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ABSTRACT
Tor is a well known and widely used darknet, known for its
anonymity. However, while its protocol and relay security
have already been extensively studied, to date there is no
comprehensive analysis of the structure and privacy of its
Web Hidden Services.

To fill this gap, we developed a dedicated analysis plat-
form and used it to crawl and analyze over 1.5M URLs
hosted in 7257 onion domains. For each page we analyzed
its links, resources, and redirections graphs, as well as the
language and category distribution. According to our ex-
periments, Tor hidden services are organized in a sparse but
highly connected graph, in which around 10% of the onions
sites are completely isolated.

Our study also measures for the first time the tight con-
nection that exists between Tor hidden services and the Sur-
face Web. In fact, more than 20% of the onion domains we
visited imported resources from the Surface Web, and links
to the Surface Web are even more prevalent than to other
onion domains.

Finally, we measured for the first time the prevalence and
the nature of web tracking in Tor hidden services, showing
that, albeit not as widespread as in the Surface Web, track-
ing is notably present also in the Dark Web: more than 40%
of the scripts are used for this purpose, with the 70% of them
being completely new tracking scripts unknown by existing
anti-tracking solutions.
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1. INTRODUCTION
Informally, the Dark Web refers to the small portion of the

Deep Web (the part of the Web which is normally considered
to be beyond reach from current search engines) based on
darknets. Common darknets include, among other smaller
P2P networks, FreeNet [6], the Invisible Internet Project
(I2P) [5], and Tor [2]. In the case of Tor, Tor hidden ser-
vices are used to provide acccess to different applications
such as chat, email, or websites, through the Tor network.
In this paper, we focus in particular on the analysis of web-
sites hosted on Tor hidden services — due to Tor’s much
larger popularity between users, which comprised around
7,000 relays or proxies by the time of this writing [4]. The
Tor network is based on the onion routing technique [33] for
network traffic anonymization.

Due to its hidden nature, Tor hidden services are used
for a large range of (cyber)-criminals activities [13, 14, 38,
35]. Thereby, several studies [9, 27, 16, 26] focused on how
to discover, access, crawl, and categorize the content of the
Dark Web.

Recently, the OnionScan [22, 25, 24, 23] and the Deep-
Light reports [17] have analyzed some features related to
the content, the size, and the connectivity of the Dark Web.
While these studies have helped to better understand its na-
ture, we still lack a complete analysis of Tor hidden services
to compare their structure with the corresponding studies
of the Surface Web [11, 29].

Similarly, while the research community has put a con-
siderable effort to analyze the privacy and security of Tor
relays [28, 12, 41, 36] and of its routing protocol [30, 18, 39,
19], a comprehensive analysis of the privacy implications at
the application level and of the prevalence of fingerprinting
and web tracking is still missing (although these subjects
have been extensively studied for the Surface Web [32, 8, 7,
20, 21]).

To fill these gaps, in this paper we present the most com-
prehensive structure and privacy analysis of the Tor hidden
services. Our work is divided in three parts. In the first,
we present the most complete exploration of the websites
hosted on the Tor hidden services performed to date. Pre-
vious measurement studies were limited just to the home
pages of each site. While it is true that 80% of the websites
have less then 18 URLs, according to our experiments their
home pages contain only 11% of the outgoing links, 30% of
the resources, 21% of the scripts, and 16% of the tracking
attempts. To overcome this limitation, in our analysis we
exhaustively downloaded all the reachable content for over



80% of the websites (for a total of 1.5M pages), and we com-
pletely crawled 99.46% of the sites to extract links to other
domains.

In the second part of our paper, we present an analysis
of the collected data looking at links and redirections, as
well as at the external resources imported by onion domains
from the Tor hidden services themselves and from the Sur-
face Web. In addition, we perform a complete structure
analysis of the three connectivity graphs – links, resources,
and redirections – and compare them to previous structural
analyses conducted for the Surface Web.

Our experiments show that Tor hidden services are highly
connected and that their internal structure is sparse, with a
high number of strongly connected domains. Overall, 10%
of the websites have no incoming links and a stunning 98.8%
of all the discoverable domains are already included in pub-
lic directories (with a single one - tt3j2x4k5ycaa5zt.onion
pointing to over 70% of the websites we visited).

Quite surprisingly, we also discovered that Tor hidden ser-
vices are more connected to the Surface Web than to other
Tor hidden services. In particular, over 21% of the onion
domains import resources (e.g., Javascript files) from the
Surface Web. Due to these external components, we discov-
ered that Google alone can monitor the accesses to almost
14% of the Tor hidden services in our dataset.

