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Abstract: We consider an Erdős-Rényi graph with n nodes and edge probability q that is
embedded with a random subgraph of size K with edge probabilities p such that p > q. We
address the problem of detecting the subgraph nodes when only the graph edges are observed,
along with some extra knowledge of a small fraction of subgraph nodes, called cued vertices or
cues. We employ a local and distributed algorithm called belief propagation (BP). Recent works
on subgraph detection without cues have shown that global maximum likelihood (ML) detection
strictly outperforms BP in terms of asymptotic error rate, namely, there is a threshold condition
that the subgraph parameters should satisfy below which BP fails in achieving asymptotically zero
error, but ML succeeds. In contrast, we show that when the fraction of cues is strictly bounded
away from zero, i.e., when there exists non-trivial side-information, BP achieves zero asymptotic
error even below this threshold, thus approaching the performance of ML detection.
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La Detection de Sousgraphes en presence des indices grâce

au Belief Propagation

Résumé : Nous considérons un graphe Erdős-Rényi qui a n sommets dont q est la probabilité
d’arrêtes. La dessus il y un sousgraphe placé sur leurs m sommets selectionnés aléatoirement et
leur probabilité d’arrêtes est p, en sorte que p > q. Nous proposons un algorithme distribué aux
calculs locales à chaque sommet, tiré du “Belief Propagation” (BP), qui détecte les sommets du
sousgraphe, quand on connait une fraction de sommets du sousgraphe en tant qu’indices. Des
recherches récentes ont prouvé que la prestation du BP dans l’absence des indices est strictement
inférior par rapport à la detection globale du maximum de vraisemblance (DMV). A l’opposé, ici
on prouve qu’en presence des indices, la prestation du BP est à l’hauteur de celle de DMV, dans
la sens où le premier reussie à detecter la sousgraphe avec une erreur qui tend a zéro, à chaque
fois le dernier peut le faire, dans la limite où le nombre de sommets du graph tend l’infinité.

Mots-clés : Belief Propagation, Detection de Sousgraphes, Semisupervised Learning, Graphes
Aléatoires



Subgraph Detection with cues using Belief Propagation 3

1 Introduction

Detecting a small community of highly connected nodes in a sparse network is an important
problem in data mining, machine learning, and theoretical computer science. This problem is
linked to threat detection, anomaly detection, fault detection etc. in a network. Please see [1]
for a survey. The hidden subgraph model with both the subgraph and the background modelled
as ER graphs with different edge densities was proposed in [10] to study anomalous transactions
in a computer network.

In this model the background graph is ER with n nodes and edge probability q. A random
subset of K < n/2 vertices has the edge probabilities within it changed to p > q, without
affecting any other edge. This graph, denoted G(K,n, p, q), can model a network with a hidden
community [10]. See [8,9] for works on detecting the presence of such a subgraph in a given graph
and detecting the subgraph nodes. A stream of recent works in this area suggests that there is a
subgraph size below which detection is impossible by means of nearly linear-time algorithms, and
above which efficient algorithms have been identified ( [2,7,9,11]). When q = 1/2 and p = 1, the
subgraph detection problem reduces to the well-known clique detection problem ( [2], [9], [5]).

We use the framework of analysis developed in [7] and [11]. In [11] the author considers the
problem of detecting the hidden community in G(K,n, p, q) under the assumption that p =
a/n, q = b/n and K = κ/n, where a, b, κ are constants. A parameter λ (defined later) is
introduced to characterise the “strength” of the subgraph. They develop a local BP algorithm
and show it achieves zero asymptotic error when λ > 1/exp(1), whereas if λ ≤ 1/exp(1), BP
does not do better than random guessing. In contrast, the ML detector achieves zero error
asymptotically for any λ > 0. In [7], the authors consider a more general setting of sparse graphs
and prove that BP succeeds when λ > 1/e. In [6] global ML detection is shown to achieve zero
error rate asymptotically if λ = Θ((K/n) log(K/n)).

The optimality of BP with side information is shown in [12] and [4] for community detection on
SBM with symmetric communities, but to the best of our knowledge no theoretical studies of BP
have been made when cued vertices are available for detecting a small subgraph in G(K,n, p, q).

Our contributions: In our work we consider the subgraph detection problem where some side
information in the form of cued nodes is available. This fits within the framework of semisu-
pervised learning. We develop a BP algorithm that detects the nodes of the subgraph in the
presence of cues and prove that when the graph is dilute, with p, q = Θ(1/n), the fraction of
miss-classified nodes approaches zero for any λ > 0 when there is a strictly positive fraction
of cues. In other words we show that BP with cues succeeds in the entire regime where ML
succeeds [11, Proposition 4.1].

The paper is organised as follows: In section 2 we describe our graph model and the problem.
In section 3, we present our algorithm and its derivation. In section 4 we derive the asymptotic
distribution of BP messages. In section 5 we prove our main result on the asymptotic error rate
of our algorithm. In section 6 we present some simulation results to back up the theory.

