoning engine to get high-level abstractions from
IoT data. This component enriches and interprets data
with background knowledge and is essential to meet
Requirement B to interpret IoT data.

• Query engine to query smarter data used in the
final applications. This component is essential to meet
Requirement C to ease the development of IoT.

• Final application that interacts with end-users. This
component is essential to meet Requirement D to fit to
the different needs of people (e.g., constrained devices,
ensure privacy).

Finally, when the last component has been executed, the
application gets suggestions and parse them to display them
in a user-friendly interface, send notification or even control
actuators.

Semantic Engine

2) Converter
Semantically 

annotate data

Get template

5) Final 
Application 

Build
3) Reasoning 

Engine

4) Query 
Engine

1) Template 
Catalogue

W
e

b
 S

e
rv

ic
e

s 
o

r 
A

P
Is

Infer high 
level abstraction

IoT 
Application

Query

Query smarter data

Select

Repository of 
interoperable 

ontologies, 
datasets and 

rules

Fig. 1. Semantic engine for Internet of Things

IoT 
Application

1) Template 
Catalogue

Sensor + domain

Get template (rules + ontologies
 + datasets + query)

2) Converter

IoT data
Semantic IoT data

3) Reasoning 
engine

Load rules + 
Semantic IoT data

IoT data inferred

4) Query 
engine

Load onto + datasets + 
query + IoT data inferred
Smart data: suggestions

5) Final 
Application

Build user interface, send notifications or control actuators

Fig. 2. Semantic engine operational flow in IoT applications

A. Semantic engine embedded on Cloud

We designed a semantic and cloud-based IoT architecture
as displayed in Figure 3. Firstly, the application looks for a
semantic-based IoT template to develop the future application
by interacting with the Template Catalogue. According to the
two parameters (sensors and domains) indicated, the applica-
tion downloads the template required to build the application.
Secondly, the files available in the template allow the applica-
tion to semantically annotate sensor data with the Converter.
Thirdly, the application loads the rules provided in the template
and the semantic IoT data and executes the Reasoning engine
component to get high level abstractions. Then, Query engine
component is executed with the SPARQL query provided in the
template to get suggestions. Finally, according to the high level
abstractions or suggestions returned, the user-friendly interface

can be designed, or send notifications or even control actuators
in the Final Application.

The main advantage of having the semantic engine in the
cloud-based architecture is to send data to the cloud and then
interpret data without considering performance issues. This
approach is relevant when data do not need to be secured
or when privacy is not required. Further, we assume there
is always a connection to the Internet to send data and get
back inferred data. One of the benefits of the cloud-based
architecture is the scalability to run the reasoning and query
engines with ’Big Data’.

Cloud

Template dataset

Query

1) Template 
Catalogue

2) Converter

3) Reasoning 
Engine

5) Final 
Application 

IoT 
Application 
(Option 1)

4) Query 
Engine

Mobile devices

5) Final Application 
IoT 

Application 
(Option 2)

Fig. 3. Semantic engine in cloud-based architecture

B. Semantic engine embedded on Mobile Devices

The semantic engine is integrated in mobile devices as
displayed in Figure 4. In this architecture, a first connection to
the Internet is required to download the template by querying
the Template Catalogue. Then, the components Converter,
Reasoning and Query Engine and Final Application are
precessed locally and Internet connectionless.

The main advantage of this architecture is to avoid send-
ing sensor data to the cloud and process the data locally.
Information abstraction can be processed locally to reduce the
deluge of data on network communications. It brings two main
advantages: network traffic reduction and the enhancement of
comprehensiveness for the end-user. To conclude, communi-
cations costs, latency, and privacy issues when sending data to
the cloud are avoided.

C. Semantic engine embedded on Gateways

The semantic engine is integrated in gateways as displayed
in Figure 5. Smart gateways can expose, exchange and in-
tegrate data in ways unforeseen at design time. The main
advantage is to avoid to send data to the cloud and to process
the data locally. Users’ data is kept where it belongs and does
not have to be centrally stored. To conclude, communications
costs, latency, and privacy issues when sending data to the
cloud are avoided.



