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Abstract
In the context of automatic speaker verification it is well known
that different speech units offer different levels of speaker
discrimination. For short-duration, text-dependent automatic
speaker recognition, a user’s pass-phrase bears influence on
how reliably they can be recognized; just as is the case with text
passwords, some spoken pass-phrases are more secure than oth-
ers. This paper investigates the influence of text or phone con-
tent on recognition performance. This work is performed using
the shortest duration subset of the standard RSR2015 database.
With a thorough statistical analysis, the work shows how signif-
icant reductions in error rates can be achieved by preventing the
use of weak passwords and that improvements in performance
are consistent across disjoint speaker subsets. The ultimate goal
of this work is to develop an automated means of enforcing the
use of stronger or more discriminant spoken pass-phrases.
Index Terms: speaker recognition, text-dependent, short dura-
tion performance evaluation

1. Introduction
The performance of automatic speaker verification (ASV) tech-
nology is now sufficient to support mass-market, consumer ap-
plications [1]. Most of these, for instance smart phone, smart
service applications and those within the sphere of the Internet
of Things (IoT), call for short-duration enrolment and recog-
nition, implying text-dependent recognition. While gaining
momentum since the release of the RSR2015 [2] and Red-
Dots [3] corpora, research in this area lags behind that in text-
independent recognition.

The seminal work in [4] investigated differences in recog-
nition performance at the speaker level, characterising four dif-
ferent speaker classes referred to as Doddington’s menagerie.
Later work in [5] investigated the influence on performance
of specific training utterances. This work aimed to go beyond
Doddington’s menagerie and to investigate the role of phonetic
content on ASV performance. With substantial variation in per-
formance being observed, this raises the question of exactly
what speech content is most relevant for speaker discrimination.

The work in [5] was extended in [6] which analysed the
idiosyncratic information contained in French vowels. While
perhaps offering greater insights relevant to the forensic branch
of speaker recognition in terms of explaining results, the work
points towards a mechanism for the selection or weighting of
the most discriminant speech components for speaker mod-
elling and recognition [7].

Most of the past work detailed above focuses on text-
independent recognition where the tradition of speaker recogni-
tion evaluation (SRE) campaigns administered by the National
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Figure 1: RSR2015 Database partition for male speakers. The
partition is identical for female speakers but with 43 speakers
in the evaluation set instead of 57.

Institute of Standards and Technology (NIST) generally dictates
relatively long-duration training and testing. When speech data
is plentiful, phonetic variation is naturally normalised to some
extent. This is not the case for short-duration training and test-
ing where speech data is sparse. In this case, phonetic variation
can have a significant impact on recognition performance [8, 9].
Herein lies the contribution of our research.

This paper investigates the influence of text content on
short-duration, text-dependent speaker recognition. The aim is
to assess the variability in recognition performance and to de-
termine the extent to which such variability is consistent across
speakers. This work calls for a thorough statistical analysis
which is reported here.

The remainder of this paper is organised as follows. Sec-
tion 2 expands on the motivation for this work and identifies
the database and protocols used for it. Section 3 describes the
ASV system and results. The statistical analysis of command
strength is described in Section 4.

2. Database and protocols
This section describes the database and text-dependent ASV
system used for the work reported in this paper.

2.1. Database

The ultimate goal of this work is to develop a system to detect
and prevent automatically the use of weak spoken passwords.
Such a system would necessarily draw upon the use of speech
data collected from other speakers; the only speaker-specific
data available at enrolment would be one, or a small number
of repetitions of the speaker’s chosen password.
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Table 1: The four possible kinds of trials for a text-dependent
speaker verification system. They involve different combina-
tions of matching speakers and text.

Match Speaker Text

Target Correct (TC) Yes Yes

Target Wrong (TW) Yes No

Impostor Correct (IC) No Yes

Impostor Wrong (IW) No No

As a consequence, weak passwords are thus assumed to be
universally weak, that is to say not specific to a given speaker.
Required to support this work then, is a corpus collected from
different speakers with multiple repetitions of the same set of
sentences. The so-called sly impostor subset and associated
protocol of the RSR2015 database [10] is ideally suited and is
used for all work reported in this paper. The RSR2015 database
partition is illustrated in Fig. 1. The sly impostor condition in-
volves matched content impostor trials, sometimes referred to
as the impostor-correct (IC) condition. This is one of four pos-
sible trials illustrated in Table 1.