2 Model and Problem Definition

Let G = (V,E) be a realisation of G(K,n, p, q). Let S be the set of subgraph nodes and C be
the set of cued nodes. The latter is chosen from S by independent Bernoulli sampling with
probability (w.p.) α < 1. Let p = a/n and q = b/n, where a and b are constants independent
of n. Such graphs, with average degree O(1) are called dilute graphs. The results in this paper
presuppose that κ = K/n is a constant independent of n. Our aim is to propose a candidate set

Ŝ given G and C, assuming p, q,K and α are known, using local and recursive updates provided

RR n° XXX



4 Arun et al

by BP. Note that this problem is identical to detecting the hidden labels σi of the graph nodes
assigned such that σi = 1 if i ∈ S and σi = 0 otherwise.

Notation and Nomenclature: A graph node is denoted by a lower case letter such as i. The
graph distance between two nodes i and j is the length of the shortest sequence of edges to go
from i to j. The neighbourhood of a node i, denoted by δi is the set of one-hop neighbours of i,
i.e., nodes that are at a graph distance of one. Similarly, we also work with t− hop neighbours
of i, which are the set of nodes at a distance of t from i. We use the following symbols to denote
set operations: C = A\B is the set of elements that belong to A and not B when B ⊂ A, and ∆
denotes the set difference, i.e., A∆B = (A∪B)\(A∩B). The symbol ∼ denotes the distribution
of a random variable (rv), for example X ∼ Poi(λ) means that X is a Poisson distributed rv
with rate λ. Also, N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2. The

symbol
D−→ denotes convergence in distribution [3].

3 Belief Propagation Algorithm for Detection in the Pres-

ence of Cues

In this section we describe the local and distributed BP algorithm (1), which performs detection
in the presence of side-information available in the form of cued nodes. The algorithm has
two stages: message passing (2), and belief updation (1). At step t of Algorithm 1, each node
u ∈ V \C updates its own log-likelihood ratio:

Rt
u = log

(
P(Gt

u, C
t
u|σu = 1)

P(Gt
u, C

t
u|σu = 0)

)
,

where Gt
u denotes the subgraph induced by the t-neighbourhood of u and Ct

u is the set of cues in
Gt

u. This computation is local, because it uses only messages transmitted to u by its neighbours
i ∈ δu, given by

Rt
i→u = log

(
P(Gt

i, C
t
i |σi = 1)

P(Gt
i, C

t
i |σi = 0)

)
,

where Gt
i and Ct

i are defined as done for u. It can be checked that the total computation time
for tf steps of BP is O(tf |E|).

Recall that the optimum detector that minimises the expected number of misclassified nodes
is the ML detector [6] given as:

σ̂i = 1{Ri>log(n−K/K(1−α))},

where

Ri = log
P(G,C|σi = 1)

P(G,C|σi = 0)
.

The output set size here may not be exactly equal to K, but this can be mitigated by some
post-processing (for example, if the size is larger than K, we can simply pick the top K values of
the likelihood function). This detector however requires the observation of the whole graph, and
cannot be implemented in a distributed fashion. In addition, it is not computationally feasible,
since it requires marginalising over 2n pair-wise dependent random variables over a large graph.
We would like algorithms that, for a decision at a node u of the graph, rely only on the observation
of the t-neighbourhood Gt

u of u, BP being one of them.
A small neighbourhood of a large sparse graph can be approximated by a tree. This is

formalised in Lemma 1. In the following we present a Poisson random tree, which can be
coupled with Gt

u.

Inria



Subgraph Detection with cues using Belief Propagation 5

Algorithm 1 BP with cues

1: Initialize: Set R0
i→j to 0, for all (i, j) ∈ E. Let tf < log(n)

log(np) + 1. Set t = 0.

2: For all directed pairs (i, u) ∈ E, such that u /∈ C:

Rt+1
i→u = −K(p− q) +

∑

l∈Ci,l 6=u

log
p

q
+

∑

l∈δi\Ci,l 6=u

log
exp(Rt

l→i − ν)(p/q)(1 − α) + 1

exp(Rt
l→i − ν)(1 − α) + 1

(1)

3: If t < tf − 1 go back to 2, else go to 4

4: Compute R
tf
u for every u ∈ V \C as follows:

Rt+1
u = −K(p− q) +

∑

l∈Cu

log
p

q
+

∑

l∈δu\Cu

log
exp(Rt

l→u − ν)(p/q)(1 − α) + 1

exp(Rt
l→u − ν)(1 − α) + 1

(2)

5: Output Ŝ as the union of C and the K − |C| set of nodes in V \C with the largest values of

R
tf
u .

Let T t
u be a labelled Galton-Watson (G-W) tree of depth t rooted at node u constructed as

follows (as in [7]): The label τu at node u is chosen at random in the following way:

P{τu = 1} =
K

n
P{τu = 0} =

n−K

n
.