Mobile devices

Cloud

2) Converter

5) Final Application 

IoT 
Application

3) Reasoning 
Engine

4) Query 
Engine1) Template 

Catalogue

Fig. 4. Semantic engine in mobile device based architecture

Gateways

Cloud
2) Converter

5) Final 
Application 

IoT 
Application

3) Reasoning 
Engine

4) Query 
Engine

1) Template 
Catalogue

Fig. 5. Semantic engine in gateway based architecture

D. Discussions

We propose several deployment scenarios depending on
the size of the problem to solve. If there is only 1 sensor
and 1 domain involved, it is possible to embed the semantic
engine on mobile devices. In case of smart cities scenarios,
the semantic engine would be better on the cloud. In case of
personal healthcare, the semantic engine would be better on
the mobile device to ensure privacy.

In Figure 6, we sum up advantages and drawbacks of each
architecture.

Fig. 6. Advantages and drawbacks of each architecture

IV. IMPLEMENTATION

In this section, we explain that the semantic engine has
been implemented as proof-of concepts in two architectures
presented above: cloud and mobile devices.

A. Cloud-based architecture

The cloud-based architecture is available on the web1. The
proof-of concept has been implemented with Java 1.7 and
Google Application Engine. The Jena framework [28] has been
used to build semantic web applications. Jena enables loading

1http://sensormeasurement.appspot.com/

ontologies, execute reasoning engines and query engines. The
template is loaded with the Jena framework, the reasoning
engine with the Jena reasoning, and the query engine with
the Jena ARQ engine. Jena is also used in the converter
to semantically annotate IoT data. The final application has
been implemented with HTML, CSS, Javascript, AJAX and
Bootstrap. Ajax gets the results returned by web services. The
different components are available on the cloud and can be
used through user-friendly interface or APIs. We designed
RESTful web services: (1) to query templates, (2) for pre-
defined scenarios, and (3) for the converter, etc. The docu-
mentation is available online2.

B. Mobile device-based architecture

We implemented our approach for Android, which is an in-
creasingly popular operating system not only for smart phones
or tablets but also for many other future devices such as TVs.
The mobile device-based architecture has been implemented on
Android-powered devices such as mobile phones and tablets.
For technical reasons, we used the AndroJena library instead
of Jena, to run the semantic processing on Android devices.
The AndroJena framework has been used to interpret IoT data
and build the Semantic Web of Things application.

V. SEMANTIC ENGINE INTEGRATED IN
STANDARDIZATIONS

In this section, we explain how the different components of
the semantic engine are integrated in architectures designed by
standardizations such as ETSI M2M [29] and oneM2M [30].
Moreover, we explain that we could design a semantic-based
distributed architecture to enable smart devices exchanging
high-level abstractions with each other.

A. Semantic-based ETSI M2M architecture

In this section, we design a semantic-based M2M architec-
ture [31] inspired by the ETSI M2M architecture. The main
goals are to: (1) get sensor measurements from heteroge-
neous domains, (2) semantically annotate and interpret M2M
data, (2) combine domains with each others to build cross-
domain M2M applications. In our proposed semantic-based

Aggregation 
Gateway

Sensor 
GatewayWeather Forecasting

Smart Home, Kitchen

Sensor 
Gateway

Health
Aggregation 
Gateway

39°C

Milk 1L

Semantic-based and cross-domain 
M2M applications

- Linked Open Vocabularies (LOV)
- Linked Open Rules (LOR)
- Linked Open Data (LOD)

M2M Sensor Gateway: 
- SenMLETSI M2M Devices

M2M Aggregation Gateway:
- Converter
- Reasoning Engine

39°C

ETSI M2M Service Capabilities
- Template Catalogue
- Reasoning and Query Engine
- Final Application

Weather & Transport & Safety devices

Weather & 
Smart Home

Weather & Activities

Naturopathy

fog lamp

Transportation

39°C

ETSI M2M Gateway

ETSI M2M Area Networks

Fig. 7. Semantic engine embedded in our semantic-based ETSI M2M
architecture

2http://www.sensormeasurement.appspot.com/?p=documentation



M2M-based architecture depicted in Figure 7, we integrate
semantic web technologies both in M2M gateways and M2M
applications. We propose two kinds of M2M gateways due to
various treatments: (1) M2M sensor gateways, and (2) M2M
aggregation gateways.