Since these connections can raise some privacy concerns,
in the third part of the paper we analyze the privacy im-
plications of the structure of Tor hidden services and we
measure for the first time the prevalence and nature of web
tracking in this environment. Using a generic web tracking
analyzer, we discovered that, despite the fact that the us-
age of scripts in Tor hidden services is smaller than in the
Surface Web, the percentage of them used for web tracking
is similar. More than 75% of the onion domains that con-
tain at least a Javascript file, perform some form of tracking.
Moreover, we have found that the majority of web tracking
present in Tor hidden services is not known by any anti-
tracking technique.

Another interesting finding is the fact that over 30% of
the tracking and fingerprinting in Tor hidden services uses
scripts imported from the Surface Web. This is particularly
worrying, as it may be used to follow known users when
they visit anonymous websites on Tor. Finally, we discuss
how the owners of the websites try to hide their tracking
attempts, for instance by performing tracking in the middle
of a redirection chain.

The remainder of this paper is organized as follows. Sec-
tion 2 details the analysis platform and the methodology
used in our Tor hidden services analysis. Section 3 describes
the conducted structural analysis of the onion domains, as
well as our findings. Section 4 discusses the privacy im-
plications of our previous findings, and details the specific
web tracking analysis performed in the Tor hidden services.
Section 5 provides the context of this paper given the cur-
rent previous work. Finally, Section 6 summarizes the main
conclusions.

2. ANALYSIS PLATFORM
While the connection among different web pages is part of

the nature of the Surface Web, web sites in the Dark Web are

often more ephemeral and isolated among one another. This
difference makes crawling the Dark Web a non-trivial task,
that goes beyond simply navigating through hyper-links.

Therefore, to perform our study we manually collected
a list of URLs associated to 195,748 onion domains from
25 public forums and directories. We then implemented a
custom crawler to explore this seed list to collect data for
our analysis and extract new domains. Our crawler can be
configured to operate according to two different behaviors.
In “collection mode” the crawler retrieves all the HTML and
Javascript resources of the target domain. This mode has
restrictions regarding the maximum depth and number of
links it can explore for each onion domain. When these
thresholds are reached, the system switches to “connectivity
mode”, where it simply crawls the remaining pages looking
for new links towards other onion domains. While in this
mode, the system does not store a copy of the resources and
therefore it is not restricted in its depth level (but with a
maximum of 10K URLs per domain) and can visit a much
larger number of pages of the target domain.

After the crawler has collected all the data, we performed
an offline analysis – divided in two parts:

1. Structure Analysis: the goal of this analysis is to
study the number of connections and their nature to
better understand the overall structure and properties
of the Dark Web. For instance, we measured the preva-
lence of links, resources, and redirections both towards
other onion domains and towards the Surface Web. We
also built the complete graph for each connection type
and performed a complete structure analysis, compar-
ing the results with those obtained by analyzing the
properties of the Surface Web.

2. Privacy Analysis: The structure analysis raised sev-
eral privacy concerns, which we analyze in more details
in this second analysis phase – which focus on study-
ing the tracking ecosystem in the Dark Web. Since our
goal is to obtain a general overview of web tracking in
the Dark Web, rather than focusing on a specific type
of tracking, we did not implement our own tracking
detector but we reused instead a generic tracking an-
alyzer capable of detecting both known and unknown
tracking techniques [37].

Finally, it is important to remark that during our anal-
ysis we distinguish between domains and URLs. Figure 1
clarifies the distinction. For instance, the figure shows seven
domains (a.onion, b.onion, . . . , f.onion, and s.com). Do-
mains can be hosted either on the Surface Web, or on the
Dark Web (onion domains). Some of them point to website
hosting actual content (e.g., c, d, and f) while other only
serve to redirect users to other domains (such as a and b).
For our analysis purposes, we define the size of a domain
as the number of unique URLs served by that domain that
returned HTML content. Domains can also host other re-
sources (such as JavaScript, pictures, and CSS file) which
are valid URLs but do not count as accessed URLs nor for
the computation of the size.

2.1 Design and Implementation
We implemented our Dark Web crawler on top of the head-

less browser PhantomJS [1]. To prevent websites from easily
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Figure 1: Tor hidden Services Architecture Example and Clarification.

identifying our crawler, we implemented a number of ad-
vanced hiding techniques already used by other systems.1

Moreover, we cleaned cookies and the browser cache after
visiting each website.

The crawler receives the main URL of an onion domain
and retrieves its HTML and external scripts. To accommo-
date for dynamic content, the system saves the content of
each page after a certain time has passed. Since the Dark
Web is considerably slower than the Surface Web, instead of
using a fixed waiting time, we first performed an experiment
to measure the appropriate value. For this test we extracted
a random sample of 25% of the initial seed domains and an-
alyzed the loading time of their pages. Based on the results
of our experiment, we configured our crawler to wait for five
additional seconds after a page is completely loaded, and for
a maximum of 60 seconds otherwise.