The number of children Nu of the root u is Poisson-distributed with mean d1 = Kp+(n−K)q if
τu = 1 and mean d0 = nq if τu = 0. Each child is also assigned a label. The number of children
i with label τi = 1 is Poisson distributed with mean Kp if τu = 1 and mean Kq if τi = 0. The
number of children with label τi = 0 is Poisson distributed with mean (n−K)q for both τu = 0
and τu = 1. By the independent splitting property of Poisson rvs, this is equivalent to assigning
the label τi = 1 to each child i by sampling a Bernoulli rv with probability (w.p.) Kp/d1 if
τu = 1 and Kq/d0 if τu = 0. Similarly τi = 0 w.p. (n −K)q/d1 and (n −K)q/d0 for τu = 0, 1
and 1 respectively. Namely, if i is a child of u,

P(τi = 1|τu = 1) =
Kp

d1
, P(τi = 1|τu = 0) =

Kq

d0
. (3)

We then assign the cue indicator function c such that ci = 1 w.p. α if τi = 1 and ci = 0 if
τi = 0. The process is repeated up to depth t giving us Ct

u, the set of cued neighbours.
Consider the problem of estimating the label τu of node u /∈ C based on an observation of T t

u

and Ct
u. The optimal ML detector is given as

τ̂u = 1{Λt
u>log( (n−K)

K(1−α)
)},

where Λt
u = log(P(T t

u, C
t
u|τu = 1)/P(T t

u, C
t
u|τu = 0)). By the following coupling lemma estab-

lished in [7], the detection of label σu based on Gt
u is statistically identical to the detection of τu

based on T t
u :

RR n° XXX



6 Arun et al

Lemma 1 [7] For t such that (np)t = no(1), there exists a coupling such that (Gt
u, σ

t) = (T t
u, τ

t)
with probability 1− n−1+o(1).

In our case since p = a/n, any t = o(log(n)) satisfies the condition of the above lemma.
Consequently, the likelihood ratios in a small neighbourhood Gt

u of u are statistically identical
to the likelihoods derived on the corresponding G-W tree, which are the BP messages. Hence we
proceed by deriving BP recursions in Algorithm 1 for node u assuming Gt

u is a tree. Consider a
node u ∈ V \C. We can express the likelihood ratio at u based on an observation of T t+1

u , Ct+1
u

as

Λt+1
u = log

P(T t+1
u , Ct+1

u |τu = 1)

P(T t+1
u , Ct+1

u |τu = 0)

= log
P{Nu|τu = 1}
P{Nu|τu = 0} +

∑

i∈δu

log
P(T t

i , ci, C
t
i |τu = 1)

P(T t
i , ci, C

t
i |τu = 0)

, (4)

by independence of the children of u given τu. Moreover,

P(Nu|τu = 1) = dNu

1 e−d1/Nu! ,

and similarly for P(Nu|τu = 0). Therefore we have

log
P{Nu|τu = 1}
P{Nu|τu = 0} = Nu log

d1
d0

− (d1 − d0)

= Nu log
d1
d0

−K(p− q). (5)

Next we look at the second term in (4). We analyse separately the cued neighbours of u and the
non-cue neighbours.

Case 1 ( ci = 1): We have

log
P(T t

i , ci, C
t
i |τu = 1)

P(T t
i , ci, C

t
i |τu = 0)

(6)

= log




P(T t
i ,ci,C

t
i ,τi=1|τu=1)+

0 P(T t
i ,ci,C

t
i ,τi=0|τu=1)

P(T t
i ,ci,C

t
i ,τi=1|τu=0)+

0 P(T t
i ,ci,C

t
i ,τi=0|τu=0)




(a)
= log

(
P(T t

i , ci, C
t
i , τi = 1|τu = 1)

P(T t
i , ci, C

t
i , τi = 1|τu = 0)

)

= log

(
P(T t

i , ci, C
t
i |τi = 1)P(τi = 1|τu = 1)

P(T t
i , ci, C

t
i |τi = 1)P(τi = 1|τu = 0)

)

(b)
= log

Kp/d1
Kq/d0

, (7)

where in step (a) we applied the fact that P(ci = 1, τi = 0) = 0 and in (b) we used (3).
Case 2 (ci = 0): Observe that P(ci = 0|τi = 1) = 1− α and P(ci = 0|τi = 0) = 1. Note that

P(T t
i , ci, C

t
i |τu = 1) (8)

= P(T t
i , C

t
i |τi = 1)P(ci|τi = 1)P(τi = 1|τu = 1)

+P(T t
i , C

t
i |τi = 0)P(ci|τi = 0)P(τi = 0|τu = 1)

= P(T t
i , C

t
i |τi = 1)(1− α)

Kp

d1
+ P(T t

i , C
t
i |τi = 0)

(n−K)q

d1
.