The M2M sensor gateways retrieve M2M measurements
provided by heterogeneous M2M devices and include the
acquisition interface to support heterogeneous protocols such
as RFID, Bluetooth, 6LowPan, CoAP and Zigbee. Several
formats can be used such as SenML or SWE to get sensor
metadata. We use the lightweight SenML protocol to retrieve
heterogeneous sensor measurements for a first and quick im-
plementation. SenML provides simple sensor measurements:
the name, the value, the unit and the date (e.g., temperature 5
DegC). SenML or SWE bridges the gap of interoperability of
heterogeneous sensor data but does not provide descriptions
such as ’this temperature is a body temperature’ or ’the
milk is produced by cows and contains lactose’. For these
reasons, we propose to enrich M2M data with semantic web
technologies. The sensor gateways forward the SenML data to
the aggregation gateways.

The M2M aggregation gateways semantically annotate sen-
sor metadata with the Converter component based on semantic
web languages (RDF, RDFS, OWL). The M2M aggregation
gateway semantically annotate SenML data to provide unified
sensor measurements and add an explicit context since data
comes from by heterogeneous domains and projects. This
step is essential to later interpret data (Reasoning Engine
component).

Sophisticated semantic treatments are performed in M2M
applications through semantic-based reasoning and semantic
web technologies such as the SPARQL language to query sen-
sor data, the Linked Open Data, the Linked Open Vocabularies
and the Linked Open Rules to enrich sensor metadata with
external domain knowledge. Such treatments are done in the
Reasoning and Query Engine component. M2M applications
produce the knowledge required to semantically annotate data
and interpret it thanks to the Template Catalogue component.
the Reasoning Engine component performed the reasoning on
heterogeneous semantic measurements. An example of Final
Application is the naturopathy application to suggest recipes
according to the mood, diets, diseases, ingredients available
in the kitchen, according to the season, etc. Query such smart
data is possible thanks to the Query Engine component. This
example shows that four sensor networks need to be merged:
health, smart kitchen, weather forecasting and emotion sensor
networks.

B. Semantic-based oneM2M architecture

The semantic-based oneM2M architecture comprises sev-
eral components [32] that we remind below by matching them
to our different proposed components. As displayed in Figure
8, we integrated the different components in the semantic-
based architecture. The Semantic Annotation integrates the
Converter component to semantically annotate sensor data
in an interoperable manner. The Data Analytics corresponds
to the Reasoning engine) component by running the reason-
ing engine to interpret sensor data. The M2M Applications
correspond to the Final Application component. The Data

Repository to store IoT data. The Semantic Repository to
store semantic IoT data annotated with Resource Description
Framework (RDF) [33]. The Ontology Modeling and Process-
ing corresponds to the Template Catalogue component. The
Reasoning engine to deduce new knowledge. The Semantic
Mash-up corresponds to our web services, user interfaces or
APIs. The Semantic Analysis and query corresponds to our
Query Engine.

IoT data

2) Converter

Web services or user 
interface

1) Template 
Catalogue

RDF IoT 
data

5) Final 
Application

3) Reasoning 
engine

Reasoning

Data 
Analytics

Semantic Mash-up

Semantic Analysis and Query
4) Query 
engine

Ontology Modeling 
and Processing

Semantic Annotation

Device Abstraction

M2M Data Collection

M2M Applications

Service Access

Abstraction & 
Semantics

Data Access

Data 
Repository

Ontology 
Repository

Semantics 
Repository

Fig. 8. Semantic engine embedded in the oneM2M architecture [32]

C. Distributed Semantic-based IoT Architecture

Distributed architecture would enable smart objects to
speak with each other based on an unified language to de-
scribe sensor measurements. This unified language has been
implemented in the Converter. Objects can interface with each
other thanks to Semantic Web Services [34]. Semantic Web
Service exploit the interoperable domain knowledge defined
in the template catalogue.

Each device will provide Web Services and SPARQL
endpoints to open access to its data, high-level abstraction
and even suggestions to other devices. In Figure 9, Federated
SPARQL queries enable querying distributed semantic IoT
data.

