

<u>Cooperative Self-Organizing System for low</u> Carbon <u>Mobility at low Penetration Rates</u>

Work Package 1

Approaches for Low Penetration C2X Traffic Surveillance Systems Webinar, 24th April 2014 Jérôme Härri, Xiaoguang Li, Thrasyvoulos Spyropoulos

COLOMBC

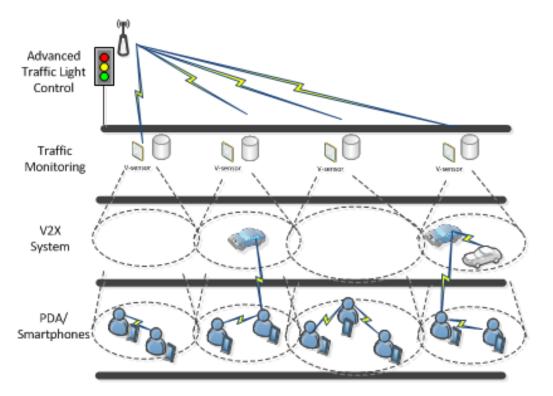
WP 1 - Low Penetration Rate Cooperative V2X Traffic Surveillance

→ Objectives:

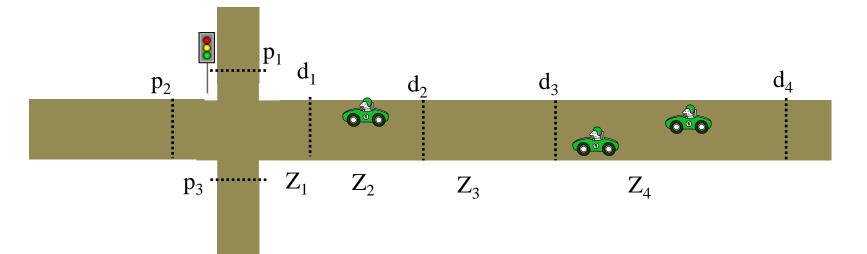
- → Classify vehicles in three classes as function of traffic sensing capabilities
 - → Class A vehicles not participating to traffic surveillance
 - → Class B vehicles equipped with sensors but not C2X
 - \neg Class C vehicles equipped with C2X technologies
- Develop Traffic monitoring system from data gathering, fusion and dissemination of traffic data obtained from class B and C vehicles, assisted by infrastructure nodes
- → Involved Partners:
 - ✓ EUR, DLR, UNIBO, ULB, PEEK, TUG
- → For Year 1:
 - → Deliverables:
 - D1.1: Scenario Specification and Required Modifications to Simulation Tools [M12]
 - ✓ Milestones:
 - M1.1: Reference Scenarios specified and integrated into SUMO, PHEM and iTETRIS [M12]

COLOMBO

Agenda - Low Penetration Rate Cooperative V2X Traffic Surveillance

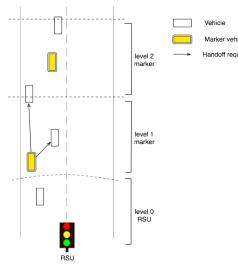

- → Low Penetration Rate Cooperative V2X Traffic Surveillance
 - → Low C2X Penetration
 - → Rely on WiFi-Direct or Bluetooth devices
 - → Multiple types of GPS devices
- → Objective:
 - Traffic Volumes / Traffic Dynamics (speed) in given zones
- → Approaches followed in WP1
 - → Clustering & Data Fusion
 - ✓ Vehicles cluster and let a cluster-head estimate the cluster dynamics
 - → C2X Message Propagation
 - Vehicles send messages and estimate the density & speed from its propagation rate

COLOMBO


Virtual Sensor Approach for Cooperative Traffic Surveillance

- Virtual Sensors represent a zone where the traffic light needs traffic volumes
 - Virtual Sensors only have a 'virtual' existence from an artificial zone defining their coverage
- V2X vehicles (class C) in each zone will exchange traffic data to consolidate traffic volumes
 - Consolidated volumes are transmitted to the RSU (direct, multi-hop)
 - Dissemination is transparent to RSU
- Low V2X penetration is compensated by Smartphones held by drivers and pedestrians and communicating with WiFi-Direct

Data Requirements from a TLC perspective


- \neg d_x measuring distances before TLC
- \neg p_x measuring distances after TLC
- \neg Z_x measured zones [p_{x-1} p_x], [d_{x-1}; d_x]
- → Traffic Dynamics
 - \neg Average speed in Z_x
 - \neg Average Density of Cars in Z_x

Clustering & Data Fusion Approach

- → Step 1: Cars need to form clusters in Z_x
 - → A car must be elected Cluster Head in each Zone
 - → Two approaches: Reactive vs. Proactive
- → Step 2: Cluster head gathers data from its neighbors
 - → average number of neighbors (in neighbor table)
 - → average speed
- Step 3: Data is consolidated through fusion technics
- → Step 4: Consolidated Data is sent to TLC
- \neg Hypothesis (so far):
 - \neg One single zone so far
 - → The single zone is range of a TLC (direct communication)

COLOMBO

Clustering - Reactive protocol (for each direction)

→ Distributed Auction:

- → Each 'activated' node sends a LeaderRequest message
- Each node counts the number of neighbors in its range by counting the number of LeaderRequests it receives
- The node with the maximum number of LeaderRequest assume to be Leader
- Leader sends a lamLeader message to other nodes and activate the Group Leadership/Membership Protocol
 - Any node receiving this message activate the Group Membership Protocol
- → Activation:
 - ✓ Upon reception of *a beacon from an RSU*
 - ✓ Upon reception of a LeaderRequest message from any other node