The RSR2015 database contains phonetically-balanced
sentences (part I), short commands (part II) and random digit
trials (part III) (see Fig. 1). Since the target application of this
work involves short spoken passwords, all experiments reported
here are based upon the short commands condition (part II)
where utterances contain in the order of 0.5 seconds of speech.

2.2. Protocols

As illustrated in Fig. 1, there are 50 male and female speakers in
the background subset and 50 male and female speakers in the
development subset. The evaluation subset is comprised of 57
male speaker and 43 female speakers. Each speaker provides
recordings in 9 sessions. Data collected from 3 of the 9 ses-
sions are set aside for training while the remaining 6 are used
for testing. When experimenting on Part II, only Part I data is
used for the learning of background information and there is no
overlap between speakers or phrases between the data used for
background modelling and that used for training and testing.

The sly impostor subset of Part II of the RSR2015 corpus
contains 8990 TC (target) and 440510 IC (impostor) trials for
the development set and 10250 TC and 574000 IC trials for the
evaluation set. These numbers differ slightly from those re-
ported in [11]1. Since the literature focuses on results for the
phonetically-balanced pass-phrases of Part I – this is the stan-
dard protocol distributed with the RSR2015 database – this pa-
per also reports results for the same standard protocol. The Part
I protocol dictates speaker-specific models which are trained
with all 30 pass-phrases across the 3 training sessions, giving
a total of 90 utterances. Speaker and pass-phrase models are
trained with 3 utterances.

3. ASV system
Reported here is the ASV system architecture including details
of the modelling and features together with results. While the
contribution of this paper is not linked to advances in ASV tech-
nology, results are included as a means of illustrating perfor-
mance relative to the state of the art.

1The authors became aware of the standard protocols for RSR 2015
Part II only after most of the work reported here was already completed.

Table 2: Comparison of results for Part I of the RSR2015
database. Results shown for our implementation of the HiLam
system with original results reported in [12]. Results are re-
ported in terms of EER.

Speaker set Ours Larcher et al. [12]

Part I Development 1.74% 1.43%

Part I Evaluation 1.93% 1.33%
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Figure 2: HiLam system architecture, reproduced from [10].

3.1. Architecture

The baseline text-dependent ASV system used for all work
reported in this paper is our own implementation of the so-
called HiLam system originally reported in [11]. As illustrated
in Fig. 2, the system is comprised of 3 layers: (i) a gender-
dependent universal background model (UBM); (ii) speaker-
specific Gaussian mixture models (GMMs) and (iii) speaker-
and-text-specific hidden Markov models (HMMs).

The speaker-specific GMM model is obtained from the
maximum a posteriori (MAP) adaptation of the UBM. The for-
mer is text-independent and does not model any time-sequence
information; this is reflected only in the lower text-dependent
level. Each HMM state is initialised with the same, second-
level GMM model before Viterbi realignment and retraining.
The full HiLam training and testing procedures are described in
the original work [11].

In our implementation, GMM models have 64 components.
MAP adaptation is applied with relevance factors of 19 and 3
for the second and third layers respectively. Scores are con-
ventional log-likelihood ratios calculated between the claimed
model and the UBM.

3.2. Feature extraction

The original RSR speech files are pre-processed with silence re-
moval, by calculating the speech active level as recommended
in ITU-T P.56 and by thresholding at 15.9 dB. This typically
labels in the order of 64% of data for further processing; the
remaining high-energy speech data is then frame blocked into
20ms frames with 10ms overlap. Standard MFCC features are
then extracted in the usual way. They are comprised of 18 coef-
ficients, without C0, which are appended with deltas and double
deltas to produce features of 54 coefficients.

