
Too Big to Eat: Boosting Analytics Data Ingestion
from Object Stores with Scoop

Yosef Moatti
IBM Research Haifa (Israel)

moatti@il.ibm.com

Dalit Naor
Doron Chen

IBM Research Haifa (Israel)
dalit|cdoron@il.ibm.com

Eran Rom*
OpenStack Storlets Project

eran@itsonlyme.name

Josep Sampé
Marc Sánchez-Artigas
Pedro Garcı́a-López

Universitat Rovira i Virgili (Spain)
josep.sampe|marc.sanchez|pedro.garcia@urv.cat

Francesco Pace, Daniele Venzano, Pietro Michiardi
Eurecom (France)

francesco.pace|daniele.venzano|pietro.michiardi@eurecom.fr

Raúl Gracia-Tinedo
Universitat Rovira i Virgili (Spain)

raul.gracia@urv.cat

Filip Gluszak
Eric Deschodt

GridPocket (France)
filip.gluszak@gridpocket.com
eric.deschodt@gridpocket.com

Abstract—Extracting value from data stored in object stores,
such as OpenStack Swift and Amazon S3, can be problematic
in common scenarios where analytics frameworks and object
stores run in physically disaggregated clusters. One of the main
problems is that analytics frameworks must ingest large amounts
of data from the object store prior to the actual computation;
this incurs a significant resources and performance overhead. To
overcome this problem, we present Scoop. Scoop enables analytics
frameworks to benefit from the computational resources of object
stores to optimize the execution of analytics jobs. Scoop achieves
this by enabling the addition of ETL-type actions to the data
upload path and by offloading querying functions to the object
store through a rich and extensible active object storage layer. As
a proof-of-concept, Scoop enables Apache Spark SQL selections
and projections to be executed close to the data in OpenStack
Swift for accelerating analytics workloads of a smart energy grid
company (GridPocket). Our experiments in a 63-machine cluster
with real IoT data and SQL queries from GridPocket show that
Scoop exhibits query execution times up to 30x faster than the
traditional “ingest-then-compute” approach.

I. INTRODUCTION

These days, object stores, such as Amazon S3 [1], Open-
Stack Swift [8] or IBM Cleversafe [5], accumulate enormous
amounts of non-structured or semi-structured data. A key
reason for the popularity of object storage is its scalability,
availability and cost effectiveness properties. But perhaps more
importantly, its simplicity of use via HTTP RESTful APIs
brings unique opportunities to easily automate the storage of
data from any remote source.

A simple storage interface is preferable in numerous sce-
narios and use cases, from Internet-of-Things (IoT) to server
logs amounting to a few terabytes. Due to their volumes and
velocity, servers and sensors autonomously store data “as is”
in object stores, without further processing and structuring.

*Much of the work described in this paper was done while Eran Rom was
working at IBM Research Haifa.

This is the case for companies such as GridPocket1: a smart
energy grid company which provided the real life use case
that motivated this research. In the company’s daily operation,
hundreds of thousands of smart meters automatically collect
and store energy consumption measurements from users across
several European cities. Thanks to the scalability properties of
object storage, an increasing number of GridPocket meters can
continuously store energy measurements, while the system can
scale out to satisfy the storage demands of the company.

While object storage is simple and scalable, it does not
allow to directly execute queries to extract value from data
as with traditional databases or frameworks that provide co-
located storage and compute (e.g., Hadoop, Dryad). Instead,
to extract value from object datasets, common analytics plat-
forms (e.g., Amazon Elastic MapReduce) run computations
on compute clusters that are physically disaggregated from
the object store [20]. Although disaggregating storage from
computation has advantages (e.g., administration, security), the
unintended consequence of such separation is that analytics
frameworks must first ingest large amounts of data to perform
the computation.

In practice, executing analytics in disaggregated compute
and storage clusters presents some problems: i) Inter-cluster
network bandwidth may be saturated due to parallel data
ingestions from multiple analytics jobs; ii) The data ingestion
phase consumes extra resources (e.g., CPU, RAM) from a
compute cluster shared across multiple tenants; and iii) An-
alytics jobs suffer from overhead related to ETL (Extraction-
Transformation-Loading) tasks used to prepare raw data ob-
jects. In the literature, this phenomenon is known as the ingest-
then-compute or store-first-query-later problem [27], [18].

Unfortunately, the ingest-then-compute problem is also
present in the company’s daily operation. GridPocket data sci-
entists execute Spark SQL workloads with heavy data ingestion

1http://www.gridpocket.com

10GB 50GB 500GB 3TB
10

0

10
1

10
2

10
3

10
4

Dataset size

Q
u

er
y

 e
x

ec
u

ti
o

n
 t

im
e

(s
ec

s.
)

GridPocket Spark SQL query

Fig. 1. Impact of the “ingest-then-compute” problem on GridPocket analytics.

against energy measurement data stored in an object store. As
shown in Fig. 1, executing a given query on increasingly larger
datasets involves a linear growth in query completion times.
Hence, while GridPocket datasets are continuously growing,
the capacity to execute analytics on such data is insufficient
due to the overhead of data ingestion. Furthermore, as analytics
frameworks evolve towards better performance (e.g., Spark
SQL v2.0 is x2-x10 faster than v1.6), the inefficiencies derived
from the ingest-then-compute problem will become a dominant
bottleneck for many companies.

A. Scope and Challenges

To address the Big Data ingestion problem in object stor-
age, an architecture that integrates ETL and querying functions
in the object store with Big Data analytics models is needed.
Among other things, such an architecture should overcome two
main challenges:

Task offloading. To drive data ingestion with the object
store, we need a communication channel that enables the
analytics framework to offload processing operations to the
object store. Specifically, upon job execution, the analytics
framework should be able to define the task to be executed at
the object store close to the data, to improve the performance
or efficiency of the job at hand.

Rich active storage layer. The smartness of the storage
layer should not be single purpose. Conversely, the challenge is
to enable an object store to execute general-purpose code close
to the data. Such code should be easily deployed to extend the
functionalities of the system for handling new offloaded tasks.

Rethinking the problem of GridPocket, solving these chal-
lenges would enable us to add SQL functionalities into the
object store so it can cooperate with the analytics framework
by becoming a queriable data source. For instance, we could
extend the object store with functionality to execute SQL
projections and selections directly where data lives. This would
reduce data ingestion and the need for processing power at the
compute cluster. As a result, GridPocket data analytics would
become more scalable and efficient.

B. Contributions

To overcome the ingest-then-compute problem in disag-
gregated Big Data clusters, we present Scoop. Scoop exposes
a parallel architecture that enables analytics frameworks to
leverage the computational resources of object stores to ac-
celerate the execution of jobs and make them more efficient.
Scoop achieves this by offloading ETL-type and querying
functions to the object store through a rich and extensible
active object storage layer. Conversely to prior works [20],

[35], the ultimate goal of Scoop is to extend the object store
“on-the-fly” with new types of active storage functionalities.
That is, administrators can install and deploy general-purpose
code at the object store that can be then executed close to the
data, thus meeting the requirements of new offloaded tasks.