Device 3 + Domain 3 

(e.g., honey + kitchen)

Federated sparql query 
(e.g., Jena ARQ)Semantic Web services

SP
A

R
Q

L 
en

d
p

o
in

t

Device 1 + Domain 1 

(e.g., temperature + 
weather)

Semantic Web services

SP
A

R
Q

L 
en

d
p

o
in

t

Device 2 + Domain 2 

(e.g., skin conductance 
+ affective sciences)

Semantic Web services

SP
A

R
Q

L 
en

d
p

o
in

t

Device 4 + Domain 4 

(e.g., temperature + 
health)

Semantic Web services

SP
A

R
Q

L 
en

d
p

o
in

t

Fig. 9. Query distributed RDF sensor data

A limitation of this architecture is to handle different ver-
sions of interoperable ontologies, rules and datasets when these
knowledge bases need to be updated with more background
knowledge.



VI. CONCLUSION

To the best of our knowledge, this is the first work flexible
enough to integrate a semantic engine either on the cloud,
constrained devices or gateways. Moreover, we have shown
that such architectures are compatible with standardizations
such as ETSI M2M and oneM2M. As future work, we would
like to work on the implementation of the distributed architec-
ture to enable smart devices exchanging high-level abstractions
or even suggestions with each other through semantic web
services. Another future work is to provide APIs and web
services for each component of the semantic engine.

ACKNOWLEDGMENT

The authors would like to thank colleagues and reviewers
for their valuable feedback and fruitful discussions. This work
is supported by the Com4Innov Platform of Pole SCS3 and
DataTweet4 (ANR-13-INFR-0008).

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, 2012.

[2] M. Öspinar, “A flexible semantic service composition framework for
pervasive computing environments,” Ph.D. dissertation, Moddle East
Technical University, 2014.

[3] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot
applications challenges and opportunities with china perspective,” 2014.

[4] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. Van Kranenburg, S. Lange,
and S. Meissner, Enabling things to talk. Springer, 2013.

[5] J. Kiljander, A. D’Elia, F. Morandi, P. Hyttinen, J. Takalo-Mattila,
A. Ylisaukko-Oja, J. Soininen, and T. Salmon Cinotti, “Semantic
interoperability architecture for pervasive computing and internet of
things,” 2014.

[6] D. Bonino, F. Corno, and L. De Russis, “A semantics-rich information
technology architecture for smart buildings,” Buildings, vol. 4, no. 4,
pp. 880–910, 2014.

[7] P. Desai, A. Sheth, and P. Anantharam, “Semantic gateway as a service
architecture for iot interoperability,” arXiv preprint arXiv:1410.4977,
2014.

[8] H. Hasemann, A. Kröller, and M. Pagel, “The wiselib tuplestore:
A modular rdf database for the internet of things,” arXiv preprint
arXiv:1402.7228, 2014.

[9] L. Serafini and A. Tamilin, “Drago: Distributed reasoning architecture
for the semantic web,” in The Semantic Web: Research and Applica-
tions. Springer, 2005, pp. 361–376.

[10] P. Haase and Y. Wang, “A decentralized infrastructure for query
answering over distributed ontologies,” in Proceedings of the 2007 ACM
symposium on Applied computing. ACM, 2007, pp. 1351–1356.

[11] D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham,
E. Della Valle, F. Fischer, Z. Huang, A. Kiryakov, T.-I. Lee et al.,
“Towards larkc: a platform for web-scale reasoning,” in Semantic
Computing, 2008 IEEE International Conference on. IEEE, 2008,
pp. 524–529.

[12] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, and F. van
Harmelen, “Marvin: Distributed reasoning over large-scale semantic
web data,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 7, no. 4, pp. 305–316, 2009.

[13] A. Schlicht and H. Stuckenschmidt, “Peer-to-peer reasoning for inter-
linked ontologies,” International Journal of Semantic Computing, vol. 4,
no. 01, pp. 27–58, 2010.

[14] S. Abiteboul, E. Antoine, and J. Stoyanovich, “Viewing the web as a
distributed knowledge base,” in Data Engineering (ICDE), 2012 IEEE
28th International Conference on. IEEE, 2012, pp. 1–4.

3http://www.pole-scs.org/
4http://www.agence-nationale-recherche.fr/?Projet=ANR-13-INFR-0008

[15] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal,
“Webpie: A web-scale parallel inference engine using mapreduce,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 10, pp. 59–75, 2012.

