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Abstract—This paper deals with natural language access to 
video databases. Two approaches are proposed: in the first one 
we use queries to find images similar to video keyframes, and in 
the second one we generate text descriptions from keyframes and 
compare them with queries. We propose four implementations of 
these approaches: one implementation of the first approach, two 
implementations of the second one and one implementation 
mixing both approaches. The results of our implementations are 
discussed, in particular regarding the visual content of natural 
language queries. 

I. INTRODUCTION 

Pattern Recognition techniques have recently incurred a 
breakthrough in performance, especially in Natural Language 
and Computer Vision. This opens the way to new applications 
in the management of large amounts of multimedia data. One 
interesting application is the possibility to use Natural 
Language to easily access the content of large video databases. 
A huge amount of video material is recorded and stored every 
day, generally with a limited description of the content. This 
creates a need for techniques that will allow users to easily 
specify a description in Natural Language and automatically 
retrieve interesting video segments. 

In Natural Language Processing, Recurrent Neural 
Networks (RNN) [7] have become the most efficient form of 
language modeling. Word embeddings [6][12], which assign to 
each word a vector of scalar values, have shown to be very 
effective in representing the semantics of Natural Language. In 
Computer Vision, Convolutional Neural Network allowed to 
build very performing concept detectors [11][3]. When 
combined with language models, these networks allowed to 
produce a text description of any picture [5], or describe the 
various objects appearing in a scene [9]. Such combinations of 
techniques allow now to perform video search without any 
query example[10][14], using a simple text description. 

TRECVID [1] is an international evaluation campaign 
organized by the National Institute of Standards and 
Technology (NIST) aimed at comparing techniques for the 
retrieval of Digital Video. In 2016, one of the proposed task 
was Ad-hoc Video Search (AVS). This is a new task where the 
goal is to retrieve the video shots in a large database that match 
a short textual topic description. The test database comes from 
the Internet Archive, and contains 600 hours of video, 
representing about 300,000 shots. 30 test topics are provided 
by NIST to the participants. Each participant can submit up to 
four runs, each run being a ranked list of at most 1,000 shots 
for each of the 30 test topics. Evaluation is performed manually 

by NIST annotators and measured using the Mean Inferred 
Average Precision (which is a statistical approximation of the 
Mean Average Precision). In the remainder of this paper, we 
will say for convenience “Mean Average Precision” instead of  
“Mean Inferred Average Precision”. 

In this paper, we present the main approaches that we have 
considered to construct our four runs to the AVS task. In 
particular, we wanted to explore two orthogonal strategies: 

 from the text topic, interrogate web image search engines to 
collect examples of relevant pictures, then use these 
pictures to build a visual model, which in turn will select 
the best keyframes in the test database. 

 from the test keyframes, automatically generate a text 
description, and then match this text description with the 
topic. 

In order to implement these strategies, we used the 
following tools and services, which are freely available from 
the internet: 

 to get example images for a topic, we used the Google 
ImageSearch engine [2]. This search engines allows to 
enter a text query and returns a list of corresponding 
images. The exact mechanism to retrieve those images is 
not published, however it is likely to be largely based on 
the textual context of the pages where these images 
appear. Although a number of other image search services 
are available, we limited ourselves to this only one by lack 
of time. For each topic, we kept only the first 100 images 
returned, as more and more irrelevant images occur when 
we go deeper in the result list. 

 to get a text description from an image, we used several 
tools: 

- the VGG Deep Networks [3], which have been 
trained on part of the ImageNet database and can 
analyze an image to provide scores for 1,000 
predefined concepts, 

- the ImageNet Shuffle [4], which provides 
classifiers trained on a larger share of the 
ImageNet database, and analyze images to 
produce scores for up to 13,000 concepts, 

- the NeuralTalk [5] package, which generates 
sentences describing the visual content of images. 

 to compare visual contents, we compute a visual feature 
vector for an image by applying the VGG Deep Network 



to each image and extracting the outputs of the one-before-
last and two-before-last layers, to build visual vectors. The 
similarity between visual vectors is computed as the usual 
scalar product, sometimes with normalization. 

 to compare textual content, we use the GloVe vector 
representations of words [6], to build a textual vector from 
either the topic description, the concept name or the 
descriptive sentence. The similarity between textual 
vectors is again computed as the usual scalar product. 