As a proof-of-concept, we translated a concept akin
to “predicate pushdown” in the traditional database litera-
ture [23], [19] into a disaggregated analytics ecosystem. Our
Scoop implementation enables efficient execution of SQL
queries on raw Comma-Separated Value (CSV) data stored in
OpenStack Swift, to accelerate GridPocket analytics . At the
analytics side, we extended the CSV data source in Apache
Spark, which can now offload SQL projections and selections
on parallel object requests against Swift. At the object store, we
contributed to the OpenStack Storlets: a framework to intercept
and execute sandboxed code on object requests in OpenStack
Swift. Among other things, we extended Storlets with the
capability of efficiently executing computations close to the
data. Moreover, we created a new Storlet code to perform the
SQL projection and selection filtering on CSV objects. The
source code of Scoop is publicly available (see Section V).
Spark SQL interfaces with data source implementors, such as
Spark CSV, with an API which permits to off-load selection
and projection filtering tasks. Thus, while storlets allow to
run arbitrary code on the object store, we concentrate on the
filtering aspects of SQL queries.

To evaluate our system, we executed extensive experiments
on a 63-machine cluster over real IoT data from GridPocket
energy meters. Our results show that Scoop can accelerate the
end-to-end SQL processing time on the semi-structured data
by up to 30 times depending on the dataset size and amount
of filtered data. Consequently, Scoop enables GridPocket to
benefit from the advantages of object storage, while making
their analytics workloads much faster and more efficient.

In summary, the key contributions of our work are:

• Design of Scoop, a novel solution that exposes a par-
allel architecture to address the ingest-then-compute
problem for data stored in object storage;

• Implementation of Scoop, which allows Spark SQL to
transparently offload the execution of selections and
projections to OpenStack Swift, and hence, where the
data lives;

• Validation of our system in a production cluster and
real life data from GridPocket workloads;

• The code of Scoop and the anonymized datasets are
publicly available.

Roadmap: This paper is organized as follows. In Section
II we discuss related work. Section III provides technical
background for the rest of the paper. Section IV describes the
design principles of Scoop, and Section V depicts our im-
plementation to enable SQL predicate execution at the object
store. In Section VI we present our validation framework and
the results of our experiments. We discuss our future work and
conclude in sections VII and VIII, respectively.

II. RELATED WORK

The ingest-then-compute data life-cycle imposed by infras-
tructure disaggregation is a performance barrier for today’s

data analytics frameworks [27]. This problem has attracted
interest from the research community in various ways. On the
one hand, recent works have focused on interfacing Hadoop
with enterprise file systems to bridge the gap between legacy
data stores and compute clusters [14], [34], [31], or even
replacing HDFS by optimized file systems to minimize the
impact of disaggregation [36], [27]. On the other hand, in-
situ analytics aim at improving Big Data acquisition (i.e., data
collection, transmission, and pre-processing). Essentially, in-
situ data processing benefits from the compute capacity of
data producers to execute computations and filters during data
acquisition [26], [32], [38]. This approach reduces the amount
of data that should be transferred and eventually siloed, as well
as the overhead of exporting raw data from the storage cluster
to perform analytics.

Perhaps, the vein of research closest to this work refers
to the application of active storage techniques to mitigate the
impact of compute/storage disaggregation. To wit, Huston et
al. presented Diamond [24], an active storage architecture that
provides early discard of useless data in interactive search.
Conceptually, both Diamond and our system exploit the poten-
tial benefits of data filtering at the data store via active storage
techniques [30], [33]. However, Diamond has not been targeted
and applied on data analytics.

Regarding data analytics, Rhea [20] is a system for trans-
parently filtering unstructured data in MapReduce via SQL
projections and selections. Rhea relies on a filter compilation
engine to transparently add SQL-like filters to MapReduce jobs
which are executed on a filtering proxy at the storage side. A
similar effort called Minimal [25] focuses on automatically
optimizing MapReduce programs to reduce the data move-
ments during the computation. More recently, Cybertron [35]
combined data filtering with novel coding techniques to reduce
IO overheads of analytics jobs.

A key difference between Scoop and these works lies in
the storage layer. First, some of these works do not support
actual data locality at the storage cluster as Scoop does; that
is, Rhea [20] resorts to a proxy entity that executes data
filtering, but all the data should be read from the storage
servers to the proxy. Second, these systems support only a
limited number of data filters, as they consider a particular
use case (e.g., SQL predicate filtering). The storage layer of
Scoop goes far beyond this goal. Scoop extends the object
store with a sandboxed platform that can execute custom
pushdown filters on object requests exploiting data locality.
Analytics applications can communicate with the object store
to dynamically execute these filters (e.g., SQL filter, complex
calculations, data compression), which are explicitly managed
via simple policies. This makes Scoop a more flexible active
object storage system for analytics than prior works.

III. TECHNICAL BACKGROUND

A. Spark Ecosystem

Apache Spark2 is a general-purpose cluster computing
framework that was developed at UC Berkeley. It was designed
for iterative workloads and provides both APIs in Scala, Java,
R and Python, and libraries for stream and graph processing,
machine learning and SQL.

2Apache Spark Project http://spark.apache.org

Spark

Spark SQL

ParquetCSV

S3

Data

Sources

Hadoop I/O

Hive

HDFS

OpenStack Swift

Catalyst

Connector

APIs

RDD Framework

…

…Swift

Fig. 2. Components in a Spark deployment to execute SQL queries on semi-
structured data stored in an object store.

Spark offers a simple programming API that lets pro-
grammers manipulate distributed collections of Java or Python
objects across a cluster through operations like map, filter,
and reduce. Such collections called Resilient Distributed
Datasets (RDDs) [37] reside in memory to optimize compu-
tations on large clusters. For instance, the Scala code below
counts lines including the word “Spark” in a text file:

textFile = spark.textFile("hdfs://...")
lines=textFile.filter(line=>line.contains("Spark"))
println(lines.count())

This code creates an RDD of strings called textFile by
reading an HDFS file, then applies filter to obtain a derived
RDD, lines. It then performs a count on this data. RDDs
are immutable and lazily evaluated. They are also resilient
because they maintain lineage information for reconstructing
lost partitions. The critical improvement of Spark as compared
with Hadoop lays in its ability to cache intermediate results
in memory as RDDs. However, caching is mostly beneficial
for iterative algorithms (e.g., for machine learning). Ad-hoc
querying and data exploration, instead, require access to data
that is harder to cache, because in such cases, data access
patterns are less prone to benefit from the limited amount of
RAM available for caching. Hence, caching does not alleviate
the “ingest-then-compute” problem.

As visible in Fig. 2, there are libraries on top of the
engine that facilitate different types of analytics workloads.
Our work focuses on Spark SQL: a library for structured
data analysis. Spark SQL is essentially a generic engine for
distributed structured data manipulation. The operations on
data are done using SQL queries and a programmatic API
(i.e., Data Frames API). Out-of-the-box Spark SQL can read
various data formats, such as data coming from Parquet, JSON
and Hive tables.

For other data sources or formats, Spark SQL offers the
“Data Sources API”. Implementing these APIs enables us to
import new formats into Spark SQL. In a nutshell, this API
is used by Spark-SQL to translate some foreign data format
into a common representation of structured data that Spark
SQL knows how to work with. We focus on the Spark-CSV
library which is an implementation of the Data Sources API
for importing CSV formatted data into Spark SQL.

Spark SQL uses a query optimizer called Catalyst [3], [15].
Given a SQL query, the optimizer extracts the projection and
selection filters implied by the query. These extracted filters
are then used by Spark SQL with the customized flavors of
the data source API. As we describe later on, we leverage
Catalyst filter extraction together with the Data Sources APIs
to offload the filtering work from Spark to the object store.