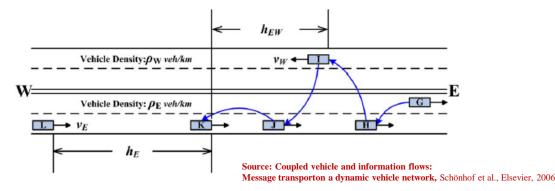
Clustering - Proactive protocol (for each direction)

→ (periodic) Node Mapping Protocol (NMP)

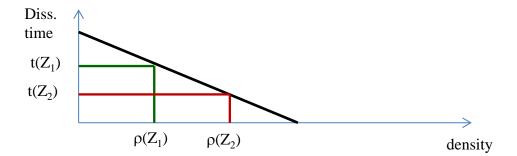
maintains a mapping of neighboring vehicles by periodically sending a beacon with information from neighbors (*id, position, speed, direction, and number of known nodes*)

- Each vehicle can autonomously determine whether it is the best candidate
- ✓ The node with larger neighbor set becomes leader

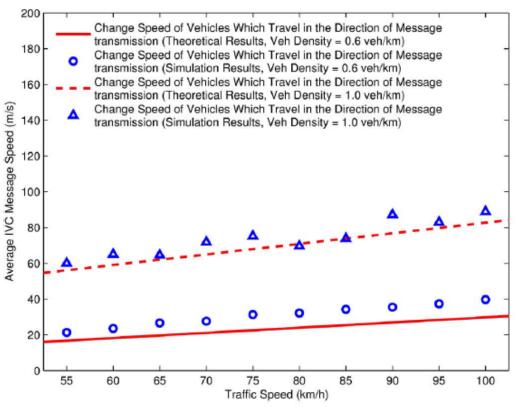
→ Activation:


- ✓ Upon reception of *a beacon from an RSU*
 - → either invites a "good" node with many neighbors to take the leadership
 - → or starts a timer with a duration inversely proportional to the number of nodes in its range;
- This process favors the election of nodes with the highest number of nodes in their radius of action

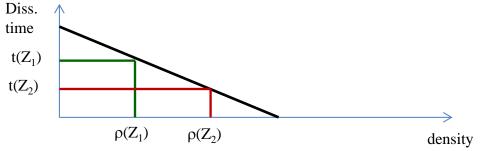
- → Observation: Coupled vehicle and information flows
- → Based on two information flow strategies:
 - Instantaneous relay: a message is relayed immediately if there is a neighbor in range with better progress
 - **Carry**: a vehicle carries a message until a better relay is found
 - \neg As soon as a better relay is found, move back to 1)
- Related work:
 - → Objective: estimation the dissemination time given traffic density
 - Coupled vehicle and information flows: Message transporton a dynamic vehicle network, Schönhof et al., Elsevier, 2006)
 - Local density estimation and Dynamic Transmission Range assignment in VANET, M. Artimiy, Trans. On ITS, 2007
 - The Process of Information Propagation Along a Traffic Stream Through Intervehicle Communication, Wang et al. IEEE Trans. On ITS, 2014
- ✓ For COLOMBO: converse approach
 - Objective: estimation of the traffic density given the dissemination time


→ Information Disseminations:

- → Dissemination (rough sketch)
 - → Carry: dissemination = vehicular speed
 - \neg Relay: dissemination immediate = Multi-hop percolation exists
 - \neg Laws of Physics: at least 1 vehicle every T^{range}
 - → Density of vehicle may be estimated !
 - → Hybrid: carry takes lead over relay


- → Assumptions:
 - ✓ Vehicles follow laws of Physics
 - → Speed depends on density and conversely
 - → Opportunistic communication implicitly selects the farthest node
- → Objectives (mockup)

C2X Propagation


→ Linear Relationship (from related work)

Source: The Process of Information Propagation Along a Traffic Stream Through Inter-vehicle Communication, Wang et al. IEEE Trans. On ITS, 2014

→ Objectives (mockup)

- → Process:
 - \neg A node sends a message at the beginning of Z_x
 - \neg The node is received by the another node at the end of Z_x
 - → <u>Hypothesis here</u>: it is the RSU
 - \neg The time difference (between sent & received): t(Z_x)
 - → <u>Research Hypothesis</u>:
 - → **Linear Mapping** between $t(Z_x)$ and $\rho(Z_x)$

COLOMB

C2X Message Propagation

→ Process:

- \neg A node sends a message at the beginning of Z_x
- \neg The node is received by the another node at the end of Z_x
 - → <u>Hypothesis here</u>: it is the RSU
- \neg The time difference (between sent & received): t(Z_x)
- Research Hypothesis:
 - \neg Linear Mapping between t(Z_x) and ρ (Z_x)
- → Benefits (some..):
 - ✓ Not directly based on GPS position can also be used for any type of vehicular class !!
 - May implicitly handle low penetration of vehicles
 - May also implicitly handle 'ghost vehicles'
 - → Had to move 'over' them, but from the speed/density relationship, they are there...

Next Steps

→ Research Aspects:

- Linear Mapping: remains to be proven
- → <u>Direction Detection</u>:
 - ✓ First step: Message should only be propagated on the same direction as vehicles

- Cannot select other propagation direction
- Second step: No restriction
- → Low penetration:
 - \neg A x% penetration can be added to the mapping model
 - ✓ X% probability of finding a C2X equipped in range (rather than 100%)
- → Zone aspects:
 - Adapting it to zones
 - \neg Impact of dynamic traffic within a zone (transition between free-flow to congested)
- Data Fusion:
 - Need to conduct sensitivity analysis of how traffic anomalies would change the mapping
 - Need to fusion multiple dissemination delays, potentially remove samples negatively influencing the value.

© COLOMBO consortium, 2012-2013

24.04.2014