Many combinations of these modules are possible, as well 
as different values of the parameters involved. In order to 
choose the combinations to be used in the final runs, we 
performed a number of experiments on the development 
collection. We ran several systems using the 48 development 
topics, and applied them on the development videos. Then, we 
manually annotated the 10 best keyframes returned for each 
system and each topic. This gave us some indications of which 
system would have the greater performance. We observed that 
the performance of very different approaches varied greatly 
depending on the topic, so in the final runs, we also chose to 
provide a selection of the different combinations that we tried. 

II. DESCRIPTION OF THE RUNS 

A. Generic Architecture 

The following figure illustrate the generic architecture that 
we have put in place, corresponding modules. The green 
modules represent text-based information, the blue modules 
contain visual information, the yellow modules represent 
similarity computations. We tried various combinations to 
define the four runs that we submitted to the final evaluation. 

 

Figure 1 - Description of our runs 

All our runs are of the “Fully Automatic” category, since 
no manual processing was done at any stage, and with the “D” 
training type, as we are using tools which were trained on data 
external to TRECVID. 

B. RUN 1 “GoogleSearch + VGG 4K” 

For each of the topic, we performed a search using the 
Google Image engine, and retained the first 100 pictures of the 
ranked list. To each image, we applied the VGG Deep network, 
and kept the one-before-last layer as feature vector of 
dimension 4K. We applied the same visual processing to each 
of the TRECVID keyframes in the test collection, and ranked 

them according to a Nearest Neighbor distance from the 
Google images. 

C. RUN 2 “ImageShuffle + GloVe300” 

We used the ImageShuffle system to obtain scores for 
13,000 concepts, which we used as feature vectors for each 
TRECVID keyframe. We used these scores as weights to 
compute a semantic vector of dimension 300 by a linear 
combination of the 13,000 GloVe vectors corresponding to the 
concepts. For each topic, we constructed a semantic vector of 
dimension 300 by averaging the GloVe vectors of the words 
appearing in the topic. Then we used the cosine similarity to 
find the images whose semantic vectors were most similar to 
the topics. 

D. RUN 3 ”NeuralTalk + GloVe300” 

We used the NeuralTalk system to generate text 
descriptions for each of the TRECVID keyframes. Then, we 
built a semantic vector of dimension 300 by averaging the 
GloVe vectors of the words appearing in these descriptions. 
We did the same for the test topics. Finally, we used again the 
cosine similarity to find the images whose semantic vectors 
were most similar to the topics. 

E. RUN 4 “Global Average” 

During the development phase, we experimented with a 
number of combinations of the modules that we have 
described, using different dimensions, different projections, 
different layers, different similarity measures. We evaluated 
these combinations with a minimal annotation on the 
development collections, by pooling the 10 best pictures for 
each of the training topics. This gave us an indication of which 
combinations could be the most efficient, and helped us in the 
selection of the combinations for the final runs to be 
submitted. As we noticed that different combinations had very 
different performances of different topics, we tried to get the 
best of all combinations by averaging the results of 32 
combinations that we had found to be of reasonable 
performance. As the similarity scores are not always 
comparable between different combinations, we introduced 
for each combination an artificial score computed as the 
inverse rank of each image in the result list. The average of 
these 32 inverse ranks is the final score for this run. 

III. EVALUATIONS 

The result (Mean Average Precision, or MAP) obtained by 
our four runs are the following: 

TEAM RUN MAP 

EURECOM 2 0.024 

EURECOM 1 0.011 

EURECOM 4 0.01 

EURECOM 3 0.002 

 

The following graph shows how they are located within 
the full set of (Fully Automatic) submissions from all 
participants (circles correspond to EURECOM submissions): 



 

Figure 2 - Results of the AVS task 

We can observe that our best run is RUN2, which is based 
on the ImageShuffle system, and has obtained a performance 
quite similar to the MediaMill team (which has developed 
ImageShuffle). The runs using Google Search or the full 
average have surprisingly very similar performance. RUN3, 
based on NeuralTalk, performed quite poorly, probably 
because of the mismatch between the test topics and the type 
of annotations on which NeuralTalk was trained.  