Inria



Subgraph Detection with cues using Belief Propagation 7

Similarly, we can show

P(T t
i , ci, C

t
i |τu = 0)

= P(T t
i , C

t
i |τi = 1)(1− α)

Kq

d0

+P(T t
i , C

t
i |τi = 0)

(n−K)q

d0
.

Let us define

Λt
i→u ≡ log

(
P(T t

i , C
t
i |τi = 1)

P(T t
i , C

t
i |τi = 0)

)
,

the message that i sends to u at step t. We plug this into (8). Finally combining (5), (7) and
(8) and replacing Λt

u with Rt
u and Λt

i→u with Rt
i→u, we arrive at (2). The recursive equation (1)

can be derived in exactly the same way by looking at the children of i ∈ δu. �

4 Asymptotic Error Analysis

We analyse the distributions of BP messages Λt
i given τi = 1 and τi = 0. This will help us to

bound the error rate on a tree. This equals the error rate on G asymptotically since by the
coupling Lemma 1 the two are the same with a probability that tends to 1. Notice that since
we only focus on non-cued vertices the prior distribution after the observation of cues changes.
Therefore P{τi = 1|ci = 0} = K(1−α)/(n−Kα) and P{τi = 0|ci = 0} = (n−K)/(n−Kα) are
the prior probabilities of the uncued vertices. For convenience we put a line over the symbols for
expectation and probability to denote conditioning w.r.t {ci = 0} when considering the posterior

distributions (eg: E,P). Define υ = log
(

n−K
K(1−α)

)
.

Instead of studying the distribution of Λt
i, i ∈ V \C, we look at the log of the ratio of the

a-posteriori probabilities of τi given as

Λ̃t
i = log

(
P(τi = 1|T t

i , C
t
i , ci = 0)

P(τi = 0|T t
i , C

t
i , ci = 0)

)
.

This is just a matter of choice since by Bayes rule it holds that Λ̃t
i = Λt

i − υ. Let ξt+1
0 , ξt+1

1

be the random variables with the same distribution as the messages Λ̃t+1
i given τi = 0 and

τi = 1 respectively, conditioned on {ci = 0}, in the limit as n → ∞. In view of the coupling
formulation, it is then straightforward to show that they satisfy the following two recursive
distributional evolutionary equations with initial conditions ξ00 = ξ01 = log κ(1− α)/(1− κ):

ξ
(t+1)
0

D
= h+

L0c∑

i=1

log
p

q
+

L00∑

i=1

f(ξ
(t)
0,i) +

L01∑

i=1

f(ξ
(t)
1,i) (9)

ξ
(t+1)
1

D
= h+

L1c∑

i=1

log
p

q
+

L10∑

i=1

f(ξ
(t)
0,i) +

L11∑

i=1

f(ξ
(t)
1,i), (10)

where,
D
= means that the L.H.S has the same distribution as the R.H.S. and h = −K(p− q) −

log( n−K
K(1−α) ) = −κ(a− b)− log( 1−κ

κ(1−α)) and the function f is defined as

f(·) ≡ log

(
exp(·)(p/q) + 1

exp(·) + 1

)
.

RR n° XXX



8 Arun et al

The rvs ξt0,i are independent and identically distributed (iid) and identically distributed to ξt0,
and ξt1,i are iid with the same distribution as ξt1. Furthermore, L00 ∼ Poi((n−K)q) is the rv that
equals the number of children of u with label 0 if τu = 0, and L01 ∼ Poi(Kq(1−α)), the number
of children with label 1 when τu = 0. Similarly L10 ∼ Poi((n−K)q) and L11 ∼ Poi(Kp(1− α))
denote the number of children of u with label 0 and 1 respectively when τu = 1. Lastly, L0c

and L1c are the number of cued children of u when τu = 0 and τu = 1 respectively with
L0c ∼ Poi(Kqα) and L1c ∼ Poi(Kpα). We define the parameter λ, interpreted as an effective
SNR [11] of the detection problem, as

λ =
K2(p− q)2

(n−K)q
(11)

=
κ2(a− b)2

(1− κ)b
=

κ2b(a/b− 1)2

(1− κ)
. (12)

If P0 and P1 are the probability measures of ξt0 and ξt1 respectively, then they are related as
follows.

Lemma 2

dP0

dP1
(ξ) =

κ(1− α)

1− κ
exp(−ξ).

In other words for any integrable function g(·)

E[g(Λ̃t
u)|τu = 0] =

κ(1− α)

1− κ
E[g(Λ̃t

u)e
−Λ̃t

u |τu = 1].

