A leading institution at the heart of the digital society

How Accurately Should We Calibrate a Massive MIMO TDD System?

Xiwen JIANG

Florian Kaltenberger

Luc Deneire

Introduction

CSIT acquisition in Massive MIMO

- Large overhead if feedback CSIT from UE
- > Exploiting channel reciprocity in TDD system
- > Tx/Rx RF chains are not symmetric

TDD calibration

- > Calibration stage: estimate calibration matrix
- Beamforming stage: apply the calibration matrix on instantly measured UL channel to obtain CSIT

CSIT accuracy

- > What are the joint impact of calibration matrix and UL CSI on CSIT?
- > What are their joint impact of on beamforming performance?
- > How accurately should we calibrate a Massive MIMO TDD system?

Calibration System Model

Mx1 MISO system

$$\mathbf{h}_{A \to B}^{T} = r_{B} \mathbf{c}^{T} \mathbf{T}_{A}$$

$$\mathbf{h}_{B \to A} = \mathbf{R}_{A} \mathbf{c} t_{B}$$
$$\mathbf{h}_{A \to B}^{T} = \mathbf{h}_{B \to A}^{T} \mathbf{F}$$

Calibration Matrix Measurement

Figure 1: Measurement of **F** for a 4x1 MISO system on 300 different carriers.

[Ref] X. Jiang, M. C^{*} irkic^{*}, F. Kaltenberger, G. L. Larsson, L. Deneire, and R. Knoppe, "MIMO-TDD reciprocity and hardware imbalances: Experimental results," in Proc. IEEE International Conference on Communications (ICC), London, United Kingdom, Jun. 2015.

CSIT Accuracy and Beamforming Performance

CSIT Accuracy

$$\overline{\mathbf{MSE}} = \frac{1}{M} \mathbb{E}_{\mathbf{h}_{B\to A},\mathbf{s}_{B},\mathbf{N}_{A}} \left[\| \hat{\mathbf{F}}^{T} \hat{\mathbf{h}}_{B\to A} - \mathbf{h}_{A\to B} \|^{2} \right]$$
$$= \frac{\sigma_{n,A}^{2}}{ML_{B}} \operatorname{Tr} \left\{ \mathbf{F}^{T} \mathbf{F}^{*} \right\} + \frac{1}{M} \operatorname{Tr} \left\{ \Delta \mathbf{F}^{T} \left(\mathbf{V} + \frac{\sigma_{n,A}^{2}}{L_{B}} \mathbf{I} \right) \Delta \mathbf{F}^{*} \right\} + \frac{\sigma_{n,A}^{2}}{MT_{B}} \operatorname{Tr} \left\{ \mathbf{F}^{T} \Delta \mathbf{F}^{*} + \Delta \mathbf{F}^{T} \mathbf{F}^{*} \right\}$$

where $\mathbf{V} = \mathbb{E} \left[\mathbf{h}_{B \to A} \mathbf{h}_{B \to A}^{H} \right]$ $\hat{\mathbf{F}} = \mathbf{F} + \Delta \mathbf{F}$ $\sigma_{n,A}^{2}$ is the variance of circular-symmetric complex Gaussian noise at A. L_{B} is the number of symbols used for UL channel estimation.

CSIT Accuracy

Figure 2: Calibrated CSIT averaged MSE as a function of UL CSI accuracy and calibration matrix accuracy in a 64x1 MISO system (LB = 10).

Beamforming Performance

Figure 3: Conjugate beamforming SINR loss (in dB) due to joint impact of estimated **F** and UL channel estimation inaccuracy in a 64x8 system with DL SNR=0dB (LB = 10).

Figure 4: ZF beamforming SINR loss (in dB) due to joint impact of estimated **F** and UL channel estimation inaccuracy in a 64x8 system with DL SNR=0dB (LB = 10).

Beamforming Performance

Figure 5: Conjugate beamforming SINR loss (in dB) due to joint impact of estimated **F** and UL channel estimation inaccuracy in a 64x8 system with DL SNR=20dB (LB = 10). Figure 6: ZF beamforming SINR loss (in dB) due to joint impact of estimated **F** and UL channel estimation inaccuracy in a 64x8 system with DL SNR=20dB (LB = 10).

Conclusions

CSIT accuracy

To improve CSIT, more resources should be allocated to the limiting factor

Conjugate vs. ZF beamforming

ZF is more sensitive than conjugate beamforming to the inaccuracy of calibration matrix and UL channel estimation, especially in high DL SNR region

System design tool

Given a certain beamforming SINR loss target, a calibration matrix and UL channel estimation accuracy can be derived