At the lowest level, Fig. 2 shows that Spark interoperates
with Hadoop, in that it can manage data from any storage
system supported by Hadoop, including HDFS or S3. For
interoperation with Swift, the connector supports Hadoop’s
input/output APIs, although many of their operations are
not native to Swift, such as moving, copying or renaming
directories.

B. OpenStack Swift

OpenStack Swift is a highly scalable object storage system
that can store a large amount of data through a RESTful HTTP
API similar to that of Amazon S3. It provides a simple API
to store (PUT), retrieve (GET), and delete (DELETE) objects.
The access path to an object consists of exactly three elements:
/account/container/object. The object is the exact data input
by the user, while accounts and containers provide a way of
grouping objects. Nesting of accounts and containers is not
supported.

To achieve high scalability, Swift exploits the synergy
between a flat object ID space and consistent hashing via
a hash-based data structure called ring. The ring guarantees
access load balancing across nodes within the cluster; this
results in higher performance and storage capacity as more
nodes are added to the cluster. Moreover, Swift can be run on
commodity servers, which facilitates the horizontal scaling of
large deployments.

Internally, Swift exhibits a two-tier architecture that con-
sists of proxy and object servers. The former are in charge of
authentication, authorization and access control enforcement
of storage requests. Upon reception of a valid request, a
proxy server routes it to the corresponding object servers
for storage. Object servers are also responsible for handling
the replication of objects across available disks to reach the
defined data availability threshold, and for managing objects.
Both proxies and storage nodes include a WSGI3 pipeline
that enables developers to configure middlewares that intercept
object requests with environment information.

IV. SCOOP DESIGN

The main goal of Scoop is to enable analytics frameworks
to benefit from the computational resources of an object
store for optimizing job execution in disaggregated clusters.
Indeed, the cooperation between analytics frameworks and
object stores can be exploited in many ways. For instance,
the object store may execute projections/selections defined in
a SQL query to avoid transferring unnecessary data to the
compute cluster. Alternatively, it can perform aggregations
on individual object requests to facilitate the construction of
graphs from a large dataset.

3https://en.wikipedia.org/wiki/Web Server Gateway Interface

To solve this challenge, at the analytics framework, we
provide existing analytics tasks with a means of delegating
or “pushing down” specific computations to the object store.
The object store, in turn, needs to have a rich and extensible
compute layer that makes it capable of executing various types
of calculations and ETL tasks based on incoming requests.
Scoop achieves that by providing three abstractions: pushdown
task, analytics delegator, and pushdown filter.

A. Concepts

Pushdown task: A pushdown task is the work being
delegated to the object store. In practice, a pushdown task
is represented as a piece of metadata attached to an object
request. It embodies the trade-off between the consumption of
compute resources at the storage cluster and the acceleration
of analytics jobs. In Scoop, a pushdown task is interpreted
broadly; for instance, it may consist of predicates to filter
from an SQL query or a partial computation to be executed
on object request (e.g., aggregations, statistics). Naturally, both
the analytics framework and the object store require an end-
to-end orchestration to cooperate on a given pushdown task.

Analytics delegator: The analytics delegator is integrated
with the analytics engine and enables Scoop to push down
tasks to the object store. The main purpose of the analytics
delegator is to appropriately tag parallel object requests with
the correct metadata to execute pushdown computations at the
object store. Thus, upon the submission of a job, the analytics
delegator works within the distributed task execution flow by
attaching to each data partition the pushdown task that will be
executed at the object store.

Pushdown filter: A pushdown filter is a piece of program-
ming logic that a system administrator can inject into the object
store to perform custom computations. In our system, the
behavior of pushdown filters is defined by two main properties:
i) A pushdown filter is triggered upon an incoming object
request with the appropriate metadata that provides instructions
to do so; ii) The execution of a pushdown filter occurs within
the context of a single inbound/outbound data stream of an
object request. This means pushdown filters are not designed
to communicate among them at runtime to perform distributed
coordinated computations. Scoop offers a powerful compute
layer general enough to run a variety of calculations on object,
from ETL and data discard tasks, to more complex numerical
and statistical processes. A key feature of pushdown filters
is that the instrumented object store is oblivious to their
execution, and needs no modification to its implementation
code to support them.

B. Scoop Architecture

Next, we present the design of Scoop on top of OpenStack
Swift to overcome the ingest-then-compute problem in analyt-
ics platforms (see Fig. 3).

At the compute cluster, Scoop is able to delegate computa-
tions to the object store to accelerate submitted analytics jobs
of different tenants via the delegator component. As shown in
Fig. 3, an analytics job is broken into tasks that are distributed
among the cluster nodes. Thanks to the delegator, analytics
tasks that form the job can now add the appropriate pushdown
task at each object request generated. This is achieved by

Swift Proxys

Filter framework

D
is

k
D

is
k

D
is

k
D

is
k

D
is

k
D

is
k

Swift Storage NodesAnalytics frameworks

Analytics delegator

Job

Job

Job

Job

Job

Pushdown task

Object requests Object streams

T
en

an
t

1
T

en
an

t
2

T
en

an
t

3

Compute cluster Storage cluster

Fig. 3. Architecture of Scoop deployed on top of OpenStack Swift.

piggybacking specific metadata fields in the HTTP GET request
executed against the object store. Note that each tenant sharing
the compute cluster may be executing very disparate analytics
jobs. Therefore, each interceptor should inject the appropriate
pushdown task to each job to trigger the correct computations
in the object store.

At the storage cluster, Scoop equips the object store with a
general-purpose and powerful computation layer to execute the
pushdown filters defined in the metadata of each object request.
The execution of pushdown filters is performed on a request’s
data stream. This means multiple jobs can execute parallel
pushdown filters on GET requests of the same object; all of
them will receive their “own filtered version” of the object,
whereas the stored object will remain unaltered. In particular,
Scoop is able to execute several pushdown filters on a single
request (i.e., pipelining), as well as to decide the execution
stage of a pushdown filter (i.e., proxy/storage node). Moreover,
Scoop can be extended “on-the-fly” with new pushdown filters.
A third party integrating a new pushdown filter only needs to
contribute the logic; the deployment and execution of the filter
is managed by the system.

V. IMPLEMENTATION: SPARK SQL PUSHDOWN

In this section, we illustrate the implementation of Scoop
and how we extended it to leverage SQL pushdown for Apache
Spark on top of OpenStack Swift. As we show later on, our
implementation enhances the daily operation of GridPocket, an
energy grid company that executes typical IoT SQL workloads
on semi-structured object-based datasets generated by smart
energy meters. which often addresses IoT data sets too big to
be cached in the Spark memory and which spawn recurring
ingest bottlenecks.

A. Scoop Components

Delegation of Spark SQL predicates: To delegate SQL
queries we used the Spark Data Sources API.

Specifically, we modified the Spark-CSV library [12],
which allows to import CSV data into Spark. The technical
background is that the Data Sources API has several flavors.
The simplest flavor is called Scan. Scan takes no parameters,
and is expected to return all the originally “foreign formatted”
data in the common representation used by Spark SQL. A more
complex flavor is the PrunedScan API which takes a selec-
tion filter as a parameter, and returns the selected columns
in the common representation. The PrunedScan API can be

seen as a generic Spark-SQL mechanism for enabling the Data
Source library not only parsing the formatted data, but also to
filtering it. Further, the PrunedFilteredScan API flavor
takes both a projection and selection filters, thus enabling
passing both filter types to the Data Source library. In our
implementation, we augmented the Spark CSV library with the
PrunedFilteredScan Data Source API. Concretely, most
of our work focused on enabling this library to push down
projections/selections to OpenStack Swift, so data filtering is
done at the storage cluster instead of at the compute cluster4.