Proof: Following the logic in [11], we show this result for g(Λ̃t
u) = 1{Λ̃u∈A}, A being some

measurable set . The result for general g then follows because any integrable function can be
obtained as the limit of a sequence of such rvs [3]. Let Y = (T t

u, C
t
u), the observed rv. Therefore

E[1{Λ̃t
u∈A}|τu = 0] = P[Λ̃t

u ∈ A|τu = 0]

=
P(Λ̃t

u ∈ A, τu = 0)

P{τu = 0}

=
EY [P{Λ̃t

u ∈ A, τu = 0|Y }]
P{τu = 0}

= EY

[
1{Λ̃t

u ∈ A}P(τu = 0|Y )

P(τu = 0)

]

(a)
= EY

[
1{Λ̃t

u ∈ A}e−Λ̃t
uP(τu = 1|Y )

P(τu = 0)

]

=
P(τu = 1)

P(τu = 0)
E1[1(Λ̃

t
u ∈ A)e−Λ̃t

u ]

=
κ(1− α)

1− κ
E1[1(Λ̃

t
u ∈ A)e−Λ̃t

u ],

where in (a) we used the fact that P{τu=0|Y }
P{τu=1|Y } = exp(−Λ̃t

u), and E1 denotes expectation conditioned

on the event {τu = 1}. �

Inria



Subgraph Detection with cues using Belief Propagation 9

Note that the distributional equations (9) and (10) give the asymptotic distributions of the
messages on the graph G as n → ∞. These equations do not depend on n because of the choice
of p, q and K. For ease of analysis we will presently study the distributions in the limit where
a, b → ∞. This limit is taken after n → ∞. Ideally, one would like to analyse the distributions
for finite a and b, but this is left for future work. We have the following result on the Gaussianity
of the asymptotic messages in the limit where a, b → ∞, after n → ∞.

Proposition 1 In the regime where λ and κ are held fixed and a, b → ∞, we have

ξt+1
0

D−→ N (− log
1− κ

κ(1− α)
− 1

2
µ(t+1), µ(t+1))

ξt+1
1

D−→ N (− log
1− κ

κ(1− α)
+

1

2
µ(t+1), µ(t+1)),

where µ(t) satisfies the following recursion with initial condition µ0 = 0 :

µ(t+1) = λα 1−κ
κ + λE

(
(1−α)2(1−κ)

κ(1−α)+(1−κ) exp(−µ(t)/2−
√

µ(t)Z)

)
, (13)

where the expectation is w.r.t Z ∼ N (0, 1).

Remark : When α = 0 (13) reduces to the recursion given in [11] as expected.
Proof: Since λ is fixed and b → ∞, we have

ρ ≡ a/b = 1 +

√
λ(1 − κ)

κ2b
= 1 +O(b−1/2), (14)

by (12) since λ and κ are fixed. In the proof we use Berry-Essen inequality for Poisson sums [7,
Lemma 11]

Lemma 3 Let Sλ = X1 +X2 + . . .XNλ
, where Xi : i ≥ 1 are independent, identically distributed

random variables with mean µ, variance σ2 and E[|X3
i |] ≤ g3, and for some λ > 0, Nλ is a

Poi(λ) random variable independent of (Xi : i ≥ 1). Then

supx

∣∣∣∣∣P
{

Sλ − λµ√
λ(µ2 + σ2)

}
− Φ(x)

∣∣∣∣∣ ≤
CBEg

3

√
λ(µ2 + σ2)3

,

where CBE = 0.3041.

Following [11], we prove the result by induction on t. First let us verify the result holds when
t = 0, for the initial condition that ξ00 = ξ01 = −υ. We only do this for ξt0 since for ξt1 the steps
are similar. Observe that

f(−υ)

= log




pK(1−α)
q(n−K) + 1

K(1−α)
(n−K) + 1




= log

(
1 + (ρ− 1)

κ(1− α)

1− κα

)

(a)
= (ρ− 1)

κ(1− α)

1− κα
− (ρ− 1)2

2

κ2(1− α)2

(1− κα)2
+

O(b−3/2), (15)

RR n° XXX



10 Arun et al

where (a) follows from (14), and Taylor’s expansion around ρ = 1. Similarly,

f2(−υ) = (ρ− 1)2
κ2(1 − α)2

(1− κα)2
+O(b−3/2), (16)

log(ρ) = log(1 + (ρ− 1)) =

√
λ(1− κ)

κ2b
− λ(1− κ)

2κ2b
+

O(b−3/2), (17)

and

log2(ρ) =
λ(1− κ)

κ2b
+O(b−3/2) (18)

Let us verify the induction result for t = 0. Using the recursion (9) with ξ00 = log κ(1−α)
1−κ = −υ,

we can express Eξ10 as

Eξ10 = −κb(ρ− 1)− υ + κbα log(ρ)

+ b(1− κα)f(−υ).