IV. ANALYSIS OF THE RESULTS 

We noticed that our models did not perform equally on all 
topics. In particular, RUN1 performed better on some topics, 
and RUN2 performed better on other ones. In the following, 
we will discuss why RUN1 and RUN2 did not perform 
equally on all topics. We will also discuss briefly the poor 
results of RUN3. We will not elaborate on RUN4, as it is 
composed of several models derived from runs 1 to 3. 

A. Effect of the quality of Google Images results 

We measured the precision of the results given by Google 
Images. The precision of the results given by Google Images 
is the number of relevant images divided by the total number 
of images. We found that there was no correlation between the 
precision of RUN1 and the precision of the images taken from 
Google Images, as one can see on the following figure. 

 

Figure 3 - MAP according to Relevance of Google 
Images results for RUN1 

We also checked whether RUN1 performed better than 
other runs with better images. Again, we found no correlation. 

B. Effect of the “viewable words rate” 

We will say that a word in a topic is viewable if it gives a 
relevant visual information by itself within that specific topic. 
For instance in the topic “Find shots of a person playing 
drums indoors”, viewable words are “person”, “drums” and 
“indoors”. In the topic “Find shots of sewing machines”, there 
is no viewable word: neither “sewing” nor “machine” contain 
a relevant visual information by themselves. In the same way, 
in the topic “Find shots of a diver wearing diving suit and 
swimming under water”, “diving” and “suit” are not viewable 
words. The concept of “viewable words” is not formal, but in 
most cases there is no ambiguity about what is viewable and 
what is not viewable. In the following array, the words that we 
manually identified as viewable are underlined for the first 
five topics. Note that some words such as “behind” and 
“under” provide some visual information, but only if they are 
put into context: that visual information is lost if words are 
considered separately. 

Topic Topic with viewable words underlined 

1 Find shots of a person playing guitar outdoors 

2 Find shots of a man indoors looking at camera where a bookcase is 

behind him 

3 Find shots of a person playing drums indoors 

4 Find shots of a diver wearing diving suit and swimming under 
water 

5 Find shots of a person holding a poster on the street at daytime 

 

Then for each topic, we computed a viewable words rate 
(VWR) by dividing the number of viewable words by the total 
number of words in the topic minus three (because we did not 
take into account “Find shots of” in our models). Eventually 
we plotted the curves of functions f1(t) = P(M1 > M2 | R > t), 
f2(t) = P(M2 > M1 | R > t) , f3(t) = P(M2 = M1 | R > t), g1(t) = 
P(M1 > M2 | R < t), g2(t) = P(M1 < M2 | R < t) and 
g3(t) = P(M1 = M2 | R < t) with M1 the MAP of RUN1, M2 the 
MAP of RUN2 and R the viewable words rate. Here are the 
curves we obtained. 

 

Figure 4 - Curves of f1, f2 and f3 
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Figure 5 - Curves of g1, g2 and g3 

As one can see on the first plot, for VWR bigger than 0.40, 
the more the rate increases, the closer f2 is to 1. In the second 
plot, neither g1 nor g2 become bigger than 0.5: it means that 
none of RUN1 and RUN2 perform better than the other on 
more than half of the topics for low VWR. The conclusion of 
these observations is that RUN2 performs much better than 
RUN1 for topics whose words are visually self-explanatory, 
whereas it performs similarly to RUN1 for other topics. As 
RUN2 relies on an average done word by word from semantic 
vectors generated by GloVe, it can be inferred that some 
visual information is lost by not putting words in context. 

These observations can also explain the poor results of 
RUN3: as GloVe is run twice (on topics and on sentences 
generated by NeuralTalk), the phenomenon we described 
above is amplified. 

V. CONCLUSION 

In this paper we proposed two approaches for natural 
language access to video databases. In the first one we sent 
natural language queries to a web image search engine and 
compared results with keyframes. In the second one we 
generated text descriptions from keyframes and compared 
them with queries. We made four implementations using these 
approaches and compared them. We found that the best 
implementation among the four was using ImageShuffle to 
create feature vectors for keyframes and GloVe to compare 
images and sentences. We showed that this implementation of 
the second approach, had much better results than our 
implementation of the first approach for queries having what 
we called a high viewable words rate (VWR). We also found 
that the relevance of images taken from search engines had no 
impact on the performances of the first approach. 

Thanks to these observations, we will now focus on 
queries with low VWR and explore methods to improve our 
implementation based on ImageShuffle and GloVe. 
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