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Coded caching
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• Coded caching (Maddah-Ali and Niesen)

⋆ by pre-�lling the caches Z1, Z2, . . . , ZK

⋆ then encoding over content from di�erent users

⋆ thus increasing multicast opportunities (one tx useful to many)

• Substantial increase in throughput (network load during peak hours)
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Coding caching in BC with random fading and CSIT
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• We explore coded-caching in multi-antenna BC with random fading

⋆ brings to the fore the element of CSIT-type feedback

∗ CSIT is crucial in handling interference
∗ CSIT is hard to get (consider variable quality)
∗ CSIT has `intuitive' connections to coded caching

• Interesting questions arise:

⋆ How to alleviate the real-time feedback bottlenecks?

⋆ How does coded-caching break the linear barrier jointly with feed-
back?
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Cache-aided K-user MISO BC
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• At the transmitter: N distinct �les W1, . . . ,WN , each of size f bits;

• At the receiver, each user k = 1, . . . , K has a cache Zk of size Mf bits.

• Placement phase (caching) and delivery phase (commun. after statement of requests)

• Received signal at receiver k

yk = hT
kx + zk, k = 1, . . . , K
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Measure of performance

• Measure of performance: the duration T of the delivery phase

⋆ per �le, per user

⋆ T is a worst-case measure (guarantee any combination of �le requests)

⋆ high SNR setting, with f = log SNR (now T as in Maddah-Ali and Niesen)

• Equivalent measure: Throughput � cache-aided degrees of freedom

R =
1

T

⋆ R is the throughput of each user

⋆ capture the synergistic e�ect of feedback and coded caching

5



General expression

Theorem 1 In the cache-aided K-user MISO BC, with non-real time
CSIT, with N ≥ K �les of size f , and with caches of size M ∈
{N
K ,

2N
K , · · · , N}, an achievable T is characterized as

T = HK −HΓ,

where HK =
∑K

i=1
1
i , and Γ = KM

N = Kγ.

Under the logarithmic approximation, or in the large K regime, the above
T takes the form

T ≈ log(
1

γ
) (1)

Thus, the corresponding throughput R for large K takes the form

R ≈ 1

log(1γ)
(2)
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Linear barrier breakthrough
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• In real systems, the operational value of γ will be relatively small

⋆ e.g., when γ = 10−6, T ≈ log(1/γ) ≈ 14

• For the large K and reduced γ regime,

T ≈ log(
1

γ
) v.s TMN =

K(1− γ)

1 +Kγ
≈ 1− γ

γ
≈ 1

γ
(3)
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Linear barrier breakthrough1
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• For the large K and reduced γ regime,

R ≈ 1

log(1γ)
v.s RMN ≈ γ (4)

• The linear barrier is broken by joint treatment of coded caching and
retrospective communications.
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Linear barrier breakthrough2

• Without caching for BC, the optimal achievable throughput1

R =
1

logK
→ 0 (5)

• A microscopic γ = e−G could yield a very satisfactory

R(γ = e−G) ≈ 1

G
(6)

⋆ only a factor G from the interference free optimal R = 1.

∗ e.g., G = 7, γ ≈ e−7 ≈ 10−3, each cache can be one thousand
times smaller than the library size.

⋆ T = G: any linear decrease in the required performance allows for an
exponential reduction in the required cache sizes.

1Optimality by Maddah-Ali and Tse 2012
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Example

Example: N = K = 3,M = 1 (i.e., γ = M
N = 1

3)

• Placement: �les A, B and C are equally split into 3 sub�les respectively,
e.g.,

A = ( A1︸︷︷︸
f
3bits

, A2, A3)

⋆ set caches Z1 = (A1, B1, C1), Z2 = (A2, B2, C2), Z3 = (A3, B3, C3)

• Delivery. Now you know the requests: W1 = A,W2 = B,W3 = C.

⋆ Wish to deliver

A2 ⊕B1︸ ︷︷ ︸
f
3bits

, A3 ⊕ C1, B3 ⊕ C2 (7)

∗ For simpli�cation, we use AB to denote A2 ⊕ B1, it is the same
with others.
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Example1

• Retrospective transmission: two phases.

⋆ Phase one: XORs are sent sequentially by vectors, e.g., AB = (AB1︸︷︷︸
1
6bits

, AB2)

x1 =

[
AB1

AB2

0

]
,x2 =

[
AC1

AC2

0

]
,x3 =

[
BC1

BC2

0

]
∗ received signals

User 1 : f1(AB1, AB2), f2(AC1, AC2), f3(BC1, BC2)

User 2 : f4(AB1, AB2), f5(AC1, AC2), f6(BC1, BC2)

User 3 : f7(AB1, AB2), f8(AC1, AC2), f9(BC1, BC2)

⋆ Phase two: common messages are sent

x4 = α1f3(BC1, BC2) + α2f5(AC1, AC2) + α3f7(AB1, AB2) (8)

x5 = β1f3(BC1, BC2) + β2f5(AC1, AC2) + β3f7(AB1, AB2) (9)

∗ αi, βi, i = 1, 2, 3 are shared with the receivers.
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Example2

• Decoding

⋆ Backwards from the received signals:

∗ User 1 can decode AB1, AB2 and AC1, AC2;
∗ User 2 can decode AB1, AB2 and BC1, BC2;
∗ User 3 can decode AC1, AC2 and AC1, AC2;

⋆ Recover A2 ⊕B1, A3 ⊕ C1, B3 ⊕ C2;

⋆ With Zk, user k reconstruct WFk
, k = 1, 2, 3

12



Example3
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Fundamental interplay with caching and feedback

Theorem 2 The optimal T ∗ for the (K,M,N) cache-aidedK-user MISO
BC with delayed CSIT, is lower bounded as

T ∗ ≥ max
s∈{1,...,min{⌊N

M ⌋,K}}

s

d∗s(γ = 0)
(1− M

⌊Ns ⌋
)

= max
s∈{1,...,min{⌊N

M ⌋,K}}
Hs(1−

M

⌊Ns ⌋
) (10)

where d∗s(γ = 0) = s
Hs

is the optimal sum-DoF for the corresponding

s-user MISO BC.
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Fundamental interplay with caching and feedback1

Theorem 3 The achievable T = HK −HΓ has a gap from the optimal

T

T∗
< 2 (11)

that is less that 2 for all K.
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Conclusions

• A exploration of the fundamental limits of cache-aided BC with non-real
time CSIT

⋆ the optimal cache-aided DoF within a multiplicative factor of 2.

• O�er insight on the largely unexplored interplay between coded-caching
and CSIT

• Our scheme exploited the interesting connections between

⋆ retrospective transmission schemes;

⋆ coded caching schemes.

Thanks
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