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Abstract—Network cooperation among agents can significantly
increase their position accuracy at the cost of power consumption.
Current power management techniques aim at minimizing the
total position estimation errors over all the agents subject to
the power budgets. There are two main drawbacks for these
approaches. First, the performance of a single agent may be
sacrificed for the benefit of the whole network, and second,
full power budget may be used for only marginal performance
improvement on the position accuracy. This paper proposes a
new type of power management strategies where each agent
individually minimizes its square position error bound (SPEB)
penalized by its power cost. The strategies are obtained as
solutions to two power management games that are formulated
under the knowledge of local information and global information,
respectively. We show that agents are more likely to cooperate
when global information is available or the channel quality is
good. Analytical and numerical results show that the proposed
strategies significantly reduce the energy consumption with only
marginal performance loss in position accuracy.

Index Terms—Localization, cooperative techniques, power al-
location, game theory, Nash equilibrium

I. INTRODUCTION

High-accuracy localization is promising for various ap-
plications and services, such as indoor navigation, social
networking, logistics tracking, and emergency rescue [1]–[9].
However, high-accuracy localization may not be attainable
by traditional localization techniques in many scenarios [10]–
[15]. For example, the global positioning system (GPS) does
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not work well in harsh propagation environments, and received
signal strength based localization does not provide a satisfac-
tory precision in indoor applications.

There have been studies on improving position accuracy
without upgrading infrastructure. In particular, the authors in
[8] and [9] showed that agents (nodes with unknown positions)
can improve their position accuracy by cooperating with each
other, referred to as cooperative localization. For example, two
agents can improve their position estimates by sharing their lo-
cation information and by taking range measurements between
each other. It was shown that more cooperation provides higher
position accuracy. However, the gain of the position accuracy
is achieved at the cost of additional range measurements,
which induces power consumption. When nodes have poor
channel qualities, cooperation can drain their batteries quickly
without notable increase in their position accuracy. Since
mobile devices are energy-limited [16]–[18], it is critical to
balance position accuracy and energy consumption in cooper-
ative localization networks.

Power-efficient network localization techniques have been
studied for networks without agent cooperation in [19]–[24]
and with agent cooperation in [25]–[27]. Most of the studies
considered power optimization as a common global objective
for all the agents. For example, the authors in [19] consid-
ered total power minimization subject to position accuracy
requirements. Moreover, the power allocation techniques are
mostly limited to synchronous networks, where agent nodes
make one-way time-of-arrival (TOA) range measurement with
each other based on perfect global clock synchronization [28]–
[32]. Yet, it is highly challenging to achieve global clock
synchronization up to the nano second timescale as required
by high-accuracy localization.1 Nevertheless, there is no trivial
solution to extend the techniques in [25]–[27] to asynchronous
networks. This is because, agents need to perform round-

trip TOA range measurements in asynchronous networks [33],
leading to power allocation strategies that are coupled among
agents. As a result, a power optimization framework that
incorporates individual objectives of the agents for both syn-
chronous and asynchronous cooperative localization networks
is needed.

The goal of this paper is to develop distributed power
management strategies for cooperative network localization.
The scenario of interest is a set of agents that have some

1For example, in the LTE-Advanced network, the adjacent cell time
synchronization is only up to micro seconds. Moreover, agents are not
synchronized when they are associated with different Wi-Fi networks or
bluetooth networks.
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prior knowledge of their locations but want to improve the
position accuracy by making inter-node range measurements.
The power management discussed in this paper is different
from the existing power allocation strategies (e.g., [25]–[27]),
in the sense that, each agent not only allocates power over
different cooperative links under a prescribed power budget,
but also manages the total power budget for a better accuracy
and power trade-off. In particular, agents are characterized as
“selfish” distributed nodes that are unwilling to sacrifice their
power for global performance gains. As a result, instead of
formulating a common global objective optimization, a multi-
agent optimization is considered, where each agent minimizes
its own cost function. Such a scheme naturally falls into the
scope of game theory [34]–[38]. It is worthy to emphasize
that the traditional approaches may result in the scenario
where some agents achieve much better performance than
the other agents, whereas, using game theoretical approaches,
mechanisms can be designed to balance the performance of
all the agents.

Game theory has been applied for developing localization
algorithms over recent years. In [39]–[44], the process of
locating target nodes by a set of anchors was modeled as a
coalitional game. Using the coalitional game approach, various
algorithms have been developed to address problems such
as sleep time allocation among anchors [40], [41], dynamic
range measurement allocation [42], and node selection [43]
or link selection [44] in forming a cooperative localization
network. However, all these studies considered localizing
target nodes by a set of anchors, and focused on the power and
communication cost of the anchors, whereas little was known
about the power management for agent cooperation.

The following two questions are essential for network
localization with agent cooperation from a power management
game perspective:

• Which links to select for cooperation? Cooperation re-
quires considerable amount of power and communication
overhead, while some links may only provide marginal
performance improvement. Therefore, it is essential to
select links that are more cost-effective for cooperation.

• How much power to allocate? The agents’ power
allocation strategies are correlated, even though they
have separate objectives. In particular for asynchronous
networks, the range quality between two agents depend
on the power allocation of both agents, and hence it is
non-trivial to find a good power allocation strategy that
benefits all the agents.

In this paper, we propose two power management games
for different application scenarios. The first game considers
agents with only local information, such as the channel quality
between themselves and their neighbors. They select the power
allocation strategy as the best response to the knowledge
of neighbors’ tentative power allocations, and iterate among
agents for a stable power allocation in the network. The Nash
equilibrium (NE) is used as a solution concept. The conditions
on the existence and uniqueness of the NE are investigated.
The second game considers agents with global information and
a Pareto optimal strategy via the Nash bargaining solution [45]

is developed. This is of particular interest in a small network
where the price of global information exchange is negligible.
The main contributions of this paper are as follows:

• We propose a framework of power management strategies
for cooperative localization in both synchronous and
asynchronous networks.

• We determine the conditions for agent cooperation based
on the channel quality. In particular, it is found that agents
are more likely to cooperate when global information
is available compared to when only local information is
known.

• We demonstrate that the proposed strategies significantly
reduce the energy consumption with only marginal degra-
dation in position accuracy.

The rest of the paper is organized as follows. Section II
presents the system model and defines the power management
game for localization. Section III and IV study the competitive
power management game and the coordinated power manage-
ment game, respectively. Numerical results are demonstrated
in Section V, and conclusions are given in Section VI.

Notations: The bold characters a and A denote a vector and
a matrix, respectively. The notation a ≽ b means ai ≥ bi for
each i, and A ≽ 0 means A is a positive-semidefinite matrix.
For a function f(x), x ∈ R, f

′

(x) = d
dx
f(x) and f

′′

(x) =
d2

dx2 f(x). The function y = O(xα) means limx→∞
y
xα = C <

∞.

II. SYSTEM MODEL

This section illustrates the model for cooperative localiza-
tion and introduces the power management game for network
localization.

A. Cooperative Localization

Consider a wireless network with K agents, which are nodes
with unknown positions. The agents obtain initial estimates p̂o

k

of their positions pk ∈ R2 from the anchors, which are nodes
with known positions. The associated accuracy of estimates p̂o

k

are captured by 2 × 2 equivalent Fisher information matrices
(EFIMs) [8], denoted as Jo

k and known to the agents. Fig. 1
illustrates an example topology for a K = 3 agent network,
where the positions of anchors are not shown.

The agents aim at increasing their position accuracy through
cooperation. Specifically, each agent k makes range measure-
ments with its neighbors, and then obtains a new estimation
p̂k from p̂o

k based on the range measurements as well as
the initial estimates p̂o

j and Jo
j from its neighbors. We focus

on the performance after the agents have made one round of
cooperation. It has been shown in [8] that the mean squared
error (MSE) of the position estimation for agent k is bounded
by the following individual SPEB2 as

E
{
∥p̂k − pk∥2

}
≥ tr{J−1

k } (1)

2The individual SPEB in (1) is used as the performance metric for position
accuracy because it is tight in high signal-to-noise ratio (SNR) regimes, as
demonstrated by numerical results in Section V.
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Fig. 1. A topology for a K = 3 agent network. As a geometric illustration,
the shaded ellipses represent the initial location information [8] before
cooperation and dash ellipses represent the expanded location information
after cooperation.

where Jk is the 2 × 2 individual EFIM for agent k after
cooperation. To specify Jk, denote N (k) as the set of neigh-
bors of agent k, let xkj be the transmit power sent from
agent k to agent j for range measurement, and let ξkj be
the channel ranging quality [8] between agent k and agent j.3

The individual EFIM Jk is given in the following lemma.

Lemma 1 (Individual EFIM): The individual EFIM Jk for
agent k can be expressed as

Jk = Jo
k +

∑

l∈N (k)

gkl(xkl, xlk)uklu
T
kl (2)

where for round-trip TOA ranging in an asynchronous network

gkl(xkl, xlk) !
4xklxlkξkl

xkl + xlk + 4xklxlkξklδkl
(3)

and for one-way TOA ranging in a synchronous network

gkl(xkl, xlk) !
(xkl + xlk)ξkl

1 + (xkl + xlk)ξklδkl
(4)

in which

δkl = uT
kl(J

o
l )

−1ukl (5)

ukj = [cosφkj sinφkj ]T, and φkj denotes the angle between
agent k and j as illustrated in Fig. 1.

Proof: (Sketch) The case for synchronous networks has
been derived in [9, Appendix C]. For asynchronous networks,
similar derivation can be applied with the modified equivalent
ranging intensity λkj = 4xkjxjkξkj/(xkj + xjk) [20] for
round-trip TOA ranging.4

Throughout this paper, the analysis and insights mainly
focus on asynchronous networks. The results for synchronous
networks follow similarly, with details omitted due to page
limit.

3In practice, the channel ranging quality ξkj can be calculated using the
model in [8, Theorem 1]. Note that, in general, obtaining ξkj may require
some communication overhead among agents.