Now using (15) and (17) we obtain

Eξ10 = −κ

√
λb(1 − κ)

κ2
− υ + κα

√
λ(1− κ)b

κ2
− λ(1− κ)α

2κ

+

√
λ(1− κ)b

κ2
κ(1− α)− (1 − α)2

2(1− κα)
λ(1− κ) (19)

+O(b−1/2)

= −υ − λ(1− κ)

2κ
α− (1 − α)2

2(1− κα)
λ(1− κ) +O(b−1/2), (20)

and

Varξ10 = log2(ρ)κbα+ f2(−υ)(1− κ)b+ f2(−υ)κb(1− α)

(a)
=

λα(1 − κ)

κ
+

(1− α)2(1− κ)λ

1− κα
, (21)

where in (a) we used (18) and (16). Comparing (20) and (21) with µ(1) in (13) using µ(0) = 0, we
can verify the mean and variance recursions. Next we use Lemma3 to prove gaussianity. Note
that we can express ξ10 − h as the Poisson sum of iid mixture random variables as follows

ξ10 − h =

L0∑

i=1

Xi,

where L0 ∼ Poi(nq) = Poi(b), and L(Xi) = καL(p/q)+(1−κ)bL(f(−υ))+(κb(1−α))L(f(−υ)),
keeping in mind the independent splitting property of Poissons, where L denotes the law of
a random variable. Then by comparing with the form in Lemma 3, λ = b, and the term
λ(µ2 + σ2) = Varξ10 = b(µ2 + σ2), which is finite. Next we calculate E|Xi|3. It is easy to see that

E|Xi|3 = κα log3(b) + ((1− κ) + κ(1− α))f3(−υ) (22)

= O(b−3/2). (23)

Inria



Subgraph Detection with cues using Belief Propagation 11

Hence bE|Xi|3= O(b−1/2). Therefore the RHS of Lemma (3) becomes

CBEE|Xi|3√
λ(µ2 + σ2)3

=
CBEE|Xi|3√
b3/b2(µ2 + σ2)3

=
CBEbE|Xi|3√
(b(µ2 + σ2))3

= O(b−1/2).

Having shown the induction hypothesis for t = 0, we now assume it holds for some t. Notice that
f(x) = (ρ− 1) ex

1+ex − 1
2 (ρ− 1)2( ex

1+ex )
2 +O(b−3/2), by Taylor’s expansion, and using (14). Then

by using dominated convergence theorem [3] and Lemma 2 we obtain

Ef(ξt0) = (ρ− 1)
κ(1− α)

1− κ
E

1

1 + eξ
t
1

−

(ρ− 1)2κ(1 − α)

2(1− κ)
E

eξ
t
1

(1 + eξ
t
1)2

+O(b−3/2)

(24)

and

Ef(ξt1) = (ρ− 1)E
eξ

t
1

1 + eξ
t
1

− (ρ− 1)2

2
E

e2ξ
t
1

(1 + eξ
t
1)2

+O(b−3/2). (25)

Now we take the expectation of both sides of (9) and (10). Here we use the fact that E
∑L

i=1 Xi =
EXiEL if L ∼ Poi and Xi are independent and identically distributed (iid) random variables,
hence obtaining

Eξt+1
0 = h+ log(

p

q
)κbα+ Ef(ξt0)(1 − κ)b+ Ef(ξt1)κb(1− α) (26)

and

Eξt+1
1 = h+ log(

p

q
)κaα+ Ef(ξt0)(1− κ)b+ Ef(ξt1)κa(1− α). (27)

We now substitute (24) and (25) in (26) to get:

Eξt+1
0 = h+ κbα log(ρ) + (1 − κ)b

[
(ρ− 1)

κ(1− α)

1− κ
E

1

1 + eξ
t
1

− (ρ− 1)2κ(1− α)

2(1− κ)
E

eξ
t
1

(1 + eξ
t
1)2

+O(b−3/2)

]
+

κb(1− α)

[
(ρ− 1)E

eξ
t
1

1 + eξ
t
1

−

(ρ− 1)2

2
E

e2ξ
t
1

(1 + eξ
t
1)2

+O(b−3/2)

]
,

which on simplifying and grouping like terms becomes

Eξt+1
0 = h+ κbα log(ρ) + κ(a− b)(1 − α)−

λ(1 − κ)(1− α)

2κ
E

eξ
t
1

1 + eξ
t
1

.
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12 Arun et al

Since h = −κ(a− b)− log
(

1−κ
κ(1−α)

)

Eξt+1
0 = − log

(
1− κ

κ(1− α)

)
− ακ(a− b) + κbα log(ρ)−

λ(1 − κ)(1− α)

2κ
E

eξ
t
1

1 + eξ
t
1

.

Using (17) we get

−ακ(a− b) + κbα log(ρ) = bακ(log(ρ)− (ρ− 1))

= bακ(−λ(1− κ)

2κ2b
+O(b−3/2))

= −λα(1 − κ)

2κ
+O(b−1/2).

Finally we obtain

Eξt+1
0 = − log(

1− κ

κ(1 − α)
)− αλ(1 − κ)

2κ
−

λ
(1 − κ)(1− α)

2κ
E(

eξ
t
1

1 + eξ
t
1

) +O(b−1/2).

(28)

Using exactly the same simplifications we can get

Eξt+1
1 = − log(

1− κ

κ(1 − α)
) +

αλ(1 − κ)

2κ
+

λ
(1 − κ)(1− α)

2κ
E(

eξ
t
1

1 + eξ
t
1

) +O(b−1/2).