To read CSV data, we use Spark in cooperation with
Hadoop, which is responsible for reading the data from the
physical storage while taking care of logical records that
may be split between partitions. To this end, Hadoop can
work with a set of drivers that manage data from various
sources. In this work, we extended Stocator5, a high-speed
connector to object stores. Stocator optimizes many aspects
of the data access to object stores, as compared with the
standard Hadoop driver, and optimizes the performance of
managing large datasets in OpenStack Swift (e.g., metadata,
file renaming). This is demonstrated, for example, in experi-
mental measurements reported in [17]. We modified Stocator
so that it could inject pushdown tasks in object requests issued
to Swift; that is, HTTP requests issued by Spark tasks to
ingest data objects are tagged with the appropriate metadata
(e.g., projections/selections) to execute both projections and
the selections at the object store. We also extended the Hadoop
RDD so that the projection and selection filters propagate
through the RDD’s partitions all the way down to Stocator.

In Section VII, we discuss how our work is evolving
towards a framework which generalizes the current SQL
pushdown capabilities and bypasses the Hadoop layer.

Pushdown filter framework: Scoop offers simple means
for deploying and enforcing pushdown filters on a particular
tenant or container via policies in OpenStack Swift [21]. Scoop
intercepts storage requests and executes the pushdown filters
specified on the request’s metadata at storage nodes. To this
end, we contributed to the OpenStack Storlets framework [7],
[29], which allows running computations, called storlets, in the
object store. Storlets provides a powerful extension mechanism
to OpenStack Swift —without changing its code— to run
computations close to the data in a secure and isolated manner
making use of Docker [4]. With Storlets a developer can
write code, package and deploy it as a regular object, and then
explicitly invoke it on data objects as if the code was part of
the Swift’s WSGI pipeline. Request interception can occur not
only at the proxy but also at the object servers thanks to the
Storlet’s WSGI middleware integrated in Swift, which “wraps”
storage requests and responses.

In this work, we extended the Storlets framework with two
important capabilities: Pipelining and staging execution control
(i.e., proxy/storage node) of pushdown filters. In addition, the
Storlet WSGI middleware in Swift was extended to support
running Storlets at storage nodes for byte ranges; this was
fundamental to match the natural operation of Spark tasks,
which work on specific byte ranges of objects. This for two
reasons: first, to avoid transferring the full object from the
object node to one of the proxies instead of processing on the

4Available at: https://github.com/iostackproject/Scoop-csv-sql-pushdown
5Available at: https://github.com/SparkTC/stocator

targeted byte range directly at the object node, and second,
to benefit from the higher concurrency provided by the Swift
object nodes pool as compared with Swift proxy nodes pool.

CSVStorlet: Writing pushdown filters to accelerate ana-
lytics jobs is developer-friendly. In the code snippet below,
we observe that a system developer only needs to create a
class that implements an interface (IStorlet), providing
the actual data transformations on the object request streams
(iStream, oStream) inside the invoke method. This
model makes it possible to implement a wide variety of
storage-side calculations to reduce inter-cluster data movement
and improve performance of analytics frameworks.
public class StorletName implements IStorlet{

@Override
public void invoke (

ArrayList<StorletInputStream> iStream,
ArrayList<StorletOutputStream> oStream,
Map<String,String> parameters,

StorletLoggerlogger) throws StorletException{
//Develop pushdown filter logic here

}
}

As a proof-of-concept, we contribute a storlet that can
perform projection and selection filters over CSV data6. The
CSVStorlet is a Java code that adheres to the Storlets API;
it gets as input a stream of the locally stored CSV formatted
data along with the projection and selection filters as extracted
by Catalyst, and outputs the filtered data.

ETL often requires data transformations. Storlets permits
this in the PUT data path. We use Storlet for data cleansing
and for modifying the data format (e.g., split a column into
multiple ones). These transformation simplify Spark workloads
without requiring painful rewrites of huge data sets.

B. The Pushdown Process Flow

Next, we depict the workflow of Scoop for pushing down
SQL predicates from Spark to OpenStack Swift. To this end,
we follow a simple example where the user interacts with
Spark using the Spark-Shell interpreter (Fig. 4). The com-
mands entered are initially processed by the Spark client that
generates a staged execution plan where each stage consists
of multiple tasks to be executed in parallel on Spark worker
nodes.

The flow begins with the user specifying i) a data source
class implementation that matches the data format, as well
as the ii) dataset location (step 1 in Fig. 4). Part of the data
location is the name of the storage driver to be used to read the
data. In our example, the driver is Stocator and the location is a
path in Openstack Swift, which may represent a container with
multiple data objects. The class is the Spark-CSV class [12],
as we are executing Spark SQL queries on CSV data. At
this point, Spark initiates the CSV class that in turn creates
a Hadoop RDD, which essentially represents data that resides
in a data store in its original format which can be accessed
with the HDFS API.

Following the Hadoop RDD creation, a process called par-
tition discovery takes place. This process involves partitioning

6Available at: https://github.com/openstack/storlets/tree/master/
StorletSamples/java/CsvStorlet/src/org/openstack/storlet/csv

Spark Cluster Swift Cluster with Storlets

Swift Storage Node

Swift Storage Node

Swift Storage Node

CSV

Data

CSV

Data

CSV Storlet

Swift Proxy Node

Swift Proxy NodeSpark Worker Node

Hadoop RDD

Partition i (of n)

Stocator

Spark Worker Node

Hadoop RDD

Partition i (of n)

Stocator

Spark Worker Node

Hadoop RDD

Partition i (of n)

Stocator

Spark Shell
1. sqlContext.load(<data source class>, <data driver/location>)

2. val result = sqlContext.sql("select …")

3. result.collectAsList()

Fig. 4. Overview of Scoop’s implementation to leverage Spark SQL
pushdown for OpenStack Swift.

the data set and associating each partition with a task. Each of
these tasks, when scheduled for execution will be dynamically
associated to one of the Spark worker nodes. For Hadoop
RDDs, the underlying storage driver checks the total size of
the data specified by the user and divides the total size by the
HDFS chunk size. In traditional HDFS implementations, the
chunk size is the size of the atomic placement unit in the file
system. That is, each file is made of chunks that are spread
over the HDFS cluster. As such, this number has system-wide
implications. However, this is not the case for object stores.
We elaborate more on that in Section VII. We also note that
the partition discovery process takes place before a query has
been specified.

The user defines a SQL query over the data, and collects
the results as a list (steps 2,3 in Fig. 4). At this point, Catalyst
calculates the implied projection and selection filters and calls
the appropriate data source API of the CSV class. The original
Spark CSV class only supported projection/selection filtering
execution within the compute cluster after ingesting the entire
dataset. In Fig. 4, our CSV component extends the former
CSV class to push down both SQL projection and selection
from user queries to Swift.

Within the data source API that is called, each partition
of the Hadoop RDD invokes Stocator to send a GET request
to Swift to retrieve the chunk of the data for which it is
responsible. To allow pushdown this GET request was changed
to invoke the CSVStorlet so as to get back the filtered data.
Therefore, for each partition Stocator sends a GET request
with the CSVstorlet invocation. The storlet reads the data
directly from disk, applies the appropriate pushdown filters
defined for that tenant and sends back the filtered data. The
resulting filtered data gets back to the worker node from which
the request originated. The filtered data from all partitions are
then further processed in each worker which run the part of
the SQL query that was not pushed down. The local worker
output is then aggregated back within the Spark client which
completes the query processing.