4The equivalent ranging intensity λkj takes a form different from [46,
equation (1)], because the constant 4 here was absorbed in the channel quality
ξkj in [46, equation (1)]. Thus the gain function (3) is consistent to the term
in [46, equation (8)] up to a scaled channel quality.

B. Power Management Game for Localization

Let xk ! {xkj}j ̸=k be the collection of power allocation
variables of agent k, and let x−k ! {xj}j ̸=k be the power
allocation variables of all the other agents. Each agent k has
its own objective (cost function) that minimizes the individual
SPEB penalized by the power consumption, formulated as

fk(xk,x−k) ! tr
{
Jk(xk,x−k)

−1
}
+ Vk

∑

j ̸=k

xkj (6)

where Vk > 0 is an agent-specific power conservative level,

and the term Vk

∑
j ̸=k xkj characterizes the power cost. Each

agent k finds the power allocation xk under the admissible set
xk ∈ Pk = {xkj ≥ 0, ∀j ̸= k :

∑
j ̸=k xkj ≤ P (k)}.

The power management game can be written as a three-
tuple (K,X , f), where K is the set of agents (players of the

game); X =
∏K

k=1 Xk is the set of possible combinations of
link selection and power allocation strategies (action), in which
Xk denotes the strategy of agent k; and f = (f1, f2, . . . , fK)
is the cost function vectors of all the agents under some power
allocation x = (x1,x2, . . . ,xK).

III. COMPETITIVE POWER ALLOCATION WITH

LOCAL INFORMATION

Consider that the agents have only local information (such
as the power allocation and the EFIM) from their neighbors. In
the absence of a central controller in the network, one reason-
able choice of power allocation strategy is to follow the best

response to the other agents’ power allocation. Specifically, by
observing the power allocation of all the other agents, agent k
computes power allocation xk to minimize its individual cost
function fk(xk,x−k). The competitive power management
game is formulated as follows:

Competitive power management game:

(G1) :
minimize

xk≽0
fk(xk,x−k)

subject to
∑

j ̸=k xkj ≤ P (k)

for each agent k.

One important solution concept for the competitive power
management game is the NE.

Definition 1 (Nash Equilibrium): A power allocation profile
x∗ = (x∗

1, x
∗
2, . . . x

∗
K) is called an NE (in pure strategies) if

and only if the following holds:

fk(x
∗
k,x

∗
−k) ≤ fk(xk,x

∗
−k) ∀xk ∈ Pk (7)

for all agents k.

The NE in the power management game is a power alloca-
tion profile for all the agents in the network that indicates that
none of the agents can benefit more from changing its own
power allocation unilaterally. The power management game
can be interpreted as each agent “persuading” its neighbors
to contribute more power for cooperation, but at the same
time, trying to minimize its own power cost. The notion of
the NE thus characterizes the situation where the agents reach
an agreement on the power allocation.

A quick observation can be made from the following
proposition.
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Proposition 1 (Existence of the NE): In asynchronous net-
works, game G1 always admits an NE x∗ = 0.

Proof: Let x∗ = (x∗
k,x

∗
−k) = 0. Consider that agent

k chooses power allocation xk ̸= 0, where there exists
l ̸= k, such that xkl ̸= 0. However, since x∗

lk = 0, we
have g(xkl, x∗

lk) = 0 from (3) for all l ∈ N (k). As a result,
fk(xk,x∗

−k) = tr
{
(Jo

k)
−1

}
+ Vk

∑
l ̸=k xkl > tr

{
(Jo

k)
−1

}
=

fk(x∗
k,x

∗
−k), which suggests that x∗ = 0 is a NE from

Definition 1.
In asynchronous networks, not to cooperate is always an NE

of game G1. This is because, with round-trip TOA ranging, if
either one of the agents allocates zero power on a round-trip
TOA link, neither of them can achieve any improvement from
this range measurement. Thus the concept of cooperating NE
is introduced to characterize the scenario of cooperation.

Definition 2 (Cooperating NE): A cooperating NE of game
G1 is an NE x∗ that satisfies x∗ ̸= 0, whereas x∗ = 0 is a
non-cooperating NE.

The cooperating NE (if exists) is more favorable than the
non-cooperating NE. Therefore, we need to understand the
condition on the existence of a cooperating NE, and once it
exists, we need to know whether it is unique and how we find
it. This section addresses these issues.

A. Best Response Strategy

Under the competition mechanism in game G1, the best

response strategy Tk(x−k) for agent k given the knowledge
of other agents’ power allocation x−k is the power allocation
xBR
k that minimizes the individual cost function fk in (6), i.e.,

xBR
k = Tk(x−k) ! arg min

xk∈Pk

fk(xk,x−k). (8)

Note that given x−k, the problem in (8) is convex under
both asynchronous and synchronous cases, and hence, there
are efficient algorithms to find xBR

k following the convex
optimization framework [47], [48]. Moreover, as can be seen
from cost function fk in (6), computing xBR

k only requires
local information, such as channel quality {ξkj}j∈N (k) and
the power allocation {xj}j∈N (k), from the neighbors of agent
k.

Let T̃ = (T1,T2, . . . ,TK) : P̃ +→ P̃ be the network

best response mapping, where P̃ !
∏K

k=1 Pk is the set of
admissible power allocations in the network. The following
dynamic equation characterizes the best response iteration

x(n) ∈ P̃ :

x(n+ 1) = T̃(x(n)) (9)

where n is the iteration index. The stationary points of (9) can
be defined by the following fixed point equation:

x∗ = T̃(x∗). (10)

Note that the fixed point equation (10) also characterizes
the set of NEs of the competitive power management game
G1.

B. Cooperating NE in Two-agent Game

To start with, we first consider the case of two-agent
networks.

1) Best Response Solution: Consider a two-agent competi-
tive power management game G1. The conservative coefficient

defined as follows is found to be an important parameter for
the solution to the game.

Definition 3 (Conservative Coefficient): The conservative
coefficient of agent k on link (k, j) is defined as

Γkj !
Vk

uT
kj(J

o
k)

−2ukj
. (11)

Denote the two agents as k, j ∈ {1, 2}, k ̸= j. The closed-
form solution to the best response problem (8) is given as
follows.

Lemma 2 (Best Response Solution): The best response
power allocation xBR

k = Tkj(xjk) of agents k, j ∈ {1, 2},
k ̸= j, is given by5

Tkj(xjk) =

⎧
⎨

⎩

(
2
√
ξkj/Γkj − 1

)
xjk

1 + 4ξkj (δkj + δjk)xjk

⎫
⎬

⎭

P (k)

0

(12)

for asynchronous networks, and

Tkj(xjk) =

{√
ξkj/Γkj − 1

ξkj (δkj + δjk)
− xjk

}P (k)

0

(13)

for synchronous networks, where the parameter δkj is defined
in (5), and {x}P0 = 0 if x < 0, {x}P0 = P if x > P , and
{x}P0 = x, otherwise.

Proof: Please refer to Appendix A.

The conservative coefficient Γkj in (11) measures agent k’s
incentive for cooperation. Specifically, if Γkj is larger, agent
k is not likely to cooperate on link (k, j), i.e., to allocate zero
power on link (k, j) for range measurement with its neighbor
j. The conservative coefficient is determined by agent k’s
power conservative level Vk , the initial localization quality
captured by Jo

k, as well as the ranging direction ukj . If agent k
has a good initial localization quality (corresponding to small
tr{[Jo

k]
−1}), the conservative coefficient Γkj is large.

Remark 1: Lemma 2 implies that in asynchronous net-
works, if agent j increases the power allocation xjk on link
(k, j) for round-trip TOA range measurements, agent k would
also increase the power allocation xkj as the best response.
In contrast, in synchronous networks, if agent j increases the
power xjk , agent k would decrease the power xkj as the best
response.

2) Necessary Condition for Cooperation: In order to have
Tkj(xjk) > 0 in (12), the coefficient in the numerator must be
positive. Thus, Lemma 2 implies a straightforward necessary
condition for cooperation under two-agent competitive game
G1.

Proposition 2 (Necessary Condition for Cooperation): For
agents k, j ∈ {1, 2}, k ̸= j, a necessary condition on the
existence of a cooperating NE x∗ such that x∗

kj > 0 is

ξkj >
1

4
Γkj (14)

5Note that for the two-agent case, the notation x−k = xjk becomes a
scalar.
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for asynchronous networks, and

ξkj > Γkj (15)

for synchronous network.
Proposition 2 shows how the channel quality ξkj and the

power conservative coefficient Γkj affect the agent’s decision
on cooperation. If the channel quality is too poor, i.e., ξkj is
small, agent k prefers not to cooperate, no matter how large
xjk is.

Remark 2 (Application of Proposition 2): Proposition 2
yields an important guideline on implementations in that the
necessary condition (14) only requires limited local informa-
tion exchange (only needs to know the direction φkj ). As a
result, when the necessary condition (14) fails to hold, the
two agents can avoid spending communication resources for
exchanging the matrices Jo

j and Jo
k.

3) Uniqueness of the Cooperating NE: The sufficient and
necessary condition for cooperation in two-agent networks is
now derived as follows.

Theorem 1 (Cooperating NE in Two-agent Game): The
two-agent competitive game G1 admits a cooperating NE as
x∗ ̸= 0, if and only if, for k, j ∈ {1, 2}, k ̸= j,

ξkj >
1

4

(√
Γkj +

√
Γjk

)2
(16)

for asynchronous networks, and

ξkj > min {Γkj ,Γjk} (17)

for synchronous networks. Moreover, for asynchronous net-
works, the cooperating NE is unique, and for synchronous
networks, it is unique when Γkj ̸= Γjk .

Proof: Please refer to Appendix B.
From Theorem 1, one can draw the following insights on

the incentive for cooperation under the competitive power
management game:

• Channel quality ξkj : Larger ξkj leads to higher incentive
for cooperation.