To deal with script obfuscation, we implemented a de-
obfuscator using JSBeautifier.2 that iteratively tries to de-
obfuscate a page, testing at each iteration whether or not
additional code has been revealed. In this way, we can also
deal with multiple-layer obfuscation.

As already mentioned above, our crawler can work in two
modes:

• Collection mode:

In this mode the crawler collects and stores a large
amount of data for further offline analysis, including
all the HTTP headers, the HTML code, all scripts
(both imported or embedded in the HTML), the list of
performed redirections along with their origin, desti-
nation and nature (e.g., HTTP or JavaScript), and all
the links (either visible or invisible) within the website.
To mimic the behavior of a real user, we modified the
referrer at each step to point to the correct origin
URL.

While in collection mode, the crawler only recursively
visits ten links for each onion URL. To prioritize the

1https://github.com/ikarienator/phantomjs_hide_
and_seek
2http://jsbeautifier.org

links that can lead to more “interesting” pages, we first
test the destination URL against a list of over 30 key-
words (e.g., login, register, account, or password). Sec-
ond, we dynamically compute the appearance of the
link in the website according to the CSSs and other
styles defined in the HTML. We use this information
to rank the links based on their computed visualization
size, weighted by its closeness to top of the website. Fi-
nally, the crawler in collection mode is limited to vis-
iting internal links up to a depth of 3 layers from the
homepage. In other words, the crawler collects data
from the homepage, from ten of its internally linked
pages, then from other ten starting from each of them,
up to a depth of three steps.

• Connectivity mode:

The “connectivity mode” extracts all the links (either
visible or invisible) in the target website through a
breadth-first exploration, without considering fragment
(‘#’ position links), or files such as images or PDF doc-
uments.

This mode is not limited by the 10-pages nor by the
3-level depth restrictions. Its major goal is to complete
the crawling of a domain after the collection mode has
reached its threshold. However, for practical purposes
and to avoid getting stuck in endless websites that con-
tain an infinite number of URLs (the often called cal-
endar effect), we limited this mode to visit 10,000 dis-
tinct URLs for each individual domain.

2.2 Data Collection
Our collection started from an initial seed of 195,748 do-

mains, retrieved from different sources: Tor gateways, paste-
bin, lists/directories (in the surface and dark web), reddit
posts, and previous studies [17]. These type of sources are
commonly used to discover hidden onion domains [14, 17].

Our crawler then visited each onion domain, initially run-
ning in collection mode. If this approach was unable to crawl
the entire website, the crawler switches to the connectivity
mode and visited the remaining internal links - this time
just collecting other links without storing the content.

To gather the highest number of active domains possible,
we performed our entire crawling experiment three times:
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Figure 2: Distribution of URLs in each .onion domain.

twice in May 2016 (three days apart), and then again one
month later in June 2016.

3. STRUCTURE ANALYSIS
The first part of our study focuses on the analysis of the

structure of the Tor hidden services. To this end, we ana-
lyzed the categories and languages of the retrieved websites,
as well as their connections in terms of links, resources, and
redirections. We also performed a graph analysis of the Tor
hidden services and compared the results with those of sim-
ilar studies performed on the Surface Web.

3.1 Size & Coverage
From our initial seed of 195,748 domains, our crawler gath-

ered a total of 198,050 unique domains. The small difference
between the two numbers confirms the nature of the dark
web, where websites are mainly reached from public direc-
tories or domains posted in forums (part of our initial seed).
This has two important consequences. First, that existing
directories already cover 98.8% of the discoverable domains.
However, Tor hidden services also include websites intended
for private use, that are never linked or publicized anywhere
else – and that therefore cannot be covered in our study.
Second, as we explain later in this section, our experiments
show that 10% of the domains have no incoming links and
therefore cannot be reached by a traditional crawler. While
this percentage is very large, it means that the remaining
90% of the Tor hidden services are actually interconnected,
and that therefore they are not just a collection of isolated
web sites.

In our three consecutive crawling attempts, we discov-
ered that only 7,257 were active domains. This is a con-
sequence of the short lifespan of onion websites and of the
fact that the majority of onion domains collected from pub-
lic sources often become unreachable after a short amount
of time. Therefore, public directories contain a very large
amount of outdated material, which wrongly contributes to
the image of Tor hidden services.

Interestingly, 81.07% of the active domains were com-
pletely crawled in“collection mode”. In this case, our system
was able to retrieve and store an entire copy of the web-
site. An additional 18.49% of the onion domains were then

Table 1: Most Popular Languages in Onion Domains.

Language % Domains

English 73.28%
Russian 10.96%
German 2.33%
French 2.15%
Spanish 2.14%

Table 2: Categories in Onion Domains.