Next, we show how this workflow enables Scoop to greatly
accelerate Spark SQL queries and mitigate the ingest-then-
compute problem in disaggregated analytics clusters.

Query name Query description SQL query syntax Column
selec.

Row se-
lec.

Data
selec.

ShowMapCons Compute the per meter aggregated
consumption, allowing to display re-
sults either in a heatmap or a per state
aggregated consumption.

SELECT vid, sum(index) as max, first_value(lat) as
lat, first_value(long) as long, first_value(state)
as state FROM largeMeter WHERE date LIKE
’2015-01%’ GROUP BY SUBSTRING(date, 0, 7), vid
ORDER BY SUBSTRING(date, 0, 7), vid

92.00% 99.62% 99.97%

ShowMapMeter In order to display a cluster map,
obtain each meter with its info (city,
Id,...)

SELECT vid, sum(index) as max, first_value(city)
as city, first_value(lat) as lat,
first_value(long) as long, first_value(state) as
state FROM largeMeter WHERE date LIKE ’2015-01%’
GROUP BY SUBSTRING(date, 0, 7), vid ORDER BY
SUBSTRING(date, 0, 7), vid

92.00% 99.54% 99.97%

ShowMapHeatmonth Get daily data for a given month for
a (slider) parametric per day display.

SELECT SUBSTRING(date, 0, 10) as sDate, sum(index)
as max, first_value(lat) as lat, first_value(long)
as long FROM largeMeter WHERE date LIKE ’2015-01%’
GROUP BY SUBSTRING(date, 0, 10), vid ORDER BY
SUBSTRING(date, 0, 10), vid

92.00% 99.54% 99.96%

Showgraphcons Obtain the consumption of meters in
Rotterdam for the Jan. 2015.

SELECT SUBSTRING(date, 0, 10) as sDate,
sum(index) as max, vid FROM largeMeter WHERE
city LIKE ’Rotterdam’ AND date LIKE ’2015-01-%’
GROUP BY SUBSTRING(date, 0, 10), vid ORDER BY
SUBSTRING(date, 0, 10), vid

99.99% 99.55% 99.99%

ShowPiemonth Obtain consumption for a specific sub-
set of state consumption.

SELECT SUBSTRING(date, 0, 10) as sDate, state
as vid, sum(index) as max FROM largeMeter
WHERE state LIKE ’U%’ AND date LIKE ’2015-01-%’
GROUP BY SUBSTRING(date, 0, 10), state ORDER BY
SUBSTRING(date, 0, 10), state

99.99% 99.99% 99.99%

ShowGraphHCHP Obtain data for drawing peak versus
shallow hour consumption.

SELECT SUBSTRING(date, 0, 10) as sDate, vid,
min(sumHC) as minHC, max(sumHC) as maxHC,
min(sumHP) as minHP, max(sumHP) as maxHP FROM
largeMeter WHERE state LIKE ’FRA’ AND date LIKE
’2015-01-%’ GROUP BY SUBSTRING(date, 0, 10), vid
ORDER BY SUBSTRING(date, 0, 10), vid

99.99% 99.94% 99.99%

Showday Get the data for displaying the con-
sumption of any specified hour of a
given month.

SELECT SUBSTRING(date, 0, 13) as sDate,
sum(index) as max, vid FROM largeMeter WHERE
city LIKE ’Rotterdam’ AND date LIKE ’2015-01-%’
GROUP BY SUBSTRING(date, 0, 13), vid ORDER BY
SUBSTRING(date, 0, 13), vid

99.99% 99.99% 99.99%

TABLE I. SET OF DATA INTENSIVE QUERIES TYPICALLY EXECUTED BY GRIDPOCKET DATA ANALYSTS.

VI. EXPERIMENTAL EVALUATION

We evaluated a prototype of Scoop for Spark and Open-
Stack Swift in terms of performance and overhead.

Objectives: Our evaluation demonstrates the contributions
of this work by showing that: i) Scoop provides important
acceleration of Spark SQL queries; ii) Scoop enables a real
use-case to speed up its analytics workloads; iii) Scoop has an
attractive resource consumption trade-off.

Metrics: In our experiments, we make use of these metrics:

• Query data selectivity: This metric describes the per-
centage of data that would not be necessary for exe-
cuting a given query and can be discarded. Normally,
this metric refers to the data discard of the entire
dataset (i.e., the number of bytes discarded). However,
in some points of the evaluation, we also use the term
selectivity to refer to the percentage of discarded data
corresponding to filtered columns or rows by a query
(column/row selectivity).

• Query speedup (SQ): This metric describes the re-
lation between the execution time of a query with
and without Scoop as SQ =

Tno scoop

Tscoop
. We measure

execution times from a client perspective; it includes
the time of ingesting data from Swift and the Spark
SQL processing time. A value SQ > 1 reflects a gain
in performance by Scoop, whereas a value SQ < 1
means the opposite.

• Resource usage (Network, CPU, Memory): We collect
metrics that indicate the percentage of consumed ma-

chine resources when executing a query. We record
these metrics in both compute and storage clusters.

The relationship between these metrics will let us under-
stand the performance/cost trade-off of Scoop, as well as the
situations in which it outperforms other technologies.

Datasets: The datasets used in this evaluation are
anonymized versions of CSV files containing energy con-
sumption values captured by 10K GridPocket smart energy
meters. Anonymized datasets have exactly the same structural
characteristics as the original ones, which means that from the
viewpoint of our performance measurements, anonymization
has no effect. Also the data, upon being uploaded into the
object store, was cleansed by an ETL storlet for which we
do not evaluate the performance since our main objective
is to measure and demonstrate query accelerations. In our
experiments we make use of three dataset sizes: Small: 438
million rows (50GB); Medium: 3, 900 million rows (500GB);
Large: 21, 099 million rows (3TB). All these datasets have
identical structure, with 10 columns, and every row represents
a reading taken every 10 minutes. We also created a tool to
generate synthetic data that mimics the structural properties of
GridPocket’s datasets7.

Queries: First, we employ a set of real life SQL queries
typically used by data scientists in the GridPocket platform to
analyze the feasibility of our pushdown implementation. The
queries that have been selected are data intensive and their data
selectivity percentages are shown in Table I.

7https://github.com/gridpocket/project-iostack

0 20 40 60 80 90
0

2

4

6

8

10

12

14

Data selectivity of a query (%)

M
ea

n
 q

u
er

y
 s

p
ee

d
u
p
 (

S
Q

)
Query speedup depending on selectivity type (50GB)

Row selectivity

Mixed selectivity

Column selectivity

S
Q

=1

(a) Small dataset (50GB).

0 20 40 60 80 90
0

2

4

6

8

10

12

14

Data selectivity of a query (%)

M
ea

n
 q

u
er

y
 s

p
ee

d
u
p
 (

S
Q

)

Query speedup depending on selectivity type (500GB)

Row selectivity

Mixed selectivity

Column selectivity

S
Q

=1

(b) Medium dataset (500GB).