• Conservative coefficient Γkj : Smaller Γkj leads to higher
incentive for cooperation. From (11), both Vk and Jo

k

affect Γkj . In particular, a smaller parameter Vk or a
larger quantity uT

kj(J
o
k)

−2ukj yields a smaller Γkj .
• Network synchronism: Under the same channel quality

ξkj , the agents in synchronous networks have higher
incentive for cooperation than the ones in asynchronous
networks as 1

4 (
√
Γkj +

√
Γjk)2 > min {Γkj ,Γjk}.

4) Stability of the NE: In asynchronous networks, when
the cooperating NE exists, there are two NEs in the two-
agent game. We are thus interested in the stability property
of the NEs. Consider that the two agents play the iterative
best response strategy following the iteration in (9). A natural
question is whether the iteration in (9) converges. In addition,
when the dynamic equation (9) converges, which NE will it
likely converge to?

To address these issues, we make use of the notions of stable

and unstable NE. Specifically, for a stable NE x∗, given any
initial point x(0) that is located in the neighborhood of x∗,
the iteration x(n) generated by the best response iteration (9)
eventually converges to x∗. On the other hand, for an unstable

NE x∗, there exists an open neighborhood U of x∗, such that
for each open neighbor V of x∗ there exists an integer NV such
that for any initial point x(0) ∈ U\x∗, the iteration satisfies
x(n) /∈ V for all n ≥ NV . In other words, the iteration x(n)
is repelled from x∗ after some small perturbation.

The following theorem shows the stability of the NE and
the global convergence of the best response iteration in asyn-
chronous networks.

Theorem 2 (Stability and Convergence in Asynchronous

Networks): When the cooperating NE x∗
c ̸= (0, 0) exists, it

is stable and the non-cooperating NE x∗ = (0, 0) is unstable.
In addition, the best response iteration x(n) in (9) converges to

x∗
c from any initial point x(0) ∈ P̃\(0, 0). On the other hand,

when the cooperating NE does not exist, x(n) converges to
the non-cooperating NE.

Proof: Please refer to Appendix B.

The above result establishes the global convergence property
of the best response iteration under two-agent game G1 in
asynchronous networks. It also suggests that even though
both agents are power conservative and selfish, they are still
willing to cooperate when the channel quality is good. On
the other hand, when the channel quality deteriorates, the
cooperating NE may move to the origin and degenerate to
a non-cooperating NE.

Remark 3 (Convergence in Synchronous Networks): From
the best response solution (13) for synchronous networks,
one can easily show that the best response iteration (9) can
converge to the NE, which is stable, from any initial point.

Furthermore, we have the following result on the rate of
convergence of the best response iteration (9).

Proposition 3 (Rate of Convergence in Asynchronous Net-

works): For a sufficiently small ϵ > 0, there exists ϱ > 0, such
that, for ∥x(0) − x∗∥ < ϱ, the sequence x(n) generated by
the best response iteration (9) converges to x∗ linearly, i.e.,

∥x(n)− x∗∥ ≤ (r + ϵ)n∥x(0)− x∗∥

where r = T
′

12(x
∗
21)T

′

21(x
∗
12) < 1.

Proof: Please refer to Appendix B.

Proposition 3 demonstrates that if each agent follows the
best response strategy in (12) in asynchronous networks, the
solution dynamics converges to the cooperating NE at a linear
convergence rate. Note that for synchronous networks, one can
easily find that the iteration following the best response in (13)
converges in finite steps.

C. Cooperating NE in K-agent Network

In K-agent game G1, the cooperating NE is usually not
unique. For example, consider a three-agent asynchronous
network. There may be three cooperating NEs, each of which
corresponds to allocating zero power to one link and non-zero
power to the other two links.6 Therefore, we focus on the
existence condition on the cooperating NE and the algorithm
to avoid the non-cooperating NE.

6This is due to the gain function (3) in asynchronous networks, where if
one agent allocates zero power on the link, the other agent would also allocate
zero power as the best response.
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Algorithm 1 Power allocation under competitive power man-
agement game G1.

1) Each agent k evaluates the necessary condition in (14)
for link (k, j) to the neighbor node j ∈ N (k). If (14) is
not satisfied, xkj = 0, and the link (k, j) is eliminated
from the network. Otherwise, agent k and j exchange the
EFIM Jo

k and Jo
j .

2) If there is only one cooperating link associated with
agent k and j, then the power allocation xkj and xjk

is computed by solving the fixed point equation (10).
3) If there is more than one cooperating link, the power

allocation xkj and xjk is computed following the best
response iteration (9), with a strictly positive initial point
xkj(0), xjk(0) > 0.

1) Existence of a Cooperating NE: Theorem 1 gives a
sufficient and necessary condition for cooperation in a two-
agent game. Correspondingly, the notion of a cooperating link

is introduced for the study of the existence of a cooperating
NE in K-agent game G1.

Definition 4 (Cooperating Link): The link (k, j) that con-
nects agent k and j is called a cooperating link if the channel
quality ξkj satisfies (16) in asynchronous networks and (17)
in synchronous networks.

A cooperating link establishes a sufficient condition on the
existence of a cooperating NE in game G1, as is summarized
in the following proposition.

Proposition 4 (Existence of a Cooperating NE): There ex-
ists a cooperating NE if the network has at least one cooper-
ating link.

Proof: Suppose there is no cooperating NE, but the
link (k, j) satisfies condition (16) or (17). Then the network
degenerates to a two-agent network for agents k and j. From
Theorem 1, there exists a cooperating NE on the link (k, j),
and hence this yields a contradiction.

2) Stability of the NE: Using similar techniques to those
in Section III-B, the stability properties of the NE in K-agent
game G1 can be characterized as follows.

Proposition 5 (Stability Properties of the NE): If a cooper-
ating NE exists, the non-cooperating NE x∗ = 0 is unstable.

Proposition 5 suggests a way to avoid the non-cooperating
NE by simply choosing the initial point x(0) to be strictly
positive on each of its elements.

Using the theoretical results in this section, an efficient
power allocation algorithm under the competitive power man-
agement game G1 is given in Algorithm 1.

Remark 4: Note that the necessary condition in (14) is only
valid in two-agent networks. Therefore, Step 1 in Algorithm 1
yields a sub-optimal solution. Nevertheless, Algorithm 1 still
gives good performance, as demonstrated by the numerical
results in Section V.

Remark 5: Using the results in Theorem 2, Algorithm 1
can be shown to converge to the cooperative NE in two-
agent networks globally from any initial points except the
origin. However, in K-agent networks, the conditions for the
convergence to a cooperative NE is not known.

D. Performance Evaluation

To evaluate the performance of the power allocation al-
gorithm from the competitive power management game G1,
consider a full power allocation strategy xf

k for agent k as the
solution to the following SPEB minimization problem

minimize
xk≽0

tr{J−1
k (xk,x−k)}

subject to
∑

j ̸=k xkj = P (k)

Correspondingly, let x∗
k be the solution of agent k from game

G1 given the power allocation x−k from the other agents.

Moreover, consider the scenario where the power conser-
vation level Vk = Vk(P (k)) is a decreasing function of
the power budget P (k), since a higher power budget P (k)

usually implies relatively lower cost in power consumption,
and hence, there should be a smaller Vk. In addition, let
Ik(xk,x−k) = tr{J−1

k (xk,x−k)} be the SPEB for agent k
achieved by the power allocation (xk,x−k). The following
theorem evaluates the asymptotic performance of the proposed
power allocation strategy.

Theorem 3 (Asymptotic Performance): Suppose
Vk(P (k)) → 0 and Vk(P (k)

1
2P (k) → ∞ as P (k) → ∞

for all k. Then, for both asynchronous and synchronous
networks

Ik(x∗
k,x−k) → Ik(xf

k,x−k), and
∑

j∈N (k)

x∗
kj

P (k)
→ 0

as P (k) → ∞, for all channel qualities ξkj .

Proof: Please refer to Appendix C.

From Theorem 3, the SPEB performance achieved by the
proposed power allocation strategy X can be arbitrarily close
to the performance lower bound of the full power allocation
Xf when the power budget P (k) is sufficiently large. At the
same time, the strategy X requires much less power compared
to Xf.

Condition Vk(P (k)) → 0 leads to sufficiently high power
allocation x∗

kj as P (k) → ∞, and condition Vk(P (k)
1
2P (k) →

∞ guarantees that x∗
kj scales (order-wisely) slower than P (k)

does. The intuition from Theorem 3 is that, in high power
budget regions, the range measurement has sufficiently high
accuracy and the performance improvement from cooperation
is limited by the EFIMs {Jo

k} before cooperation. As a
result, as the power budget increases, the additional gain in
terms of the SPEB achieved by allocating more power to
the cooperative range measurement diminishes. This result
demonstrates the energy efficiency of the power management
game.

IV. COORDINATED POWER ALLOCATION WITH

GLOBAL INFORMATION

In this section, we focus on the scenario when the global
information (such as network topology, channel quality, and
position estimates) is available to all the agents, which thus can
fully coordinate with each other. This is of particular interest
in a small network. We are interested in a Pareto optimal

strategy, under which only this strategy can reduce the cost
(objective value) for at least one agent but not increase the
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cost of any other agents. In fact, there may exist an infinite
number of Pareto optimal points, and each corresponds to a
different fairness among the agents. In particular, an axiom-
based fairness for cost distribution among agents is considered,
which leads to the Nash bargaining solution [34], [45] for the
power allocation in cooperating localization.

A. Coordinated Game via Nash Bargaining Solutions

The bargaining process is introduced as follows. Define
F as the set of all possible costs that the agents can
achieve, i.e., F = {f(x)

∣∣x ∈
∏K

k=1 Pk}, where f(x) =
(f1(x), f2(x), . . . , fK(x)) is the vector of the costs (objective
value) of the agents. Consider that the agents conduct a
bargaining process to negotiate the power allocation on all the
links. Each agent k has a requirement on the outcome fk, such
that the resulting cost from the bargaining is smaller than some
threshold dk (disagreement point). Otherwise, agent k would
not participate in the global coordination for power allocation.
Let d = (d1, d2, . . . , dK) ∈ F be the disagreement point of
the bargaining, which means if after the bargaining, any agent
obtains a higher cost fk > dk, then the global coordination
fails and the final global cost becomes f = d.