(29)

Observe that f2(x) = (ρ− 1)2
(

ex

1+ex

)2
+O(b−3/2). Therefore

Ef2(ξt0) = (ρ− 1)2E
e2ξ

t
0

(1 + eξ
t
0)2

+O(b−3/2),

and using Lemma 2 the above becomes

Ef2(ξt0) = (ρ− 1)2
κ(1− α)

1− κ
E

eξ
t
1

(1 + eξ
t
1)2

+O(b−3/2). (30)

Similarly,

Ef2(ξt1) = (ρ− 1)2E
e2ξ

t
1

(1 + eξ
t
1)2

+O(b−3/2). (31)

Now we use the formula for the variance of Poisson sums Var
∑L

i=1 Xi = EX2
i EL, to get

Var[ξt+1
0 ] = log2(ρ)κbα+ (1− κ)bEf2(ξt0)+

κb(1− α)Ef2(ξt1)

Var[ξt+1
1 ] = log2(ρ)κaα+ (1 − κ)bEf2(ξt0)+

κa(1− α)Ef2(ξt1).

Inria



Subgraph Detection with cues using Belief Propagation 13

Substituting (30) and (31) into the above equations we get

Varξt+1
1 = Varξt+1

0 =
λα(1 − κ)

κ
+

λ(1 − κ)(1− α)

κ

E
exp ξt1

1 + exp(ξt1)
.

(32)

Let us use µ(t+1) to denote Varξ
(t+1)
1 = Varξ

(t+1)
0 . Then

Eξt+1
0 = − log

(
(1− κ)

κ(1− α)

)
− 1

2
µ(t+1) +O(b−1/2)

Eξt+1
1 = − log

(
(1− κ)

κ(1− α)

)
+

1

2
µ(t+1) +O(b−1/2). (33)

Now we use the fact the induction assumption that ξt1 → N (Eξt1, µ
(t)). Since the function 1/(1+

e−ξt1) is bounded, by Bounded Convergence Theorem this means E[1/(1 + e−ξt1)] → E[1/(1 +

e−N (Eξt1,µ
(t)))]. We can write N (Eξt1, µ

(t)) =
√
µ(t)Z+Eξt1, where Z ∼ N (0, 1). Therefore we can

write and using (33) we obtain

E
1

1 + e−ξt1
= E

1

1 + e−
√

µ(t)Z (1−κ)
κ(1−α)e

−µ(t)

2

= E
κ(1− α)

κ(1 − α) + (1− κ)e(−
√

µtZ−µ(t)

2 )
.

Substituting the above into (32) gives us the recursion for µ(t+1) given in (13).
Next we prove Gaussianity. Consider

ξt+1
0 − Eξt+1

0

= log

(
p

q

)
(L0c − EL0c) +

L00∑

i=1

(f(ξt0,i)− Ef(ξt0)) +

L01∑

i=1

(f(ξt1,i)− Ef(ξt1)) + (L00 − EL00)Ef(ξ
t
0) +

(L01 − EL01)Ef(ξ
t
1). (34)

Let us look at the second term. Let Xi = f(ξt0,i) − Ef(ξt0,i). Then it can be shown that

EX2
i = O(1/b). Let D ≡ ∑L00

i=1 Xi −
∑

EL00

i=1 Xi. Here the summation is taken up to i ≤ EL00.

Then ED2 = |∑δ
i=1 Xi|2, where δ ≤ |L00 − EL00|+1, where the extra 1 is because EL00 may

not be an integer. Therefore ED2 = EδE|X1|2≤ (C/b)((1 − κ)b + 1)1/2 = O(1/
√
b). Thus, we

can replace the Poisson upper limits of the summations in the second and third terms of (34) by
their means, leading to

ξt+1
0 − Eξt+1

0 = log

(
p

q

)
(L0c − EL0c) +

EL00∑

i=1

(f(ξt0,i)− Ef(ξt0))

+

EL01∑

i=1

(f(ξt1,i)− Ef(ξt1)) + (L00 − EL00)Ef(ξ
t
0)+

(L01 − EL01)Ef(ξ
t
1) + op(1),

(35)

RR n° XXX



14 Arun et al

where op(1) indicates a random variable that goes to zero in probability in the limit.
The variance of the above term is µt+1, defined in (13), and it is finite for a fixed t. Now since

we have an infinite sum of independent random variables as a, b → ∞, with zero mean and finite
variance, from standard CLT we can conclude that the distribution tends N (0, µt+1). �

5 Detection Method

It is shown [7] that asymptotically the tests

Ŝ0 = {i : Rt
i > log

1− κ

κ(1− α)
},

and Ŝ, the output of Algorithm 1, have the same fraction of miss-classified nodes. So we now
go on to show that Ŝ0 weakly recovers S, i.e., the expected fraction of missclassified nodes
approaches 0, and the result for Ŝ follows. By Lemma 1 we work with Λi instead of Ri. Consider
the estimator on the tree:

τ̂i =

{
1 if Λt

i ≥ log 1−κ
κ(1−α) ,

0 otherwise.