Category % Domains

Directory/Wiki 63.49%
Default Hosting Message 10.35%
Market/Shopping 9.80%
Bitcoins/Trading 8.62%
Forum 4.72%
Online Betting 1.72%
Search Engine 1.30%

crawled completely in “connectivity mode” (every link and
connection to external domain was successfully collected) —
and only for the remaining 0.54% of the websites our sys-
tem was unable to visit all URLs because they contained
more than 10K internal active URLs. Overall, our crawler
accessed a total number of 1,502,865 unique onion URLs
corresponding to 746,298 different base URLs (i.e., without
taking their parameters into account). This is the largest
number of URLs visited to date in a study of Tor.

A total of 203 onion domains only performed HTTP redi-
rections to other domains without hosting any content. For
the rest, Figure 2 shows a log-scale distribution of the size
of each domain. Quite surprisingly, almost half (46.07%) of
them only contained a single page and over 80% contained
less than 17 unique URLs. This means that vast majority of
the websites in the dark web are extremely simple, and only
few of them are large and complex applications, containing
up to tens of thousands of different URLs.

3.2 Language & Categories
We also measured the distribution of languages and web-

site categories within the active onion domains. Since the re-
sults are computed by analyzing each individual URL, each
domain can be assigned to multiple languages and multi-
ple categories (i.e., if a domain contains both English and
Russian pages it is counted as belonging to both languages).

To obtain the actual language, we used the Google Trans-
late API3 and its language autodetection function. Overall,
we found 63 different languages used in Tor hidden services.
English was the most popular (present in 73.28% of the do-
mains), followed by Russian, German, French, and Spanish
(see Table 1). While the percentages are different, the rank-
ing is very similar to the one of the surface web (English,
Russian, German, Japanese, Spanish, French [40]) with the
omission of Japanese and a larger percentage of English con-
tent. However, our results are different from the ones pub-
lished in the DeepLight report [17] both in the number of
languages and their distribution and ranking. This differ-
ence can be a consequence of our higher coverage, especially
in the number of pages visited in each domain (for instance,
a website may show only English content on the main page,
but then provide also other languages by following specific
links).

3https://cloud.google.com/translate/



Table 3: Links and Resources in Onion Domains.

Links
to Onion

# domains linking 3,013
# domains linked 20,621
# domains alive linking 2,482
# domains alive linked 6,528

to Surface
# domains linking 2,947
# domains linked 83,984

Resources
from Onion

# domains importing 466
# domains exporting 349

from Surface
# domains importing 1,561
# domains exporting 2,235

Table 4: HTTP Redirection Distributions Performed in
Onion Domains. Dest. means destination and D. domain.

Dest. Type # Source D. # Dest. D.

Onion

HTTP 232 196
HTML 37 22

JS 17 12

TOTAL 283 225

Surface

HTTP 117 124
HTML 35 22

JS 39 14

TOTAL 190 154

To identify the URL categories, we first used Google Trans-
late to translate the page content to English, we then re-
moved stop words4 and used a stemming algorithm to ex-
tract the root token of similar words (e.g, work, worker, and
working).

Next, we modeled each URL as a Bag of Words [34] and
performed a two-phase clustering. In the first phase, we ran-
domly selected 10% of URLs to form the clusters by Affinity
Propagation [15]. Then, in the second step, we computed
the cluster membership of the remaining URLs. As a result,
79 different clusters were found. We manually inspected
and assigned each of them to one of seven main categories
(Table 2 shows their distribution). Overall, we found that
15.4% of the domains belong to more than one category. Di-
rectory/Wiki is the most popular category since many onion
websites tend to include a resource repository of links, news,
articles, videos or images. It is important to remark that di-
rectories do not necessary only link to external content, but
they can also include their own. The second most popular
category are websites containing a default hosting message
such as “This website is hosted by X ”: this result was also
observed by a previous measurement study [25].

3.3 Links, Resources, and Redirections
Table 3 shows the number, type, and prevalence of links

present in onion domains, as well as the number of domains
importing resources from other onion domains and from the
Surface Web. Specifically, only 41.5% of the total onion
domains contained HTML links to other onion domains and
40.6% contained links to the surface web. Regarding links to
other onion domains, a stunning 68.34% of them were broken
(i.e., the target was not reachable during our experiments)
confirming again the ephemeral and disconnected nature of
websites hosted in the dark web. Only 6,528 from the 7,257
active domains in our dataset were found in the onion links,

4Using the public list at http://www.ranks.nl/stopwords

Figure 3: Links Graph of Onion Domains computed with
the OpenOrd force-directed layout algorithm and colored
communities through modularity. Isolated domains were re-
moved from the figure for clearness of the representation.

indicating that over 10% of the onion domains are isolated
and unreachable from other domains in our dataset. Com-
paring the number of links to onion and surface domains, the
number of surface links was clearly higher, even considering
the inactive onion links.