The Nash bargaining problem is to assign the pair (F ,d)
to a unique cost vector f∗ that is Pareto optimal, i.e., there
does not exist a point f ∈ F such that fk ≤ f∗

k for all the
agents and at least one of them holds the strict inequality. Nash
showed that there exists a unique cost vector f∗ that is Pareto
optimal and satisfies three other axioms.7 Such cost vector f∗

is obtained by solving the following problem [34], [45]:

minimize
f∈F

K∏

k=1

(dk − fk) (18)

subject to fk ≤ dk, k ∈ K = {1, 2, . . . ,K}. (19)

However, the original form of the Nash bargaining problem
(18)-(19) may not be a good formulation to find the power
allocation in cooperative localization. First of all, the unique-
ness of the cost vector f∗ in (18) does not directly imply the
uniqueness of the power allocation x∗ to achieve f(x∗) = f∗.
Second, for some choices of dk, it may happen that fk ≥ dk
for all f ∈ F , i.e., agent k cannot further reduce its cost under
all possible power allocations, in which case the objective in
(18) trivially becomes 0, and there exist multiple solutions for
x∗.

To address these issues, we first propose a reasonable choice
of the disagreement point d, that is, the outcome f(0) of
a non-cooperating NE x = 0, which corresponds to the
non-cooperating scenario. This is because the performance
improvement is expected for at least one agent through global
coordination compared to the non-cooperating strategies. A
notion of strict feasibility is then introduced as follows.

Definition 5 (Strict Feasibility): Given f d
k = fk(0) for k =

1, 2, . . . ,K , the Nash bargaining problem (18)-(19) is strictly
feasible if there exists x ∈ P̃ such that fk(x) < f d

k for at least
one k.

7The three other axioms specify three properties of the mapping (F ,d) !→
f∗: linearity, symmetry, and independence of irrelevant alternatives properties.
Please refer to [34], [45] for details.

The power management game is formulated as follows.

Coordinated power management game:

(G2) :

maximize
x≽0

∑
k∈K1

log(f d
k − fk(x))

subject to fk(x) < f d
k, k ∈ K1

fk(x) ≤ f d
k, k ∈ K0∑

j ̸=k xkj ≤ P (k), k ∈ K

(20)

where f d
k = fk(0) for k ∈ K, and agent sets K1 and K0 are

disjoint partition of K (i.e., K1 ∩K0 = ∅ and K1 ∪K0 = K),
such that (i) there exists x ∈ P̃ , such that fk < f d

k for all

k ∈ K1; and (ii) for all x ∈ P̃ , we have fk(x) ≥ f d
k for at

least one k ∈ K0.

If K1 = K, the optimal power allocation x∗ for problem
(20) yields the optimal cost vector f(x∗) = f∗ in the Nash
bargaining problem (18)-(19), and x∗ is Pareto optimal. If
K1 = ∅, game G2 is not strictly feasible, and the solution
degenerates to x∗ = 0, implying that a Pareto optimal solution
is to not cooperate. In general when K1 ̸= ∅, there could be
multiple choices of the agent partition (K0,K1), and a low
complexity algorithm for a sub-optimal agent partition is given
in Algorithm 2.

B. Unique Solution and the Strict Feasibility

We next show that given an agent partition (K0,K1), G2
admits a unique solution, by proving its convexity.

Lemma 3 (Convexity): For both asynchronous and syn-
chronous networks, the function fk(x) is convex in x ∈ P̃ ,
and the function

∑
k∈K1

log(f d
k − fk(x)) is concave in x ∈

{x ∈ P̃ : fk(x) < f d
k, k ∈ K1}.

Proof: Please refer to Appendix D.
Lemma 3 implies that G2 is convex, and hence there is a

unique local optimal solution and it can be computed using
efficient convex optimization techniques.

Remark 6 (Interpretation of Algorithm 2): Denote (K∗
0 ,K∗

1)
as the optimal agent partition to achieve the maximum objec-
tive value in (20). Under cases K∗

1 = K or K∗
1 = ∅, Step 2

with µ = 0 solves a standard feasibility problem, which finds
the optimal active agent set K∗

1. Under the other cases, Steps
2-3 with µ = 1 add agents one by one into set K1 in a greedy
way.

As a special case for two-agent scenario, we now study the
condition on the strict feasibility of G2. It suffices to check
the condition under which both agents allocate non-zero power
for the cooperation. The result is summarized in the following
theorem.

Theorem 4 (Cooperation Condition via Game G2): Game
G2 is strictly feasible in a two-agent network, if and only if
the channel quality ξkj between the two agents k and j satisfies

ξkj >
1

4
(Γkj + Γjk) (22)

in asynchronous networks, and

ξkj >
ΓkjΓjk

Γkj + Γjk
(23)

in synchronous networks.
Proof: Please refer to Appendix E.
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Algorithm 2 Power allocation under coordinated power man-
agement game G2.

1) Choose a sufficiently small parameter ϵ > 0 and set µ =
0. Initialize K1 = ∅.

2) Obtain the solution (xt, t∗) to the following problem

minimize
x,t

t+ µ
∑

k∈K\K1

(
fk(x)− f d

k

)
(21)

subject to fk(x)− f d
k ≤ t, ∀k ∈ K\K1

fk(x)− f d
k ≤ −ϵ, ∀k ∈ K1

x ∈ P̃

and add agents k ∈ K\K1 into K1 if fk(xt)− f d
k ≤ −ϵ.

3) If K1 ̸= ∅ and K1 ̸= K, then set µ = 1 and repeat Step
2) until K1 stays invariant.

4) Let K0 = K\K1. Obtain the power allocation x∗ by
solving problem (20).

Cost of agent 1, f1

C
o

st
o

f
ag

en
t

2
,
f 2

Minimum social cost

Agent 1 plays best response

Agent 2 plays best response

Game 1

Game 2

No Cooperation

0.82
0.82

0.83

0.84

0.85

0.86

0.7 0.72 0.74 0.76 0.78 0.8

Fig. 2. Comparison of the performance achieved by different schemes in a
two-agent asynchronous network. The blue curve illustrates the cost (f1, f2)
under all possible power allocation x21 of agent 2, where agent 1 plays the
best response power allocation T12(x21) to x21, and the red curve is vice
versa.

Note that condition (16) on the existence of a cooperating
NE implies (22). Similarly, condition (17) implies (23).8 These
results are intuitive because if there exists a non-zero equilib-
rium under other games, the non-cooperating NE x∗ = 0 is
not Pareto optimal and game G2 is then strictly feasible. This
result suggests that knowing the global information, the agents
are more proactive in cooperating.

C. Comparison between G1, G2 and Social Cost Minimization

It is interesting to compare the proposed game theoretical
approaches with the traditional approaches, which optimize a
single objective over the whole network as in [9], [27]. In
contrast to the proposed game theoretical approaches which
try to balance the costs fk of all the agents, the non-game

8Note that ab
a+b

< min{a, b} for a, b > 0.

power allocation approach in [9] corresponds to minimizing
the cost of the whole network. Specifically, consider a central-
ized power allocation obtained by the following minimization
problem

minimize
x∈P̃

∑

k∈K

fk(x) (24)

where
∑

k∈K fk(x) is defined as the social cost of the net-
work, i.e., the total SPEB penalized by the total power spent
in the network. The following results give the condition on
cooperation under social cost minimization (24) over a two-
agent network.

Proposition 6 (Cooperation Condition via Social Cost Min-
imization): The power allocation solution for minimizing the
social cost in (24) is non-zero in a two-agent network, if and
only if the channel quality ξkj between the two agents k and
j satisfies

ξkj >
1

4

(
√
Vk +

√
Vj)2

VkΓ
−1
kj + VjΓ

−1
jk

(25)

for asynchronous networks, and

ξkj >
min {Vk, Vj}

VkΓ
−1
kj + VjΓ

−1
jk

(26)

for synchronous networks.

Proof: The derivation follows that of Theorem 4 in
Appendix E, and hence is omitted here for brevity.

Proposition 6 suggests that social cost minimization (24)
requires the lowest channel quality ξkj for cooperation in two-
agent networks as compared to games G1 and G2.

However, the social cost minimization may require some
agents to sacrifice their performance for the whole network. In
general, the major difference between the two proposed game
theoretical power allocations and the non-game power alloca-
tion via social cost minimization is that, the game approaches
balance the performance of all the agents, whereas the social
cost minimization focuses on the overall performance in the
network. As a result, the social cost minimization may cause
performance deterioration for some agents.

An numerical example is given in Fig. 2, which illustrates
the comparison of the costs fk achieved by different schemes
in a two-agent asynchronous network. The shaded region rep-
resents the domain F as the region of the cost (f1, f2) that can
be achieved by all feasible power allocations. The solutions
from game G1 and game G2 improve the performance for
both of the agents, whereas the power allocation from social
cost minimization (24) degrades the performance of agent 2.9

In this particular example, social cost minimization is unfair to
agent 2, which participates in cooperation but achieves worse
performance.