3.3. Performance

Table 2 shows a comparison of ASV results obtained with our
implementation of the HiLam system with those reported in
the original work [12] for Part I (phonetically-balanced pass-
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Figure 3: Impostor (solid red) and target (blue dashed) score
distributions and EER thresholds (green vertical lines). Plots
illustrated separately for all commands trials (top) and for 3
command-specific trials.

phrases). Results are reported in terms of EER. All results cor-
respond to the IC condition and show a respectable level of per-
formance; our results are only marginally worse than those re-
ported in [12].

4. Statistical analysis of password strength
Both speaker characteristics and text content influence ASV
score distributions. Example target and impostor distributions
are illustrated in the top row of Fig. 3. Accept and reject de-
cisions are made according to a global threshold illustrated by
the vertical green line between the modes of each distribution.
The amount of overlap between the two will then determine
the global EER. The threshold is an inevitable compromise be-
tween the ‘inner’ target and impostor distributions related to
an array of different factors, e.g. speaker-dependency, device-
dependency and, in this case, text-dependency.

In the case of the IC condition, the influence of text is quan-
tifiable from the target and impostor score distributions for sub-
sets of same-text trials. These distributions are referred to as
text-dependent distributions and the corresponding distribution
overlap as the text-dependent overlap. As illustrated in Fig. 3
for commands 35, 51 and 54 of the RSR2015 database there
is thus a text-dependent EER obtained with a text-dependent
threshold for each command. The global EER is thus affected
by both the text-dependent overlaps and the variation in the text-
dependent thresholds. In contrast, text-dependent EERs are af-
fected only by the text-dependent overlaps.

The following sections describe a statistical analysis that il-
lustrates the potential to improve ASV performance through the
selection of strong spoken sentences. It furthermore demon-
strates that the notion of password strength is consistent across
disjoint sets of speakers.

4.1. Variable strength command groups

The following describes a process to rank commands in terms
of strength. This is needed in order to simulate a text-dependent
ASV system that would eventually include password strength

recommendation. On the assumption that a strong password is
characterised by a relatively small text-dependent overlap, com-
mands are first ranked by decreasing text-dependent EER. This
process is performed separately for the development and evalu-
ation sets thus yielding two rankings. From each of these rank-
ings, groups of commands are formed by selecting 10 with the
closest strength starting at every rank position, thereby produc-
ing 21 groups in total. The first group is comprised of the 10
weakest commands ranked #1 to #10, the second group is com-
prised of those ranked #2 to #11 and so on until the last group
which contains the 10 strongest commands ranked #20 to #30.
It is stressed that, while the groups obtained for the development
and evaluation sets are similar, they are not identical.

4.2. Sampling distribution of the EER

ASV performance is assessed independently for each group in
terms of the global EER (encompassing all commands in each
group). The significance of the difference in recognition perfor-
mance obtained for each group is measured with the following
bootstrapping procedure [13].

For each group, a thousand populations of 30 commands
are generated by picking at random from the 10 commands in
the group. This procedure is known as resampling with replace-
ment [13]. Each resampling of 30 commands out of 10 pro-
duces a population whose size is the same as that of the full
dataset in terms of the number of trials. Each of these sam-
pled populations yields an EER value which is computed from
the target and impostor trials of the 30 commands of the pop-
ulation. These 1000 EERs form a sampling distribution of the
global EER for each group.

The sampling distributions were visually inspected for nor-
mality, allowing for 95% confidence intervals of 1.96 times the
standard deviation of the distribution, thereby removing 2.5%
of the observations at each end of the distribution. This inter-
val around the mean EER of the distribution has a high prob-
ability of encompassing the true value of the EER for each
group. Differences in performance obtained for groups with
non-overlapping confidence intervals can hence be considered
as being statistically significant.

The bootstrapping procedure is applied using four combi-
nations of different ranking and trial sets: (i) ranking and trials
both for the development set, (ii) ranking and trials both for the
evaluation set, (iii) ranking for the development set and trials for
the evaluation set, and (iv) ranking for the evaluation set and tri-
als for the development set. Combinations (iii) and (iv) are nec-
essary in order to illustrate whether or not command strength
is consistent across disjoint speaker sets. Statistics obtained for
combinations (i) and (ii) are depicted in Fig. 4(a) and 4(b) by
solid symbols in each plot. Statistics obtained for combinations
(iii) and (iv) are depicted by unfilled symbols.