Looking at the imported resources, only 6.47% of onion
domains imported resources from other onion domains, while
21.51% of them imported resources from the Surface Web.
Moreover, the absolute number of unique resources imported
from the Surface Web is over five times higher than the re-
sources imported from other onion domains. As we will dis-
cuss in more details in Section 4, this can have some privacy
implications on users visiting the dark web using Tor Prox-
ies.

Another relevant finding of our study is that only 36%
of the onion domains we visited contained Javascript code
(either embedded in the page or standalone). Interestingly,
48% of the URLs contained no scripts at all. This shows a
different picture from the Surface Web, where current statis-
tics report that almost 94% of websites use JavaScript [40].

Finally, we looked at redirections. Table 4 shows that,
contrary to what we observed for links and resources, redi-
rections performed by onion domains are more likely to tar-
get other onion domains: 3.90% of the onion domains con-
tained at least one redirection to other onions, while 2.62%
redirected to the Surface Web. This second group is partic-
ularly important because these redirections can be used to
de-anonymize users in certain configurations (e.g., those us-
ing a Tor proxy). Table 4 also distinguishes between HTTP
and non-HTTP redirections. The majority of the sites used
the HTTP 30X redirection method — 82% to redirect to other
onion domains, and 62% to redirect to the Surface Web.

3.4 Graph Analysis
A study of the structure of the web was first conducted

in 2000 by Broder et al. [11], and then revisited by Meusel
et al. [29] in 2014. A first study about the connectivity of
Tor hidden services has been recently presented [24], but the
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Figure 4: Link In and Out Degree Distributions.

(a) Resources Graph. (b) Redirections Graph.

Figure 5: Resources and Redirection Connectivity graphs
plotted using the Fruchterman-Reingold force-directed lay-
out algorithm and colored communities through modularity.

structure itself was not analyzed and only the main onion
domains were taken into account by the authors. Therefore,
to provide a better comparison with respect to the studies of
the Surface Web, we performed a graph network analysis of
the three types of connections between onion domains: links,
resources, and redirections (Figure 3 shows the links graph,
Figures 4a and 4b the in/out degree of the links, Figure 5a
the resources graph, and Figure 5b shows the redirections
graph), measuring their structural properties for the three
resultant directed graphs.

The links connectivity graph contains 6,823 nodes and
more than 60,000 connections. The average shortest path
to traverse the entire directed network was 3.697 edges and
the largest (the diameter) was 49. This relation implies that
it is highly connected but disperse, as we can also deduce
from the high average connection degree and its low density
(near zero). The graph has a high connectivity, containing
88.03% of strongly connected nodes. Indeed, the number
of communities (10), its modularity (0.293), and clustering
coefficient (0.481) are relatively small, while the centrality
is high (1.061). In conclusion, regarding links, the analysis
of their network clearly indicates that the highly connected
graph is due to a few onion domains with high in/out degree
(as seen in Figures 4a and 4b). The in-degree power law of
the links within the dark web is 8.588, whereas the out-
degree power law is outside the 2-to-3 range of scale-free

networks — but close to it: 3.234.

By comparing our work with the Surface Web structure
described in previous studies [11, 29], we can observe few
notable differences. First, onion domains are less prone to
be linked by others, while their out-degree is smaller but
similar to the one in the surface. These stats are aligned
with the assumption about the undercover nature of onion
domains, which explains the smaller “in” degree. We also
tested whether the connections between the Tor hidden ser-
vices follows the bow-tie structure characteristic of the Sur-
face Web. This structure is composed of strong connected
components that are linked but not accessed by an in clus-
ter, and linked to the out cluster. Our results indicate, that
even though there is a high number of strongly connected
domains, there is an absence of clearly defined in or out
clusters.

Next, we looked at the important hubs that are connected
to a large part of the Tor hidden services graph. Two main
hubs have a high number of incoming connections, and they
are linked by a 13.65% and 5.29% of the nodes, respectively.
The first one was a hosting service while the second was a
bitcoin blockchain explorer/wallet. In the case of outgoing
links, 8 onion domains linked to more than 50% of the net-
work each domain. In particular, a single directory domain
linked to 71.16% of the nodes.

Finally, resources and redirections graphs (shown in Fig-
ure 5) present similar structural values. The resources graph
was composed of 664 nodes and 1294 edges, whereas the
redirections graph contained 416 nodes and 554 edges. The
out-degree power law was 4.951 in the case of resources and
5.094 in the case of redirections, while the in-degree was
4.838 for resources and 5.062 for redirections. The average
shortest path for resources was smaller (2.715) than in redi-
rections (3.596), and both of them lower than the one of the
links. The diameter was smaller in this case (7 for resources
and 10 for redirections).