The key properties of game G1, G2, and the reference
scheme based on social cost minimization are summarized in
Table I.
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Competitive Game G1 Coordinated Game G2 Social Cost Minimization

Information Structure Each agent knows the tentative
power allocation of its neighbors

All the information is available to
the network

All the information is
available to the network

Solution Concept Cooperating Nash Equilibrium Nash Bargaining Solution Global Objective Minimizer

Computation Distributive Centralized Centralized

Cond. on Cooperation
(2-agent ASYN case)

ξ12 > 1
4 (

√
Γ12 +

√
Γ21)2 ξ12 > 1

4 (Γ12 + Γ21) ξ12 > 1
4

(
√

V1+
√

V2)
2

V1Γ
−1
12 +V2Γ

−1
21

Cond. on Cooperation
(2-agent SYN case)

ξ12 > min{Γ12,Γ21} ξ12 > Γ12Γ21
Γ12+Γ21

ξkj >
min{V1,V2}

V1Γ
−1
12 +V2Γ

−1
21

Performance
(two-agent case)

Both agents improve (lower cost),
i.e., f(G1) ≼ f(0)

Both agents improve (lower cost),
i.e., f(G2) ≼ f(0)

Some agents may deteriorate,
i.e., fk(x∗) > fk(0)

Table I
COMPARISON BETWEEN G1, G2 AND SOCIAL COST MINIMIZATION

Agent 1 Agent 2

Agent 3 Agent 4

x12(n)

x21(n)

x13(n) x31(n) x24(n) x42(n)

x34(n)

x43(n)

(a) Game G1

Agent 1 Agent 2

Agent 3 Agent 4

Jo
1, V1, p̂o

1

J
o 2
,
V
2
,
p̂

o 2

Jo
3, V3, p̂o

3

x1 x2

x3

(b) Game G2

Fig. 3. An implementation example of message exchange under the two
different games. (a) Under game G1, power allocation is iterated among agents
over the links (solid lines) that satisfy the necessary condition ((14) or (15))
for cooperation. The links that do not satisfy the condition (dash lines) are
ruled out from power iteration. (b) Under game G2, all the agents pass the
information (EFIMs and parameters V ’s etc.) to a leader (Agent 4), which
computes the power allocation and feeds back to the other agents.

D. Implementation Example

As an implementation example, consider a four-agent net-
work illustrated in Fig. 3, where the links (1, 4) and (2, 3)
do not satisfy the necessary condition ((14) or (15)) for
cooperation, because the agents on both ends of the link are far
away from each other. The example message passing among
agents under the two power management games is illustrated.
Under game G1, power allocation is iterated among agents,
and agents only need to communicate with their neighbors that
have potential to cooperate (based on the necessary condition).
Under game G2, one agent is selected as the leader (Agent
4), and all the other agents pass the information (EFIMs, the
channel qualities, and parameters V ’s etc.) to the leader, which
computes the power allocation for all the agents.

Note that under the proposed power management games,
some communication overhead is expected for better lo-
calization performance and more efficient power utilization.
Nevertheless, since the ranging signals usually consume a
large amount of time-frequency resources, the communication
overhead to exchange the power allocation variables may be
negligible.

9Geometrically, the minimizer of the social cost corresponds to the inter-
section point at which the tangent line f1 + f2 = c just touches the Pareto
boundary.
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Fig. 4. The deployment of anchors (red circles) and agents (blue dots) in
an asynchronous network.

V. NUMERICAL RESULTS

In this section, the performance of the game theoretical
power management strategies is evaluated through numeri-
cal studies. Specifically, we evaluate MSE, average power
consumption, and the objective value under different power
allocation strategies for the cooperative localization based on
round-trip TOA ranging in asynchronous networks.

The network topology is depicted in Fig. 4, where there
are four anchors (red circles) and five agents (blue dots). The
extended WINNER channel model in the line-of-sight (LOS)
case under the indoor small office scenario [49] is adopted to
model the path loss, which is specified as PL[dB] = 46.4 +
18.7 log10 d[m], with shadow fading standard deviation being
σ = 3.1 dB. The multipath effect is modeled using the Rician
distribution with K-factor 4.7 dB [49]. In addition, the noise
is normalized such that the average channel ranging quality
ξkj over all the links is −6 dB. As a result, the parameters
ξkj are Rician random variables scaled by the path loss and
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Fig. 5. MSE of the estimated positions averaged over all the agents versus
the power budget PT under P (k) = PT,∀k.

the noise.10

The cooperative localization is carried out in two phases.
In the first phase, the anchors broadcast one-way ranging
signals to the network. Each agent obtains an initial position
estimation p̂o

k. The estimation error is roughly considered to
be Gaussian distributed with zero mean and covariance matrix
(Jo

k)
−1, where Jo

k is the EFIM obtained according to [8,
Theorem 1].

In the second phase, the agents first exchange p̂o
k and Jo

k

with the neighbors, and then follow Algorithm 1 (or Algorithm
2) to determine the power allocation on each link for coopera-
tive localization. For each link with non-zero power allocation,
the two agents perform round-trip TOA range measurements.
The range measurement between agent k and j is modeled
as zkj = dkj + wkj , where dkj is the true distance between
the two agents and wkj ∼ N (0,λ−1

kj ) is a Gaussian random
variable, in which λkj = 4xkjxjkξkj/(xkj+xjk) [20, Remark
3]. Based on the range measurements, the agents update the
position estimate p̂k using the maximum a posteriori (MAP)
algorithm given as follows

p̂k = arg min
pk∈R2

∑

j:xkj>0

λkj

1 + λkjδkj
(zkj − ∥pk − p̂o

j∥)2

+ (pk − p̂o
k)

TJo
k(pk − p̂o

k).

For the proposed algorithms, the parameter Vk is chosen
as Vk = V/P (k) for each agent k and some V > 0. The
performance of the proposed game theoretical power manage-
ment strategies is compared with the following two baselines
as a performance benchmark. Baseline 1: exhaustive uniform
power allocation, where xkj ≡ P (k)/(K − 1), ∀j ̸= k; and
Baseline 2: non-cooperative power allocation, where xkj ≡ 0.
The simulation results are averaged over N = 105 independent
channel realizations.

10In practice, specific channel scenarios may be applied to model ξkj . Here,
the simple Rician distribution for ξkj is for the ease of demonstration on the
power allocation algorithm in general scenarios.
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Fig. 6. Average power consumed over all the agents under the power budget
PT for P (k) = PT,∀k.

A. Performance of the Network

Fig. 5 shows the MSE of the estimated positions aver-
aged over all the agents versus the power budget PT under
P (k) = PT, ∀k. First, all the cooperating schemes decrease
the MSE of the position estimation compared to the non-
cooperating scheme, even at 0 dB power budget. Second, as
the power budget increases, the MSE from the cooperating
schemes decreases, but the reduction becomes marginal in high
power budget regimes. This is because the MSE is dominated
by the error of initial estimates before cooperation. Third,
both of the game theoretical power management strategies
significantly reduce the MSE of the position estimation, and in
particular, they perform almost as well as the exhaustive power
allocation strategy but with much lower power consumption
as will be shown in Fig. 6. In particular, the Pareto optimal
strategy achieved by game G2 outperforms G1 as expected.

Fig. 6 illustrates the average power consumed over all the
agents under the power budget PT for P (k) = PT, ∀k. First,
in the low power budget regime, the power consumption
ratio is low because the agents cooperate only when the
channel quality is very good. On the other hand, the power
consumption ratio decreases quickly when the power budget
increases in the high power budget regime because the position
accuracy is limited by the accuracy of the initial estimates
before cooperation. Second, both of the game theoretical
power management strategies require much less power over the
exhaustive power allocation scheme (0 dB power consumption
ratio). Finally, although game G2 consumes more power than
game G1, it achieves a lower cost than game G1, which means
that game G2 utilizes the power more efficiently.

B. Performance of an Individual Agent

Fig. 7 demonstrates the MSE of the estimated position of
agent 1 versus the power budget PT under P (k) = PT, ∀k.
The game theoretical power management strategies achieve
performance almost as good as that of the exhaustive power
allocation strategy. Although the exhaustive power allocation
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Fig. 7. MSE of the estimated position and the objective value of agent 1
versus the power budget PT under P (k) = PT,∀k.

strategy achieves slightly lower MSE [see Fig. 7(a)], it results
in a much higher cost [see Fig. 7(b)], which suggests that
it does not use the power efficiently. In contrast, the games
G1 and G2 achieve low MSE while they also decrease the
objective value simultaneously.

Fig. 8 shows the MSE of the estimated position of agent
1 versus the network size of cooperation under power budget
PT = 5 dB. The agents labeled by two to five in Fig. 4 are
added to the localization network one by one. First, when more
agents participate in the cooperation, the MSE of agent 1 can
be reduced more. Second, both of the game theoretical power
management strategies benefit from cooperation at the same
scale as the exhaustive strategy does.

VI. CONCLUSION

In this paper, we proposed and analyzed two power manage-
ment games for network localization with agent cooperation
in both asynchronous and synchronous networks. The goal

 

 

M
S

E
o

f
ag

en
t
1

[m
2
]

Number of agents in the network

No cooperation

Game 1, V = 0.2

Game 2, V = 0.2

Exhaustive coop.

1

2 3 4 5

0.7

0.8

0.9

Fig. 8. MSE of the estimated position of agent 1 versus the network size of
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is to minimize the individual power-penalized cost function
to achieve a better tradeoff between SPEB performance and
power consumption for each agent. The notion of cooperating
Nash equilibrium has been defined to analyze agents’ prefer-
ence for cooperation. It has been found that the agents prefer
to cooperate when the channel quality is good. Meanwhile, the
agents are more likely to cooperate when global information
is available compared to when only local information is
known. In addition, agents require higher channel quality for
cooperation in asynchronous networks than in synchronous
networks. Furthermore, we developed power management
strategies based on game theoretical approaches. It is shown
that if the agents have a sufficiently large power budget,
the proposed power management strategies achieve SPEB
arbitrarily close to that achieved by the exhaustive power
allocation strategy, for which each agent always uses the entire
power budget for cooperation.

APPENDIX A
THE BEST RESPONSE SOLUTION FOR

TWO-AGENT NETWORK

Due to page limit, we only prove the asynchronous network
case, and the proof for synchronous case follows similarly.

For notational convenience, without loss of generality, we
focus on agent 1, and let k = 1 and j = 2. Denote the
power allocation variables as x1 = x12 and x2 = x21.
Moreover, denote the perpendicular direction vector as v12 =
[− sinφ12 cosφ12]T.