0 20 40 60 80 90
0

2

4

6

8

10

12

14

Data selectivity of a query (%)

M
ea

n
 q

u
er

y
 s

p
ee

d
u
p
 (

S
Q

)

Query speedup depending on selectivity type (3TB)

Row selectivity

Mixed selectivity

Column selectivity

S
Q

=1

(c) Large dataset (3TB).

Fig. 5. Analysis of query speedup (SQ) for different types of query data selectivity and dataset sizes.

Apart from real SQL queries, we performed additional
experiments to understand the behavior of our pushdown
system. To this end, we executed synthetic queries on Grid-
Pocket datasets with controlled fractions of data selectivity.
In particular, we executed specific experiments to analyze the
impact of row, column and mixed data selectivity.

Moreover, for the sake of statistical significance, the results
shown for each query are based on at least 15 executions.

Platform: We executed our experiments in the OpenStack
Innovation Center (OSIC) testbed [6]. The platform consists
of 63 servers (HP DL380 Gen9) equipped with 2X 12-core
Intel E5-2680 v3 @2.50GHz, 256GB RAM, 12X 600GB 15K
SAS - RAID10 and Intel X710 Dual Port 10 GbE NICs.
The organization of the servers is as follows: i) An identity
manager machine running Keystyone (Mitaka version); ii)
1 HA-Proxy load balancers backed up with VRRP; iii) 6
Swift proxy/metadata servers (Mitaka version); iv) 29 object
servers (Mitaka version); v) 25 Spark v1.6 workers, a Spark
(standalone) master node, and a Spark client driving the
experiments. To facilitate large deployments, the software of
Spark workers was running in Docker containers managed via
Zoe8 [28]. All the nodes in the cluster run collectd9 v5.4
in background to get resource usage metrics (CPU, memory,
network).

The 3-replica object-ring was defined over 10 disks in each
of the 29 nodes (290 disks altogether). The container and
account rings were defined over 10 disks in each of the 6
proxies (60 disks altogether). All nodes were configured with
a master-master bond over 2X10Gbps ports. The bonds were
used to setup a data network to serve all replication as well as
workload traffic.

A. Scoop Performance Analysis

Next, we show a performance analysis of synthetic SQL
queries of controlled data selectivity executed with/without
Scoop. Concretely, we focus on i) the impact of the query
data selectivity on performance, ii) the role of selectivity type
(row/column/mixed) and, iii) the dataset size.

First, Fig. 5 shows that Scoop exhibits higher speedup
values as the query data selectivity increases; more interest-
ingly, such increase in performance is superlinear with data
selectivity. To illustrate this, in Fig. 5(b) we clearly see that

8http://zoe-analytics.eu
9https://collectd.org/

97.61 99.39 99.99
0

4

8

12

16

20

24

28

32

36

40

Data selectivity of a query (%)

M
ea

n
 q

u
er

y
 s

p
ee

d
u
p
 (

S
Q

)

3TB 500GB 50GB

Row selectivity

Column selectivity

Mixed selectivity

Fig. 6. Query speedup results (SQ) for high data selectivity.

a query data selectivity of 80% provides a SQ ≈ 5, whereas
discarding 90% of the dataset Scoop achieves SQ > 10. In this
sense, Fig. 6 shows in more detail query speedup results for
very high data selectivity. Clearly, this scenario is favorable
to Scoop; queries with high percentages of data selectivity
may benefit from execution times up to 31 times shorter than
the traditional “ingest-then-compute” approach. The reason
for this behavior lies deeply on the type of bottleneck at
hand: For low data selectivity, the network load balancer is
the bottleneck, so an increment of data selectivity provides
a near-linear performance improvement. However, we found
that from ≈ 60% of data selectivity onwards, the bottleneck
progressively shifts from the network to the computational
power of storage nodes. That is, for high data selectivity, the
amount of data transferred to the compute cluster does not
saturate the network, but utilizes significant compute resources
from Swift storage nodes.

Overall, we observed that real life queries executed by
GridPocket data scientists (Table I) exhibit query data selec-
tivity values > 90% from the total dataset. This indicates that
Scoop is a practical system to mitigate the ingest-then-compute
problem in industrial environments.

Moreover, Scoop achieves significant query speedup even
for moderate percentages of data selectivity. To wit, consid-
ering a mixed query data selectivity of 60%, we see that for
the 50GB dataset Scoop exhibits a SQ = 2.25, whereas for
the 3TB dataset its performance is SQ = 2.35. In other words,
in this setting queries experienced an absolute improvement in
execution time of 40.92 and 2631.56 seconds for the 50GB
and 3TB datasets, respectively.

0 2 4 6 8 10 12 14 16 18

ShowMapCons

ShowMapMeter

ShowHeatmapMonth

ShowGraphCons

ShowPiemonth

ShowGraphHCHP

Showday

Mean (all queries)

Mean query speedup

50GB Dataset

74.7s/4.8.6s

77.7s/13.6s

72.5s/4.1s

78.6s/13.7s

77.6s/7.0s

63.3s/4.1s

80.4s/18.7s

(a) Small dataset (50GB).

0 5 10 15 20 25 30 35 40

ShowMapCons

ShowMapMeter

ShowHeatmapMonth

ShowGraphCons

ShowPiemonth

ShowGraphHCHP

Showday

Mean (all queries)

Mean query speedup

500GB Dataset

654.3s/21.2s

657.1s/27.6s

655.8s/21.3s

657.3s/19.5s

724.4s/24.14s

732.9s/22.1s

732.9s/19.7s

(b) Medium dataset (500GB).

Fig. 7. Analysis of query speedup (SQ) for real GridPocket queries over
various dataset sizes. Horizontal bars have an x / y annotation where x
represents the mean query execution times when using the traditional “ingest-
then-compute” approach and y the mean query execution times when using
the “pushdown” approach.

We are also interested in observing the behavior of Scoop
for low data selectivity. Appreciably, Fig. 5 depicts that Scoop
presents performance values SQ ≈ 1 for data selectivity values
close to 0. That is, for no data selectivity —i.e., ingest the
entire dataset— we registered a worst-case mean speedup
penalty of 3.4% compared to plain Spark/Swift. In terms of
performance, this suggests that Scoop can efficiently handle
workloads formed by queries of high and low data selectivity.

We verified that Scoop does not exhibit higher performance
variability than vanilla Spark/Swift. For instance, the standard
deviation values of query execution times for the 50GB (mixed
selectivity) dataset range between 0.43−2.04 and 0.05−1.33
for plain Spark/Swift and Scoop, respectively. We noticed a
similar behavior for other types of selectivity and dataset sizes.
This means that our approach for discarding data at the object
store does not introduce additional performance variability.

Interestingly, for high data selectivity percentages, Scoop
behaves differently depending on the dominant type of selec-
tivity. Fig. 5 shows that, in general, row selectivity exhibits
higher performance compared to column/mixed selectivity. A
reason for this behavior may reside on our CSV Storlet
implementation; discarding an entire row by evaluating a con-
dition may be more efficient than selecting and concatenating
multiple columns in the output stream.

Finally, in Fig. 5 we analyze the impact of the dataset
size. In our experiments, Scoop exhibits higher query speedup
values for larger datasets. For instance, for 90% column
selectivity, SQ = 6.72 and SQ = 12.51 for the 50GB and
3TB datasets, respectively. Fig. 6 illustrates this phenomenon
more clearly, for high data selectivity rates. The reason is
related to the testbed infrastructure at hand; queries executed
against the 50GB dataset did not fully utilize the network and
storage resources, unlike the case of larger datasets. This is
supported by the fact that the performance increase between
500GB (SQ = 10.23) and 3TB datasets is smaller.