These lower values are due to the size of these two graphs
being much smaller than the links connectivity graph. How-
ever, both of them are still highly connected: 82.83% of
the nodes are strongly connected in resources and 84.88%
in redirections. Networks are not as sparse as in the case of
links, the clustering coefficient (0.060 in the case of resources



and 0.013 in the case of redirections), and the number of
communities are high (156 in the case of resources and 97
in the case of redirections), while the network centrality is
small (0.038 in the case of resources and 0.017 in redirec-
tions). In these cases, as we will discuss in Section 4 there
are serious privacy implications due to the high connectivity
of onion domains. Regarding connections amid communi-
ties, resources have 28 inter-community edges while only 6
redirections. In both cases, most of these connections are be-
tween the famous onion search engine Grams and its bitcoin
cleaner Helix with directories and markets.

4. PRIVACY ANALYSIS
In the second part of our study we look at privacy implica-

tions related to the structure of the Tor hidden services and
measure the web tracking prevalence and its nature within
Tor hidden services. In order to measure how common web
tracking is in the Dark Web as well as finding out its nature,
we used the web tracking analyzer proposed by Sanchez-
Rola & Santos [37] to analyze all the scripts retrieved by
our crawler.

4.1 Dark-to-Surface Information Leakage
One of the main surprises of our structural analysis ex-

periments is the tight connection that exists between Tor
hidden services and the Surface Web. As we discussed in
Section 3, a large number of websites contain links, import
external resources, and even redirect to websites outside the
onion network. While this may appear innocuous, it has im-
portant consequences for the cover nature of these websites.

Users usually visit Tor hidden services either by using a
browser connected to the Tor network or by using one of the
several Tor proxies (e.g., Tor2Web [3]). These services, avail-
able on the Surface Web, act as gateways to bridge incoming
connections towards the Tor network. They are popular be-
cause they do not require any specific set up or installation
of additional software.

When a user is using one of these proxies, instead of typ-
ing in the address bar the onion URL (e.g., duskgytld-

kxiuqc6.onion), she replaces its domain with a different
one that points to the proxy service (such as .onion.to,
.onion.city, .onion.cab, or .onion.direct). The proxy
then acts as an intermediary to fetch the resource from the
Dark Web and forward it to the user. In addition, it trans-
parently rewrites any onion-related URL in the returned
page, to append one of the aforementioned proxied domains.

The fact that Tor proxies do not provide the same privacy
guarantees of a real connection to the Tor network is well
known, and even advertised on their sites. However, the
main privacy issue discussed so far was that the proxy knows
the user’s IP address and can monitor its traffic. Hence, the
user needs to trust the proxy. However, our measurement
shows that from a privacy perspective, there is also another
important consequence of using these proxies. In fact, in
many cases not just the proxy knows the IP address of the
user, but even third-parties and the target websites can get
access to this information.

4.1.1 Links, Resources, and Redirections
When an onion website imports a resource from the Sur-

face Web, its URL is not rewritten by the Tor proxy and
therefore it is fetched by the user browser in the usual way,
bypassing the anonymization network. This has two im-

portant consequences. First, since resources are loaded each
time the website is visited, the destination domain can mon-
itor the traffic of the source onion domain. Despite the
fact that this problem is already known, we have, for the
first time, measure its impact. According to the data we
collected, a handful of popular surface domains can mon-
itor a remarkable percentage of the traffic towards onion
domains. Google (13.20%), Facebook (1.03%), and Twitter
(0.88%) alone cover 13.39% of the onion domains. Moreover,
while these statistics are anonymous if the user is connected
through the Tor network, they are not when proxies are used
to access Tor hidden services. In other words, Google alone
can monitor the IP address of any client who visits over 13%
of the onion websites, if the user uses a Tor proxy.

The second consequence is that any onion website can
simply import a library or an image from the surface web
to transparently get access to every user’s IP address vis-
iting the domain using a Tor proxy. Overall, since over
21% of the onion websites import resources from the sur-
face Web, we believe that this is a very widespread issue
that should further motivate users not to use Tor proxies.
Redirections from onion domains to the Surface Web are less
common, but still account for a relevant percentage of the
websites (2.6%). In this case, if the user is using a Tor proxy,
she is redirected to the surface, thus losing completely her
anonymity.

4.1.2 Countermeasures
The risk of using Tor proxies is well known, but our study

shows that it is even more severe than we previously thought.
For users, the obvious solution is to avoid using Tor proxies
and connect directly to the Tor network. Otherwise, they
need to be aware that their identity can be tracked by the
proxy, the target website, or by several large companies such
as Google and Facebook.