The proof is derived in three steps.

Step 1: φ12 = 0.

Correspondingly, u12 = [1 0]T, v12 = [0 1]T, and the
individual EFIM becomes

J1 = Jo
1 + g12(x1, x2)u12u

T
12

=

[
a b
c d

]
+ g12(x1, x2)

[
1 0
0 0

]
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and the objective function can be written as

f1(x1;x2) = tr
{
J−1
1

}
+ V1x1

= tr

{[
a+ g12(x1;x2) b

c d

]−1
}

+ V1x1

=
a+ d+ g12(x1;x2)

ad+ d · g12(x1;x2)− bc
+ V1x1

where g12(x1;x2) =
4x1x2ξ12

x1+x2+4x1x2ξ12δ1,2
.

Solving the optimality condition ∂
∂x1

f(x1;x2) = 0 for x1,
we obtain

x̂1 =

[
2V

− 1
2

1 (bc+ d2)
1
2 ξ

1
2
12 − (ad− bc)

]
x2

(ad− bc) + 4 [(ad− bc)δ1,2 + d] ξ12x2
.

Considering the constraint 0 ≤ x∗
1 ≤ P (1), we can obtain the

optimal solution via projections x∗
1 = {x̂1}P

(1)

0 .

Moreover, it can be verified that

vT
12(J

o
1)

2v12 =

[
0
1

]T [
a b
c d

]2 [
0
1

]
= bc+ d2

and vT
12J

o
1v12 = d, |Jo

1| = ad − bc. Therefore, the solution
can be written as

x∗
1(x2) =

⎧
⎨

⎩

(
2
√
ξ12/V1

√
vT
12(J

o
1)

2v12 − |Jo
1|
)
x2

|Jo
1|+ (|Jo

1| δ1,2 + vT
12J

o
1v12) 4ξ12x2

⎫
⎬

⎭

P (k)

0

.

(27)

Step 2: φ12 ̸= 0.

Consider rotating the coordinate system by φ12, such that
in the new coordinate system, û12 = Rφu12 = [1 0]T, where

Rφ =

[
cos(−φ12) − sin(−φ12)
sin(−φ12) cos(−φ12)

]
is a rotation matrix.

Denote Ĵo
1 as the initial EFIM in the new coordinate system.

Then, we have Ĵo
1 = RφJ

o
1R

T
φ and v̂12 = Rφv12. The optimal

solution x∗
1 in terms of Ĵo

1 and v̂12 can be obtained using the
method in step 1.

Note that

v̂T
12(Ĵ

o
1)

2v̂12 = tr
{
(Ĵo

1)
2v̂12v̂

T
12

}

= tr
{
(RφJ

o
1R

T
φ)(RφJ

o
1R

T
φ)(Rφv12v

T
12R

T
φ)
}

= tr
{
Jo
1(R

T
φRφ)J

o
1(R

T
φRφ)v12v

T
12(R

T
φRφ)

}

= tr
{
(Jo

1)
2v12v

T
12

}

= vT
12(J

o
1)

2v12.

Similarly, one can show that v̂T
12Ĵ

o
1v̂12 = vT

12J
o
1v12 and∣∣Ĵo

1

∣∣ = |Jo
1|. Then the same expression as in (27) can be

obtained in the φ12 ̸= 0 case.

Step 3: We need to make use of the following lemma.

Lemma 4: For any 2× 2 non-singular matrix A and a unit
vector u, we have

|A|uTA−1u = vTAv (28)

where v is a unit vector perpendicular to u, i.e., ∥v∥ = 1 and
uTv = 0.

Proof: Denote A =

[
a b
c d

]
and u = [cosφ sinφ],

φ ∈ [0, 2π). Without loss of generality, denote v =
[− sinφ cosφ]. We have

uTA−1u = |A|−1(d cos2 φ− (b+ c) cosφ sinφ+ a sin2 φ).

On the other hand,

vTAv = a sin2 φ− (b+ c) sinφ cosφ+ d cos2 φ

= |A|uTA−1u.

Using the above lemma, we have

vT
12(J

o
1)

2v12 = |Jo
1|2uT

12(J
o
1)

−2u12

and

vT
12J

o
1v12 = |Jo

1|uT
12(J

o
1)

−1u12.

In addition, we note that uT
12(J

o
1)

−1u12 = uT
21(J

o
1)

−1u21 =
δ2,1, by the definition of δk,l in (5). Using the general notation
for agent pair (k, j), (27) can be simplified into (12).

APPENDIX B
STABILITY AND CONVERGENCE RESULTS UNDER

TWO-AGENT NETWORKS

Due to page limit, we only prove the asynchronous network
case, and the proof for the synchronous case follows similarly.

For notation convenience, without loss of generality, let k =
1 and j = 2. In addition, denote the power allocation variables
as x1 = x12 and x2 = x21.

Proof of Theorem 1:

From (12), the best response functions have the following
form:

T12(x2) =

{
a1x2

1 + b1x2

}P (1)

0

and T21(x1) =

{
a2x1

1 + b2x1

}P (2)

0
(29)

where a1, a2, b1, b2 > 0 under the necessary condition for
cooperation in Proposition 2. Consider that the upper level
projections are not active. Solving the system of fixed point
equations T12(x∗

2) = x∗
1 and T21(x∗

1) = x∗
2, two solutions are

obtained, a trivial solution (x∗
1, x

∗
2) = (0, 0) and

x∗
1 =

a1a2 − 1

b2 + b1a2
and x∗

2 =
a1a2 − 1

b1 + b2a1
.

The cooperating NE requires that x∗
1, x

∗
2 > 0. Equivalently,

we need a1a2 − 1 > 0, which yields the condition (16).
Correspondingly, a necessary condition for the upper level

projections being active is a1a2 − 1 > 0. Moreover, if the
projection for x1 is active, i.e., x∗

1 = P (1), then x∗
2 is

uniquely determined by x∗
2 =

{
a2P

(1)

1+b2P (1)

}P (2)

0
. Therefore, the

projections {·}P0 do not change the condition on the existence
and uniqueness of the cooperating NE.

Proof of Theorem 2:

Using the simplified notations x1 = x12 and x2 = x21, the
best response iteration for agent 1 can be written as x1(n +
2) = T12(x2(n + 1)) = T12(T21(x1(n)). Define Q1(x) !

T12(T21(x)).
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Case (i): Suppose the cooperating NE x∗
c is in the interior

of the feasible domain P̃ (i.e., the projections in T12(·) and
T21(·) are not active). From the best response mappings in
(29), for x ≥ x∗

1

d

dx
Q1(x) =

∂T12(u)

∂u

∣∣∣∣
u=T21(x)

· ∂T21(x)

∂x

=
a1a2

[(b2 + b1a2)x+ 1]2

<
a1a2

[(b2 + b1a2)x∗
1 + 1]2

=
1

a1a2
which is less than 1 due to the condition a1a2 − 1 > 0 for
the existence of a cooperating NE as studied in the proof of
Theorem 1. Then by the fixed point theory [50], the sequence
x1(0), x1(2), . . . , x1(2n), . . . generated by x1(n + 2) =
Q1(x1(n)) from x1(0) ≥ x∗

1 converges to x∗
1 as n → ∞.

On the other hand, for 0 < x < x∗
1,

Q1(x)− x =
a1a2x

(b2 + b1a2)x+ 1
− x

>
a1a2x

(b2 + b1a2)x∗
1 + 1

− x

= 0

which yields Q1(x) > x. It follows that x1(n +
2) = Q1(x1(n)) > x1(n), which means the sequence
x1(0), x1(2), . . . , x1(2n), . . . is strictly increasing unless
x1(m) ≥ x∗

1 for some m. Since there is only one fixed point
from Theorem 1, the sequence must converge to x∗

1.
The same properties apply to the sequence x1(1), x1(3),

. . . , x1(2n+ 1), . . . . This concludes that x1(n) converges to
x∗
1 from any initial point x1(0) > 0. It can be easily verified

that the same results apply to the sequence x2(n).
Now suppose the cooperating NE x∗

c is on the boundary

of P̃ , and without loss of generality, assume x∗
1 = P (1).

Following similar steps, one can show that both of the se-
quences x1(0), x1(2), . . . , x1(2n), . . . and x1(1), x1(3), . . . ,
x1(2n+1), . . . are increasing until reaching x∗

1 = P (1). Since
T1(x∗

1) = x∗
2, x2(n) converges correspondingly.

These show that the best response sequence x(n) converges
to x∗

c globally, and hence x∗
c is stable and the non-cooperating

NE at the origin is unstable.
Case (ii): When the cooperating NE does not exist, x(n)

converges to the origin (the unique NE) by the fixed point
theory, because d

dx1
Q1(x1) < 1 for all x1 ∈ P1.

Proof of Proposition 3:
The derivative of the best response mapping T̃ in (9) is

∇T̃ =

[
0 ∂T12(x

∗

2)
∂x2

∂T21(x
∗

1)
∂x1

0

]

in which the radius of the matrix ∇T̃ at the cooperating NE
x∗

c is given by

r(∇T̃
∣∣
x∗

c
) =

(
∂T12(x∗

2)

∂x2

∂T21(x∗
1)

∂x1

) 1
2

=
d

dx1
Q1(x

∗
1) < 1.

The result on the rate of convergence follows directly from
[50, Theorem 4.C].

APPENDIX C
PROOF OF THEOREM 3

When the power budget P (k) is large enough, the power
conservation levels Vk(P (k)) are small enough and all the
links are cooperating. Moreover, under the proposed strategy
x∗
k from game G1, all the links will have non-zero power

allocation xkj , xjk > 0, because the solutions with zero power
on the cooperating link will be unstable under the iteration in
game G1. In addition, x∗

kj increases as P (k) increases because
the power penalty Vk is asymptotically small.