Alternatively, τ̂i = 1{Λ̃t
i≥0}. The above estimator minimises the following error probability:

pe = P{τi = 1}P(τ̂i = 0|i ∈ S) + P(τ̂i = 1|i 6∈ S)P{τi = 0}.

In the following proposition, we state and prove the main result of our paper. We show that the
expected fraction of miss-classified nodes goes to zero for an infinitesimally small subgraph size,
for any λ > 0. This implies that BP with cue beats BP without cues, which requires λ > 1/e for
zero asymptotic error rate ( [7, 11]).

Proposition 2 In the regime where a, b → ∞ we have

lim
κ→0

ES∆Ŝ

K(1− α)
→ 0,

for any λ > 0, i.e., the expected fraction of miss-classified nodes tends to zero, as long as α is
strictly positive.

Proof: We upperbound the error rate of Ŝ0 and the result for Ŝ follows based on the explanation
in Section 5. By Lemma 1, the Λt

u and Rt
u have the same distributions on an event whose

probability goes to 1. Therefore it is sufficient to bound the error for the tree, as follows:

ES∆Ŝ0

K(1− α)
=

(
n−Kα

K −Kα

)
pe

(a)
=

(
(1− κ)

κ(1− α)

)
P t
0(ξ > 0) + P t

1(ξ < 0) (36)

where in (a) P t
0 and P t

1 denote probabilities w.r.t. the distributions of ξt0, ξ
t
1 respectively. We

now analyse the asymptotic value of each term in (36) in the limit as κ → 0 with α fixed. By
Proposition 1 we have that in the limit where a → ∞ and b → ∞,

P t
1(ξ < 0) = Q

(
1√
µ(t)

(
µ(t)

2
− log(

(1− κ)

κ(1− α)
)

))

Inria



Subgraph Detection with cues using Belief Propagation 15

where Q(·) denotes the standard Q function. Notice that by (13) we have that µ(t) ≥ λα(1−κ)/κ,

since F (µ) ≡ E
1−κ

κ(1−α)+(1−κ) exp(−µ/2−√
µZ) ≥ 0. In addition, by (32), µ(t) ≤ λ(1−κ)

κ . There-

fore µ(t) = Θ( 1κ ). Note that the lower bound on µ(t) is not useful when α = 0. Consequently

limκ→0
1

µ(t) log(
(1−κ)
κ(1−α) ) = 0. Therefore:

P t
1(ξ < 0) =

1

κ
Q(
√
µ(t)(1 +O(κ)))

≤ exp(−Θ(1/κ)) → 0.

Similarly we have

1

κ
P t
0(ξ > 0) (37)

=
1

κ
Q(

log( (1−κ)
κ(1−α) ) +

µ
2√

µ(t)
) (38)

≤ 1

κ
exp(−Θ(

1

κ
)) (39)

→ 0. (40)

Substituting these back in (36) the result then follows. �

6 Numerical Experiments

In this section we provide simulation results to corroborate our theoretical findings and also to
demonstrate the performance improvement of Algorithm 1 in the presence of side-information.
We fix n = 104, b = 100, and κ = 0.005, giving K = 50. Next we sweep over different values
of λ in the range [0.1, 0.8] and average over 1000 graph realisations to find the fraction of miss-
classified subgraph nodes for each value of λ. In Figure 1 we have the ratio between the number
of subgraph nodes wrongly classified by the algorithm and the number of unlabelled subgraph
nodes on the y-axis and λ on the x-axis. This demonstrates that there is a marked improvement
in the performance of BP with the introduction of cues.

In Figure 2 we plot the theoretical error of Algorithm 1 given in (36) against κ for the two
cases of α = 0 (no cues) and α = 0.1 (10% cues) for λ = 1

2e . We have chosen this value of λ
in order to be below the detectability threshold of λ = 1

e of BP without cues. We can observe
that contrary to when α = 0, with α = 0.1 the error decreases as κ decreases, as proved in our
analysis. We also observed this in our simulations where we obtained an error rate of 73.86% for
κ = 4× 10−4 (n = 5× 104) with α = 0.1, whereas it was 0.995 when α = 0.

7 Conclusions and Future Extensions

In this work we developed a local distributed BP algorithm that takes advantage of side-
information to detect a dense subgraph embedded in a sparse graph. We obtained theoretical
results based on density evolution on trees to show that it achieves zero asymptotic error regard-
less of the SNR parameter λ, unlike BP without cues, where there is a non-zero detectability
threshold. We also obtained some simulation results on synthetic graphs to demonstrate the
improvement in error rates in the presence of cues. In the future, we would like to investigate
non-asymptotic properties of the algorithm for finite a and b and when K = o(n).
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