Website-related privacy issues found by our structure anal-
ysis are due to the ability of a destination domain (the target
of a link or imported resource) to know from which domain
the request is coming and, therefore, reveal its existence to
others. In order to avoid this website disclosure there are
several options. First, the developer can avoid having any
external resources, links, or redirections to make impossi-
ble for an external domain to know about its existence or
to monitor its traffic. If the website needs to use external
resources, the developers should copy them in their website,
checking that these resources do not fetch additional com-
ponents from other hosts. Second, it is possible to main-
tain the external connections but hide the http_referrer

HTTP header. For example, the attribute no-referrer can
be used to hide this property when fetching additional re-
sources or following a link. Surprisingly, only 0.54% of the
onion domains used this technique to protect their origin
when importing external resources.

4.2 Tracking

Tracking Prevalence
As mentioned in Section 2, we used a previously proposed
tracker analysis tool [37] to analyze the scripts we retrieved
from the onion websites. Using this tool, we compute the
tracking prevalence with regards to every script (Table 5)
and every onion domain (Table 6). The tool we use models
the source code as a Vector Space Model and then it com-



Table 5: Prevalence of Web Tracking Scripts in Scripts.

Type # Scripts % of All Scripts Unique

Tracking 118,675 44.02% 12,285
– Known 22,736 8.43% 469
– Unknown Blacklisted 12,816 4.76% 1,392
– Completely Unknown 83,123 30.83% 10,438

Non tracking 150,917 55.98% 13,053

TOTAL 269,592 100.00% 25,338

Table 6: Prevalence of Web Tracking in Onion Domains.

Type # Domains % Domains with Scripts % All Domains

Tracking 1,992 76.82% 27.49%
- Known 501 19.32% 6.92%
- Unknown Blacklisted 436 16.81% 6.02%
- Completely Unknown 1,886 72.73% 26.03%

Non tracking 1,886 71.96% 25.76%
No scripts 4,652 N/A 64.21%

putes the cosine similarity amid the inspected script and
known tracking scripts within a database. If there are no
matches, it uses a machine-learning approach to categorize
unknown tracking scripts.

Therefore, by using this tool we can divide the tracking
scripts in three categories: (i) Known scripts, which are at
least 85% similar to already known and blacklisted track-
ing scripts; (ii) Unknown Blacklisted scripts, which were not
previously known but they were imported from blacklisted
tracking domains; and (iii) Completely Unknown scripts that
were not previously known nor imported from a blacklisted
domain.

According to Table 5, nearly half (44.02%) of the scripts
present in onion domains performed diverse types of web
tracking such as analytics, cookies, or device fingerprinting.
This ratio is similar to what has been previously reported
for the prevalence of Surface Web tracking [37].

More than 75% of the onion domains that contain at least
one script, perform tracking (see Table 6). However, con-
sidering that 64.21% of the onion domains with HTML did
not use any script, only 27.49% of all onion domains used
tracking. The prevalence of unknown tracking candidates in
websites was also the highest: 94.68% of tracking onion do-
mains used at least one unknown script, while known scripts
appeared in 25% of the domains, and scripts from blacklisted
domains in 21%.

Tracking Specifics
We collected 118,675 tracking scripts but, as shown by the
last column in Table 5, only 10% of them were unique. We
also checked where the tracking scripts were hosted: as a
script file in the onion domain, embedded in the HTML, or
in third-party domains. The majority of them was hosted in
the onion domain itself: 40.39% as a separate resource and
26.11% embedded in the HTML.

Finally, to understand the tracking scripts, we performed
a cluster analysis with the same methodology used in Sec-
tion 3. In this case, we started by clustering 957 known
tracking scripts using the Affinity Propagation algorithm [15].
Then, we computed the closest cluster for each of the track-
ing scripts found in our dataset. By manually analyzing the
most prevalent clusters from the resulting 106 clusters, we
found that 17.10% of the scripts performed statistics, 15.04%

performed stateless tracking, 10.48% were used for targeted
advertisement, 10.08% for web analytics, and 7.22% were
stateful tracking scripts.

Hiding Techniques
We then analyzed the use of different hiding techniques, in-
cluding (i) obfuscation, (ii) embedding the script into the
HTML, and (iii) placing web tracking scripts in the mid-
dle of a redirection chain (i.e., in a HTML resource which is
neither the source nor the origin of a multi-step redirection).

As we already discussed, our crawler uses a de-obfuscator
to process each collected script file. However, to our surprise,
we discovered that only a 0.61% of the tracking scripts were
obfuscated.