B. Real use-case: GridPocket SQL queries

Next, we analyze the performance benefits of Scoop for
typical data intensive SQL queries executed by GridPocket
data scientists (see Table I). To this end, Fig. 7 shows the
speedup that Scoop achieved in these queries for various
dataset sizes (for clarity, bars in Fig. 7 also depict the “origi-
nal”/“pushdown” absolute query times in seconds).

Appreciably, for a small dataset, Scoop achieves query
speedups ranging from SQ = 4.1 to SQ = 18.7. Such differ-
ences in speedup for a given query are due to its percentage
of data selectivity. That is, in Fig. 7(a) the fastest query
(ShowDay) exhibits a data selectivity of 99.99%, whereas
for the slowest ones the data selectivity is 92.05%. Further,
in line with our previous observations, Fig. 7(a) demonstrates
that for a larger dataset Scoop achieves faster query execution
times. Moreover, the speedup differences among queries are
less important.

As one can infer, for a company like GridPocket these
improvements are significant. That is, in the case that each
query requires to import a different 500GB dataset to the
compute cluster, the total execution time of the set of queries
in Fig. 7 is 4, 814.7 seconds. With Scoop, data scientists in
GridPocket could execute the same set of queries only in
155.48 seconds. This results represents a key step towards
efficient analytics in a commercial setting.

C. Pushdown vs Parquet

Next, we compare Scoop with other technologies that
also mitigate the ingest-then-compute problem. Concretely, we
perform a comparison with Apache Parquet [2]: a columnar
storage format which can be used with Apache Spark and ob-
ject stores. It provides two main benefits: i) Being columnar, it
is possible to efficiently perform column projection; ii) Parquet
stores highly optimized compressed data, which reduces the
volume of network transfers. Note that Spark is in charge of
carrying out the tasks of (de)compressing data and discarding
columns in Parquet format.

Fig. 8 shows query speedup values for both Scoop and Par-
quet. Compared with ingesting data from plain Swift, Parquet
offers significant speedups for very low query data selectivity.
The explanation is simple: Importing compressed data from
Swift makes the ingestion phase shorter, which is the dominant
cost in the queries executed. Besides, for data selectivity of
0, Spark does not need to execute computations to discard
columns in Parquet format, which may also represent an
additional cost. Observably, the computation costs associated
with Parquet seems to offer a better trade-off either when data

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

Data selectivity of a query (%)

M
ea

n
 q

u
er

y
 s

p
ee

d
u

p
 (

S
Q

)
Query speedup of Scoop vs Parquet (50GB)

Scoop vs Parquet

Scoop vs Swift

Parquet vs Swift

S
Q

=1

Fig. 8. Performance comparison of Scoop and Parquet for column selectivity.

compression is more beneficial (no data selectivity) or when
the fraction of data selectivity is high.

Fig. 8 shows that Scoop query speedups exhibit a different
behavior than with Parquet. For no data selectivity, Scoop
provides no performance benefit to the system, as no data
can be discarded. Nevertheless, as we observed before, this
experiment confirms that for higher fractions of data selectivity
Scoop achieves superlinear SQ values.

Our experiments show that Scoop exhibits higher perfor-
mance than Parquet for data selectivity ≥ 60% using the 50GB
datasets. For instance, for 90% data selectivity Scoop queries
are 2.16x faster than queries executed with Parquet. Note that
Scoop achieves even better performance for mixed or row data
selectivity, which cannot be shown as they are not supported by
Parquet. Our experiments also indicate that the data selectivity
threshold in which Scoop outperforms Parquet is smaller for
larger datasets.

We conclude that for SQL queries with high data selectivity
—as the ones executed in GridPocket use cases— Scoop
provides higher query acceleration than Parquet. Moreover, as
our compute layer in Swift can accommodate general-purpose
computations, we will explore intelligent combinations of data
filtering and compression for low data selectivity queries.

D. Resource Usage

In what follows, we analyze how Scoop trades-off spare
compute power at the object store to minimize resource usage
in a shared compute cluster and an over-subscribed inter-
cluster network. In particular, Fig. 9 compares the resources
consumed —from the compute cluster viewpoint— executing
a GridPocket query (ShowGraphHCHP, 99% data selectivity)
on the 3TB dataset with and without Scoop.

Fig. 9(a) shows that Scoop achieves CPU savings at the
compute cluster; first, the average CPU consumption of Spark
nodes to execute the given query is less than half for Scoop
(≈ 1.2%) compared to plain Spark/Swift (≈ 3.1%). Second,
and perhaps more importantly, if we consider the experiment
execution time, Scoop reduces the number of CPU cycles
for 97.8% to compute that query. These benefits are directly
related to the fact of filtering data at the storage side, which
shortens the experiment and avoids Spark to execute data
filtering prior to the actual computations.

Fig. 9(b) illustrates the memory consumption at the com-
pute cluster, which is a valuable resource shared across many
jobs. As with CPU, Scoop also provides significant memory
savings to Spark. At the peak, the average memory usage
of Spark nodes is around 13.2% lower for Scoop than using
vanilla Swift. The main reason for which memory savings are
not higher is because Spark discards useless data prior to the
computation of the SQL query. In addition, Fig. 9(b) shows
that such amount of memory is kept in use for a period of time
12-15x longer than when using Scoop, which may prevent the
concurrent allocation of new incoming jobs.

Interestingly, Fig. 9(c) points out that the network was the
bottleneck for the ingestion of data. To inform this argument,
the machine acting as load balancer was using a 10Gbps
link to transfer data between storage and compute clusters.
Observably, for plain Spark/Swift the 10Gbps link of the
load balancer machine was close to saturation during the data
ingestion phase of the query; to wit, Fig. 9(c) shows that
the transmitted bandwidth to the compute cluster was close
to 10Gbps. It is also visible that Swift proxy nodes were
responsible for saturating the load balancer serving parallel
requests of Spark tasks.

In contrast, Fig. 9(c) reveals that Scoop heavily offloads
the inter-cluster network. Both the load balancer and the Swift
proxies only serve a small fraction of the total data and for
a much shorter period of time. That is, Fig. 9(c) shows that
the load balancer exhibited an average transmission bandwidth
of 189MBps to the compute cluster, and only during ≈ 120
seconds. Therefore, with Scoop both the datacenter network
and Swift proxies have more resources to serve other jobs or
services running in the system.

Naturally, all these benefits at the compute and network
level come at the cost of using compute power at the object
store. In terms of CPU, Fig. 10 shows that Scoop consumes
on average a 23.5% of storage nodes CPU to execute projec-
tions/selections on the 3TB dataset, whereas this resource is
almost totally idle in plain Swift (average CPU usage of 1.25%
in storage nodes). Regarding memory, analyzing the execution
of multiple SQL queries with Scoop, we observed that Swift
storage nodes exhibited a near constant memory usage between
4%−6%. Both CPU and memory overheads are related to the
Docker container used to run Storlets plus the code execution.

We conclude that Scoop exhibits an attractive resource
usage trade-off; it incurs affordable CPU/memory overhead on
Swift storage nodes in exchange of high query performance
acceleration and significant reduction of resource usage at the
compute cluster and the inter-cluster network.