Consider asynchronous networks. Specifically, for agent k
on link (k, j), the optimality condition on the power allocation
xkj from solving the best response problem (8) is

Vk(P
(k)) = tr

{[
Jo
k +

∑

l=N (k)

gkl(xkl, xlk)Dkl

]−2

Dkj

}

× ∂

∂xkj
gkj(xkj , xjk) (30)

where Dkj = ukju
T
kj .

Note that, from the derivative of the gain function

∂

∂xkj
gkj(xkj , xjk) =

4x2
jkξkj

(xkj + xjk + 4xkjxjkδkjξkj)2

the right hand side (R.H.S.) of (30) scales as O(x−2
kj ) as

xkj(P (k)) → ∞. Therefore, the optimality condition (30) can
be written as

Vk(P
(k)) = Cx∗

kj(P
(k))−2 + o(x∗−2

kj )

for large P (k) (and hence large x∗
kj(P

(k))), and can be solved
as

x∗
kj(P

(k)) =
√
CVk(P

(k))−
1
2 + o(1).

This applies to all the variables xkj , (k, j) ∈ E , where E is
the set of all the (directed) links in the network. As a result,

x∗
kj(P

(k))/P (k) =
√
CVk(P

(k))−
1
2 /P (k) + o(1) → 0

as P (k) → ∞ for all k.

In addition, since x∗
kj(P

(k)), x∗
jk(P

(j)) → ∞, the gain

function gkj(xkj , xjk) → δ−1
kj as P (k), P (j) → ∞. Therefore,

Ik(x∗
k,x−k) = tr{[Jo

k +
∑

j ̸=kgkj(·)Dkj ]
−1}

→ tr{[Jo
k +

∑
j ̸=kδ

−1
k,jDkj ]

−1}
= Ik(xk = ∞,x−k)

and Ik(xf
k,x−k) → Ik(xk = ∞,x−k), as P (k) → ∞. Hence,

Ik(x∗
k,x−k) → Ik(xf

k,x−k).
Similar arguments apply to synchronous networks.

APPENDIX D
PROOF OF LEMMA 3

To show the convexity of fk(x), we first note that tr{X−1}
is convex in X. Since X = X0 +

∑
j gkjukju

T
kj is linear in

{gkj}, the function fk is convex in {gkj}. As a result, ∂fk
∂gkj

<

0 and ∂2fk
∂g2

kj

≥ 0. In addition, the gain functions gkl(xkl, xlk)



14

in (3) and (4) are both concave in (xkl, xlk); i.e., ∇2gkl is
negative semidefinite. Therefore, from the chain rule, we have

∇2fk(x) = ∇

⎛

⎝
∑

j

∂fk
∂gkj

∇gkj(x)

⎞

⎠

=
∑

j

∑

l

∂2fk
∂gkl∂gkj

∇gkl(x)∇gkj(x)
T

+
∑

j

∂fk
∂gkj

∇2gkj(x)

(a)
=

∑

j

∂2fk
∂g2kj

∇gkj(x)∇gkj(x)
T +

∑

j

∂fk
∂gkj

∇2gkj(x)

≽ 0

where
(a)
= is due to the fact that ∇gkl(x)∇gkj(x)T = 0 for

l ̸= j. Hence fk(x) is convex in x.

To show the concavity of Lk(x) = log(f d
k − fk(x)), we

have ∇Lk(x) = − ∇fk(x)
f d
k
−fk(x)

, and

∇2Lk(x) = −∇fk(x)∇fk(x)T

(f d
k − fk(x))2

− ∇2fk(x)

f d
k − fk(x)

≼ 0.

Hence Lk(x) is concave in x.

APPENDIX E
PROOF OF THEOREM 4

We only prove for the case of asynchronous networks, and
the derivation for synchronous networks is similar.

Note that if there exists one strictly feasible point, then the
optimal solution to game G2 satisfies x∗ ̸= 0. Therefore, we
only need to find the condition under which game G2 is strictly
feasible.

Without loss of generality, suppose x1 = (x1
kj = v, x1

jk =
ρv) is a strictly feasible point, for some ρ. Since the functions
fk(x) are strictly convex, the feasibility region of the problem
in game G2 is convex and 0 is an accumulation point of the
strictly feasible region. As a result, every point on the line
segment tx1, 0 < t ≤ 1, is strictly feasible. Moreover, the
function h(t) ! fk(0 + tx1) is strictly convex in 0 ≤ t ≤ 1,
and thus h(1) > h(0) + h

′

(0)(1 − 0) by the property of a
convex function. Since x1 is strictly feasible, f d

k = fk(0) =
h(0) > h(1) = fk(x1), which implies that limt→0+ h

′

(t) < 0.
Thus, we have

dh(t)

dt
=

(
dfk
dxkj

dxkj

dt
+

dfk
dxjk

dxjk

dt

) ∣∣∣∣
(xkj=tv,xjk=tρv)

=
∂fk
∂gkj

(
∂gkj
∂xkj

dxkj

dt
+

∂gkj
∂xjk

dxjk

dt

)
+

∂fk
∂xkj

dxkj

dt

= −tr{(Jo
k)

−2ukju
T
kj}

×
4x2

jkξkj · v + 4x2
kjξkj · ρv

(xkj + xjk + 4xkjxjkξkjδk,j)2
+ Vkv

= −uT
kj(J

o
k)

−2ukj
4(tρv)2ξkjv + 4(tv)2ξkjρv

(tv + tρv + 4t2ρv2ξkjδk,j)2
+ Vkv.

By setting limt→0+
dh(t)
dt

< 0, we have

−uT
kj(J

o
k)

−2ukj
4ρξkj

ρ+1 + Vk < 0, and hence

4ξkj >
ρ+ 1

ρ

Vk

uT
kj(J

o
k)

−2ukj
=

ρ+ 1

ρ
Γkj .

Similarly, we obtain 4ξkj = 4ξjk > (ρ+ 1)Γjk by evaluating

the inequality limt→0+
dfj(0+tx1)

dt
< 0.

The existence of a strictly feasible point x1 corresponds to
the condition that the above inequalities are satisfied for at
least one ρ; i.e.,

ξkj >
1

4
inf
ρ

max{ρ+ 1

ρ
Γkj , (ρ+ 1)Γjk}. (31)

Note that as ρ+1
ρ

Γkj decreases with respect to (w.r.t.) ρ
and (ρ + 1)Γjk is increasing, the optimal value on the right

hand side of (31) is achieved at ρ∗+1
ρ∗ Γkj = (ρ∗ + 1)Γjk,

which gives ρ∗ = Γkj/Γjk. Therefore, we must have ξkj >
1
4 (ρ

∗ + 1)Γjk = 1
4 (Γkj + Γjk).
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[29] E. Maşazade, R. Niu, P. K. Varshney, and M. Keskinoz, “Energy aware
iterative source localization for wireless sensor networks,” IEEE Trans.
Signal Process., vol. 58, no. 9, pp. 4824–4835, Jun. 2010.

[30] S. Bartoletti, A. Giorgetti, M. Z. Win, and A. Conti, “Blind selection
of representative observations for sensor radar networks,” IEEE Trans.
Veh. Technol., vol. 64, no. 4, pp. 1388–1400, Apr. 2015.

[31] D. Dardari, A. Conti, U. J. Ferner, A. Giorgetti, and M. Z. Win, “Ranging
with ultrawide bandwidth signals in multipath environments,” Proc.
IEEE, vol. 97, no. 2, pp. 404–426, Feb. 2009.

[32] S. Bartoletti, W. Dai, A. Conti, and M. Z. Win, “A mathematical model
for wideband ranging,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 2,
pp. 216–228, Mar. 2015.

[33] Y. Wang, X. Ma, and G. Leus, “Robust time-based localization for
asynchronous networks,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4397–4410, May 2011.

[34] G. Owen, Game Theory, 3rd ed. Academic Press, 1995.
[35] E. G. Larsson, E. A. Jorswieck, J. Lindblom, and R. Mochaourab, “Game

theory and the flat-fading gaussian interference channel,” IEEE Signal
Process. Mag., vol. 26, no. 5, pp. 18–27, Sep. 2009.

[36] F. Meshkati, H. V. Poor, and S. C. Schwartz, “Energy-efficient resource
allocation in wireless networks,” IEEE Signal Process. Mag., vol. 24,
no. 3, pp. 58–68, May 2007.

[37] F. Meshkati, M. Chiang, H. V. Poor, and S. C. Schwartz, “A game-
theoretic approach to energy-efficient power control in multi-carrier
CDMA systems,” IEEE J. Sel. Areas Commun., vol. 24, Jun. 2006.

[38] F. Meshkati, H. V. Poor, S. C. Schwartz, and N. B. Mandayam,
“An energy-efficient approach to power control and receiver design in
wireless data networks,” IEEE Trans. Commun., vol. 53, no. 11, pp.
1885–1894, Nov. 2005.

[39] S. Hadzic, S. Mumtaz, and J. Rodriguez, “Cooperative game theory and
its application in localization algorithms,” Game theory relaunched, p.
173, 2013.

[40] O. N. Gharehshiran and V. Krishnamurthy, “Coalition formation for
bearings-only localization in sensor networks—a cooperative game
approach,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4322–4338,
Apr. 2010.

[41] B. Bejar, P. Belanovic, and S. Zazo, “Cooperative localization in wireless
sensor networks using coalitional game theory,” in Proc. European
Signal Process. Conf., Aalborg, Denmark, Feb. 2010, pp. 1459–1463.

[42] F. Ghassemi and V. Krishnamurthy, “A cooperative game-theoretic
measurement allocation algorithm for localization in unattended ground
sensor networks,” in Proc. IEEE Int. Conf. Inf. Fusion, Jun. 2008, pp.
1–7.

[43] H. He, A. Subramanian, X. Shen, and P. K. Varshney, “A coalitional
game for distributed estimation in wireless sensor networks,” in Proc.
IEEE Int. Conf. Acoustics, Speech and Signal Process., Vancouver,
Canada, May 2013, pp. 4574–4578.