Script embedding, which consists in copying the source
code of a tracking script and embedding it as <script> in
the HTML, is a common anti-tracking solutions to bypass
URL-based detection schemes. In our dataset, 16.28% of
the samples were embedded in the HTML. Among these
samples, there are well-known web tracking scripts such as
dota.js or analytics.js. For example, dota.js, known for
performing canvas fingerprinting [7], was always embedded
in the HTML. In comparison, Google’s analytics.js was
instead embedded in only 0.66% of the samples.

Finally, we observed an interesting technique in which the
tracking script was hidden in intermediate URLs part of
a multi-step redirection chain. For instance, a page A can
redirect the user to B – which performs the tracking and
then redirects again the user to a third page C. This setup
evades those systems that load a URL and only perform the
analysis on the final resources. While this technique was not
widely used, a significant 1.67% of the scripts (280 unique)
were found to be hosted in intermediate HTMLs.

Surface Third-party Web Tracking
Table 7 shows the number of scripts and its distribution
between known, unknown blacklisted, and completely un-
known tracking scripts. Web tracking scripts coming from
the surface web represented the 32.50% of all the web track-
ing present in the dark web and 97.04% of all the third-party
tracking. Obviously, every script from a blacklisted domain
was loaded from the surface web. However, the number of
known web tracking imported from the surface domains is



Table 7: Surface Third Party Tracking Scripts Prevalence.
The percentage of scripts is computed with regards to the
total number tracking scripts coming from the surface web.

Type # Scripts % Scripts

Surface Known 14,990 38.86%
Surface Unknown Blacklisted 12,816 33.22%
Surface Completely Unknown 10,769 27.92%

Total Surface Tracking 38,575 100.00%

particularly high: 65% of all the already known scripts.
This is a serious issue, as adopting web tracking tech-

niques from the Surface Web may be used to de-anonymize
users. For instance, if a Tor hidden services uses the same
tracking script of a site on the Surface Web, then the script
can fingerprint the user even if she connects through Tor and
then identify her when she connects to other websites on the
Surface Web. In this case, it is important to use a browser
hardened against fingerprinting, such as the Tor browser.

The vast majority of the tracking scripts imported from
the Surface Web were from Google (43%) followed by Face-
book (3.2%) and Twitter (1.9%). In total, we counted 146
unique surface domains. As we already discussed for im-
ported resources, these surface domains may monitor traffic
from an important number of Tor hidden services.

5. RELATED WORK
Relay security [28, 12, 41, 36] and traffic analysis [31,

30, 19, 39] have been very popular lines of work regarding
the security and anonymity of the Tor network. Our work
focuses instead on the analysis of websites hosted in the Tor
network (the so-called Dark Web).

One of the very first works that studied the nature of
the Dark Web was presented by Bergman [9]. In his work,
the author introduced and analyzed for the first time differ-
ent characteristics of the Tor hidden services, including size,
content, or their ability to remain covert.

Cyber-criminal activities in Tor hidden services had been
analyzed in two recent reports by Ciancaglini et al. [13, 14],
showing that this venue is commonly used to perform il-
licit activities by different types of criminals. Moreover, in
their second report, the authors measured the distribution
of several common features of the Dark Web, such as lan-
guages, market products, and criminal categories. Soska &
Christin [38] presented a long-term analysis of anonymous
marketplaces, providing a comprehensive understanding of
their nature and their evolution over time. In a similar vein,
Lewis [22, 25, 24, 23] and Intelliagg & Darksum [17] per-
formed a number of preliminary studies of the typology of
these networks and its privacy issues.

A crawling methodology for isolated Tor hidden services
was also presented by Biryukov et al. [10]. But this method-
ology required to monitor the exit nodes of the Tor darknet,
and therefore we preferred to use a less invasive approach in
our work.

None of the aforementioned studies performed a complete
structure analysis of the Dark Web, and neither they ana-
lyzed the privacy implications or the web tracking activity
performed by onion websites. In addition, these studies had
a much limited coverage of the nature of Tor hidden services,
due to the fact that they draw their conclusions by accessing

only the homepage of the different onion domains.

6. CONCLUSIONS
In this paper we presented the first structure and privacy

analysis of Tor hidden services — based on the largest exper-
iments performed to date in this environment. We analyzed
the prevalence of languages and categories, and the struc-
ture of the resultant Tor hidden services connection graph.
We found that the Dark Web is highly connected but it does
not exhibit the scale-free network and bow-tie structure of
the Surface Web.

Connections to the Surface Web from onion domains not
only exist, but they are extremely common, even more than
towards other onion domains. In addition, more than 20% of
the onion domains imported resources from the Surface Web.
In the paper we also measure the impressive prevalence of
web tracking, as nearly half of the scripts (70% of which
completely unknown) were tracking and were used by nearly
30% of the onion domains.
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