4.3. Isolating the influence of overlap

ASV performance estimated for each group is the consequence
of the variation in text-dependent overlaps and text-dependent
thresholds in each group. To illustrate the dependence on over-
lap in isolation from threshold effects, the experiments de-
scribed above are repeated with all trial scores normalised ac-
cording to the text-dependent threshold. The text-dependent
EER for each command is then obtained with a score thresh-
old of zero. Results for this experiment are reported in Fig. 4(c)
and (d).
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Figure 4: ASV performance with (c,d) and without (a,b) text-
dependent threshold adjustment. Each point represents the
mean EER over 1000 resamplings of 30 commands chosen with
replacement among the 10 commands of each sub group. The
horizontal lines in (a,b) represent the baseline performance of
the system for both sets with all 30 commands.

4.4. Results interpretation

When using their own ranking, EER results for both the devel-
opment and evaluation sets show significant decreases as the
group contains increasingly stronger commands – solid-symbol

plots in Fig. 4(a) and 4(b). When using threshold-adjusted
scores (solid-symbol plots in Fig. 4(c) and 4(d), decreases are
strictly monotonic. This observation confirms that the spread of
text-dependent thresholds also affects performance.

Other observations concern results for cross-set rankings
– unfilled-symbol plots in Fig. 4(c) and 4(d). Rankings made
on the development set translate well to the evaluation set and
vice-versa. For the evaluation set, results illustrated in Fig. 4(a)
show that only 6 groups have an EER which is not signifi-
cantly different to the overall EER (4.89%). For the develop-
ment set, results illustrated in Fig. 4(b) show only 4 groups with
a non-significantly different overall EER (5.83%). The signifi-
cant global decrease in EER (albeit non-monotonic) shows that,
with negligible differences in ranking, some commands are con-
sistently ‘weak’ across different speakers. According to these
results, a system including a password strength acceptance cri-
terion could halve the error rate by choosing stronger sentences
over weaker ones (from 5.34% to 2.67% on the development
set, and from 6.28% to 3.32% on the evaluation set). Finally, we
note that the visible offset of the evaluation set EERs is inherent
to the RSR2015 database and consistent with results presented
by others [11, 12].

The factors responsible for the ranking of command
strength are not addressed in this paper, thus a solution to iden-
tify automatically weak short sentences is left for future work.
Some intuitive, high-level observations are nonetheless offered.
Consistent to both development and evaluation sets is the higher
ranking of longer duration sentences. This is not surprising.
Other observations are more intriguing. While commands such
as ‘Turn on light’, ‘Watch Cartoon’ and ‘Volume Down’, all
of similar duration, all perform well across both subsets, oth-
ers of similar length such as ‘Door Open’, ‘Volume up’ and
‘Aircon off’ performed poorly across both subsets. Given the
similar duration, it is assumed that the first three commands
have more discriminative phonetic content. ‘Volume up’ and
‘Volume down’ vary only by the last two phonemes but are
ranked among the weakest and strongest commands respec-
tively. These observations are consistent with the discrimina-
tive power of nasal sounds studied in [7]. Clearly these factors
warrant further attention in future work.

5. Conclusions and future work
This paper investigates short-duration, text-dependent auto-
matic speaker authentication. The contribution relates to a thor-
ough statistical analysis of the influence of text content on com-
mand strength. This not only influences the optimum system
threshold, but also the degree of overlap between target and im-
postor score distributions. As a result, some spoken commands
are stronger than others.

In order to examine the impact of text on the overlap be-
tween target and impostor score distributions and hence ASV
performance, the influence of the threshold is compensated for
a posteriori. Automatic means to compensate or normalise for
this influence is an issue for future work. The ranking of com-
mands according to their strength reveals considerable differ-
ences in their impact on system performance. The next stage
of this work is to develop an automatic means of identifying
weaker spoken short sentences. The intention is to develop such
a system for a real-use case scenario in which the user of an
ASV system may be encouraged to use a strong spoken sen-
tence, namely one which offers a high level of discrimination
among different speakers.
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