[16] J. Urbani, “On web-scale reasoning,” Ph.D. dissertation, 2013.
[17] S. Coppens, M. Vander Sande, R. Verborgh, E. Mannens, and R. Van de

Walle, “Reasoning over sparql,” in Proceedings of the 6th Workshop on
Linked Data on the Web, 2013.

[18] K. Park, Y. Kim, and J. Chang, “Semantic reasoning with contextual
ontologies on sensor cloud environment,” International Journal of
Distributed Sensor Networks, vol. 2014, 2014.

[19] O. Hartig, C. Bizer, and J.-C. Freytag, “Executing sparql queries over
the web of linked data,” in The Semantic Web-ISWC 2009. Springer,
2009, pp. 293–309.

[20] V. Khadilkar, M. Kantarcioglu, P. Castagna, and B. Thurais-
ingham, “Jena-hbase: A distributed, scalable and efficient rdf
triple store,” Technical report, 2012. http://www. utdallas. edu/˜
vvk072000/Research/Jena-HBase-Ext/tech-report. pdf, Tech. Rep.,
2012.

[21] M. F. Husain, P. Doshi, L. Khan, and B. Thuraisingham, “Storage and
retrieval of large rdf graph using hadoop and mapreduce,” in Cloud
Computing. Springer, 2009, pp. 680–686.

[22] M. F. Husain, L. Khan, M. Kantarcioglu, and B. Thuraisingham, “Data
intensive query processing for large rdf graphs using cloud computing
tools,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on. IEEE, 2010, pp. 1–10.

[23] P. Kulkarni, “Distributed sparql query engine using mapreduce,” Master
of Science Computer Science School of Informatics University of
Edinburgh, pp. 18–31, 2010.

[24] B. Quilitz and U. Leser, “Querying distributed rdf data sources with
sparql,” in The Semantic Web: Research and Applications. Springer,
2008, pp. 524–538.

[25] S. K. Datta, C. Bonnet, and N. Nikaein, “An iot gateway centric
architecture to provide novel m2m services,” in Internet of Things (WF-
IoT), 2014 IEEE World Forum on. IEEE, 2014, pp. 514–519.

[26] S. K. Datta and C. Bonnet, “Smart M2M gateway based architecture
for M2M device and Endpoint management,” in ITHINGS 2014, IEEE
International Conference on Internet of Things 2014, September 1-3,
2014, Taipei, Taiwan, Taipei, TAIWAN, PROVINCE OF CHINA, 09
2014. [Online]. Available: http://www.eurecom.fr/publication/4318

[27] A. Gyrard, S. K. Datta, C. Bonnet, and K. Boudaoud, “Standardizing
generic cross-domain applications in Internet of Things,” in
GLOBECOM 2014, 3rd IEEE Workshop on Telecommunication
Standards: From Research to Standards, December 8, 2014, Austin,
Texas, USA, Austin, UNITED STATES, 12 2014. [Online]. Available:
http://www.eurecom.fr/publication/4412

[28] B. McBride, “Jena: A semantic web toolkit,” Internet Computing, IEEE,
vol. 6, no. 6, pp. 55–59, 2002.

[29] E. M2M, “Machine-to-Machine Communications (M2M); Study on
Semantic support for M2M data, ETSI Techinal Report 101 584 v2.1.1
(2013-12),” 2012.

[30] OneM2M, W. M. Abstraction, and Semantics, “oneM2M Technical
Report 0007 Study of Abstraction and Semantics Enablement v.0.7.0,
Study of Existing Abstraction and Semantic Capability Enablement
Technologies for consideration by oneM2M,” 02 2014.

[31] A. Gyrard, “A machine-to-machine architecture to merge semantic sen-
sor measurements,” in Proceedings of the 22nd international conference
on World Wide Web companion. International World Wide Web
Conferences Steering Committee, 2013, pp. 371–376.

[32] OneM2M, W. M. Abstraction, and Semantics, “oneM2M Technical
Report 0007 Study of Abstraction and Semantics Enablement v.2.3.0,
Study of Abstraction and Semantic Enablements,” 01 2015.

[33] O. Lassila and R. R. Swick, “Resource description framework (rdf)
model and syntax specification,” 1999, http://www.w3.org/TR/REC-rdf-
syntax/.

[34] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE
intelligent systems, vol. 16, no. 2, pp. 46–53, 2001.