[44] Z. Zhao, R. Zhang, X. Cheng, L. Yang, and B. Jiao, “Network formation
games for the link selection of cooperative localization in wireless
networks,” in Proc. IEEE Int. Conf. Commun. IEEE, Jun. 2014, pp.
4577–4582.

[45] J. Nash, “Two-person cooperative games,” Econometrica: J. of the
Econometric Society, pp. 128–140, 1953.

[46] J. Chen, W. Dai, Y. Shen, V. K. N. Lau, and M. Z. Win, “Power man-
agement game for cooperative localization in asynchronous networks,”
in Proc. IEEE Int. Conf. Commun., London, UK, Jun. 2015.

[47] D. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[48] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[49] “Winner II interim channel models,” Tech. Rep. IST-4-027756 WINNER

II D1.1.2 v1.2, Sept. 2007.
[50] E. Zeidler, Nonlinear Functional Analysis and its Applications I. (Fixed

Point Theorems). Springer-Verlag, New York, 1986.

Junting Chen (S’11-M’16) received the Ph.D. de-
gree in electronic and computer engineering from the
Hong Kong University of Science and Technology
(HKUST), Hong Kong SAR China, in 2015, and the
B.Sc. degree in electronic engineering from Nanjing
University, Nanjing, China, in 2009.

He is a postdoctoral research fellow with Depart-
ment of Communication Systems at EURECOM,
France. From 2014-2015, he was a visiting student
with the Laboratory for Information and Decision
Systems (LIDS) at MIT, Cambridge, MA, USA. His

research interests include signal processing, optimizations, nonlinear control,
and statistical learning, with applications to wireless communication and
localization. His current research focuses on massive MIMO systems, machine
learning techniques in wireless communications, and cooperative network
localization.

Dr. Chen received the HKTIIT Post-Graduate Excellence Scholarships in
2012 from HKUST. He served as a Technical Program Committee (TPC)
member for the IEEE Vehicular Technology Conference (VTC) (Spring and
Fall 2015).

Wenhan Dai (S’12) received B.S. degrees in elec-
tronic engineering and in mathematics from Ts-
inghua University, Beijing, China, in 2011, and
received the S.M. degree in aeronautics and astro-
nautics at the Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, in 2014.

He is a Research Assistant with Wireless Infor-
mation and Network Sciences Laboratory at MIT,
where he is currently pursuing the Ph.D. degree.
His research interests include communication the-
ory, stochastic optimization, and their application

to wireless communication and network localization. His current research
focuses on resource allocation for network localization, cooperative network
operation, and ultra-wideband communications.

Mr. Dai received the academic excellence scholarships for three consecutive
years from 2008 to 2010 and the Outstanding Thesis Award in 2011 from
Tsinghua University. He is a recipient of the Chinese Government Award
for Outstanding Student Abroad in 2016. He served as a reviewer for IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS and IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS and is recognized as an Exemplary
Reviewer of IEEE COMMUNICATIONS LETTERS.



16

Yuan Shen (S’05-M’14) received the Ph.D. degree
and the S.M. degree in electrical engineering and
computer science from the Massachusetts Institute
of Technology (MIT), Cambridge, MA, USA, in
2014 and 2008, respectively, and the B.E. degree
(with highest honor) in electronic engineering from
Tsinghua University, Beijing, China, in 2005.

He is an Associate Professor with the Department
of Electronic Engineering at Tsinghua University.
Prior to joining Tsinghua University, he was a
Research Assistant and then Postdoctoral Research

Associate with the Laboratory for Information and Decision Systems (LIDS)
at MIT in 2005-2014. He was with the Wireless Communications Laboratory
at The Chinese University of Hong Kong in summer 2010, the Hewlett-
Packard Labs in winter 2009, and the Corporate R&D at Qualcomm Inc.
in summer 2008. His research interests include statistical inference, network
science, communication theory, information theory, and optimization. His
current research focuses on network localization and navigation, inference
techniques, resource allocation, and intrinsic wireless secrecy.

Dr. Shen was a recipient of the Qiu Shi Outstanding Young Scholar
Award (2015), the China’s Youth 1000-Talent Program (2014), the Marconi
Society Paul Baran Young Scholar Award (2010), and the MIT Walter A.
Rosenblith Presidential Fellowship (2005). His papers received the IEEE
Communications Society Fred W. Ellersick Prize (2012) and three Best
Paper Awards from the IEEE Globecom (2011), the IEEE ICUWB (2011),
and the IEEE WCNC (2007). He is elected Secretary (2015-2017) for the
Radio Communications Committee of the IEEE Communications Society. He
serves as symposium Co-Chair of the Technical Program Committee (TPC)
for the IEEE Globecom (2016), the European Signal Processing Conference
(EUSIPCO) (2016), and the IEEE ICC Advanced Network Localization and
Navigation (ANLN) Workshop (2016 and 2017). He also serves as Editor for
the IEEE COMMUNICATIONS LETTERS since 2015 and Guest-Editor for the
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS (2015).

Vincent K. N. Lau (SM’04-F’12) obtained the
Ph.D. degree from the University of Cambridge in
1997, and the B.Eng (Distinction 1st Hons - ranked
2nd) from the department of electrical and electronic
engineering, University of Hong Kong in 1992.

He is currently a Chair Professor at the
Hong Kong University of Science and Technology
(HKUST) and the Founding Director of Huawei-
HKUST Joint Innovation Lab. Since 2004, he joined
the department of the electronic and computer engi-
neering, HKUST. Prior to that, he was a Member of

Technical Staff at Bell Labs - Lucent Technologies, New Jersey, USA, from
1997 to 2004. He has worked on various advanced wireless technologies
such as IS95, 3G1X, UMTS as well as wideband CDMA base station ASIC
Design, and Post 3G Technologies such as MIMO and HSDPA. He has been
the technology advisor and consultant for a number of companies, such as
ZTE, TCL, Huawei, ASTRI, leading several R&D projects on next generation
WiFi and 5G wireless communications. His current research focus includes
robust and delay-optimal cross layer optimization for MIMO/OFDM wireless
systems, interference mitigation techniques for wireless networks, massive
MIMO, M2M and network control systems.

Professor Lau is a Fellow of IEEE, Fellow of HKIE, Changjiang Chair
Professor, Qiushi Chair Professor, and the Croucher Senior Research Fellow.
He has received four IEEE best paper awards. He serves as a Senior Area
Editor of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, a Senior
Area Editor of IEEE SIGNAL PROCESSING LETTERS, a guest editor of IEEE
JOURNAL ON SELECTED AREAS ON COMMUNICATIONS (JSAC) - Special
Issue on Limited Feedback, a guest editor of IEEE SPECIAL TOPICS ON

SIGNAL PROCESSING, IEEE SYSTEM JOURNAL, a book-series editor of
the Information and Communications Technologies (ICT) book series for
John Wiley and Sons, as well as an editor of the EURASIP JOURNAL ON

WIRELESS COMMUNICATIONS AND NETWORKING.

Moe Z. Win (S’85-M’87-SM’97-F’04) received
both the Ph.D. in Electrical Engineering and the
M.S. in Applied Mathematics as a Presidential Fel-
low at the University of Southern California (USC)
in 1998. He received the M.S. in Electrical Engi-
neering from USC in 1989 and the B.S. (magna cum
laude) in Electrical Engineering from Texas A&M
University in 1987.

He is a Professor at the Massachusetts Institute
of Technology (MIT) and the founding director
of the Wireless Information and Network Sciences

Laboratory. Prior to joining MIT, he was with AT&T Research Laboratories
for five years and with the Jet Propulsion Laboratory for seven years. His
research encompasses fundamental theories, algorithm design, and experimen-
tation for a broad range of real-world problems. His current research topics
include network localization and navigation, network interference exploitation,
intrinsic wireless secrecy, adaptive diversity techniques, and ultra-wideband
systems.

Professor Win is an elected Fellow of the AAAS, the IEEE, and the IET,
and was an IEEE Distinguished Lecturer. He was honored with two IEEE
Technical Field Awards: the IEEE Kiyo Tomiyasu Award (2011) and the
IEEE Eric E. Sumner Award (2006, jointly with R. A. Scholtz). Together
with students and colleagues, his papers have received numerous awards,
including the IEEE Communications Society’s Stephen O. Rice Prize (2012),
the IEEE Aerospace and Electronic Systems Society’s M. Barry Carlton Award
(2011), the IEEE Communications Society’s Guglielmo Marconi Prize Paper
Award (2008), and the IEEE Antennas and Propagation Society’s Sergei
A. Schelkunoff Transactions Prize Paper Award (2003). Highlights of his
international scholarly initiatives are the Copernicus Fellowship (2011), the
Royal Academy of Engineering Distinguished Visiting Fellowship (2009), and
the Fulbright Fellowship (2004). Other recognitions include the International
Prize for Communications Cristoforo Colombo (2013), the Laurea Honoris
Causa from the University of Ferrara (2008), the Technical Recognition Award
of the IEEE ComSoc Radio Communications Committee (2008), and the U.S.
Presidential Early Career Award for Scientists and Engineers (2004).

Dr. Win was an elected Member-at-Large on the IEEE Communications
Society Board of Governors (2011–2013). He was the Chair (2005–2006) and
Secretary (2003–2004) for the Radio Communications Committee of the IEEE
Communications Society. Over the last decade, he has organized and chaired
numerous international conferences. He is currently serving on the advisory
board of the IEEE COMMUNICATION LETTERS. He served as Editor-at-
Large (2012–2015) for the IEEE WIRELESS COMMUNICATIONS LETTERS,
as Editor (2006–2012) for the IEEE TRANSACTIONS ON WIRELESS COM-
MUNICATIONS, and as Area Editor (2003–2006) and Editor (1998–2006) for
the IEEE TRANSACTIONS ON COMMUNICATIONS. He was Guest-Editor for
the PROCEEDINGS OF THE IEEE (2009) and for the IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS (2002).