VII. DISCUSSION

By implementing the Spark SQL pushdown use-case, we
demonstrated that the concepts behind Scoop are powerful
enough to accelerate and make more efficient analytics queries
in disaggregated clusters. Our present and future steps focus
on leveraging a more general, or even dynamic, form of
cooperation between analytics frameworks and object stores:

Beyond Spark-SQL pushdown. Boosting ingestion with
Scoop leverages Spark-SQL data sources API to delegate
projection and selection filtering tasks to the object store. SQL
projections and selections, however, are only a particular case

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

Experiment duration (seconds)

C
P

U
 u

sa
g

e
(%

)
CPU usage of Spark nodes (3TB dataset)

Average Spark node CPU usage

Average Spark node CPU usage with Scoop

99% data selectivity

(a) CPU usage of Spark nodes.

10
2

10
3

0

5

10

15

20

25

30

35

Experiment duration (seconds)

M
em

o
ry

 u
sa

g
e

(%
)

Memory usage of Spark nodes (3TB dataset)

Average Spark node memory usage with Scoop

Average Spark node memory usage

99% data selectivity

(b) Memory usage of Spark nodes.

10
0

10
1

10
2

10
3

10
2

10
4

10
6

10
8

10
10

Experiment duration (seconds)

B
y

te
s/

se
co

n
d

Bandwidth transmitted of LB/Swift proxies (3TB dataset)

Avg. Tx. Bw. Swift Proxies

Load Balancer Tx. Bw.

Avg. Tx. Bw. Swift Proxies with Scoop

Load Balancer Tx. Bw. with Scoop

99% data
selectivity

(c) Transmitted bandwidth of load balancer and Swift
proxies.

Fig. 9. Resource usage of Spark nodes in the compute cluster and the inter-cluster network with and without Scoop.

10
0

10
1

10
2

10
3

0

20

40

60

80
CPU usage of Swift storage nodes (3TB dataset)

Experiment duration (seconds)

C
P

U
 u

sa
g

e
(%

)

Average storage node CPU usage

Average storage node CPU usage with Scoop

99% data
selectivity

Fig. 10. CPU utilization of Swift storage nodes with and without Scoop.

of the computations that Scoop can carry out in the object
store. At the storage side, Scoop provides a rich substrate to
execute parallel streamline computations on data objects. From
the analytics viewpoint, any computation which can be carried
out in parallel and independently over disjoint parts of the
input dataset could be pushed down by Scoop in form of a
filter.

The capabilities of Scoop at the object store inspired
us to generalize the delegation of computations described
in this paper to solve many other problems beyond SQL
pushdown. In fact, we already extended the Spark RDD [13] to
allow the developer to write Spark jobs that explicitly invoke
computations at the object store via simple primitives. Thus,
our new RDD: i) Provides programmatic means to explicitly
execute Storlets in OpenStack Swift from the code of a Spark
task; ii) holds the Storlet invocations output as its distributed
dataset; and iii) embeds the knowledge of partitioning the input
dataset to parallel tasks. Our current work is to research how
this general form of task offloading may optimize other Spark
analytics jobs.

New object-aware data sources. Unlike other stores
connected to Spark, that usually hold specific or limited data
formats (e.g. [9], [10], [11]), object stores are not limited in the
types and data formats they can store. Hence, one can imag-
ine different types of Spark jobs ingesting information from
non-textual data thanks to Scoop pushdown filters; examples
include bringing EXIF metadata from JPEGs or text from PDF
documents. Besides, to delegate tasks to the object store on
textual data, in this work we have modified Spark’s Hadoop

RDD. However, in addition to the complexity of Hadoop APIs,
this approach partitions the dataset according to the underlying
HDFS chunk size. While natural for HDFS, the chunk size is
not adapted to object stores. In object stores it seems more
adequate to partition according to, for instance, the number of
replicas and the compute parallelism available in the nodes.

Our current work addresses these drawbacks [13]; we
provide a Spark-CSV alternative that makes use of a new RDD
implementation, which is well aware of the CSVStorlet
output. More generally, the idea behind [13] is to pair a Storlet
that does a certain function, e.g. extract textual metadata from a
binary object, to an appropriate RDD that is Storlet-aware. This
approach makes it possible to extend the pushdown concept to
additional non-textual data formats, broadening the scope of
the applications of Scoop. With [13], the whole Hadoop layer
can be bypassed by calling from the Spark-CSV layer directly.

Towards adaptive pushdown execution. With Scoop, an
administrator can deploy pushdown filters on the object store
and enforce them on a particular tenant’s requests. However,
this decision is static, meaning that the fact of enforcing
a pushdown filter is done without taking into account the
workload conditions. It is not hard to imagine that, under peak
workloads and CPU/parallelism constraints at the object store,
an administrator may decide that only “gold” tenants enjoy the
pushdown service, whereas “bronze” tenants will ingest data in
the traditional way. We can also imagine that the effectiveness
of the filter could be modeled —e.g., in the SQL pushdown
filter by approximating the data selectivity— and contribute
to the decision of whether the pushdown filter should be
applied or not. Clearly, the system should dynamically take
these decisions based on real-time monitoring information and
transparently to the administrator.

To achieve this goal, we built Crystal10, a control architec-
ture that can dynamically orchestrate the execution of Storlets
in OpenStack Swift [21], [22]. Similarly to [16], our future
work encompasses the design of execution cost models for
pushdown filters into control processes. Such control processes
will take as input workload or resource metrics from the
storage cluster to decide on runtime whether to execute a
pushdown filter or not for a specific tenant.

VIII. CONCLUSIONS

Scoop is a novel solution that mitigates the problems of ex-
ecuting analytics in disaggregated compute and storage clusters

10https://github.com/Crystal-SDS

by exploiting the computational capabilities of object stores. In
particular, Scoop addresses this challenge by enabling analytics
frameworks to delegate ETL-type and querying functions to
the object store, which is in turn equipped with a rich and
flexible active storage layer. We instantiated this concept
by enabling Apache Spark SQL to offload projections and
selections to OpenStack Swift, in order to execute them close
to the data. Our experiments in a production cluster with real-
world datasets and SQL workloads demonstrate that Scoop
is a practical solution for providing faster and more efficient
analytics in disaggregated clusters.

ACKNOWLEDGMENTS

This work has been partly funded by the EU project
H2020 “IOStack: Software-Defined Storage for Big Data”
(644182). The hardware for the performance experimentation
was granted by the OpenStack Innovation Center (OSIC). We
would like to acknowledge Tal Ariel for helping collecting,
analyzing and depicting the experimental data as well as Eran
Raichstein for his helpful insights. Gil Vernik is the creator
of Stocator; Gil wrote the first implementation of Storlet
invocation from Spark and made invaluable contributions to
the most recent implementation of the Storlets presented in
this paper. We thank Gil for these contributions. We also thank
Kevin Fouhety for his contributions on gathering and executing
GridPocket workloads in the initial stages of this work.

REFERENCES

[1] Amazon S3. https://aws.amazon.com/en/s3.
[2] Apache Parquet. https://parquet.apache.org.
[3] Deep dive into spark SQL’s catalyst optimizer.

https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-
catalyst-optimizer.html.

[4] Docker. https://docs.docker.com.
[5] IBM Cleversafe. https://www.ibm.com/cloud-

computing/products/storage/object-storage.
[6] Openstack innovation center. https://osic.org.
[7] Openstack storlets. https://github.com/openstack/storlets.
[8] Openstack swift. http://docs.openstack.org/ developer/swift.
[9] Phoenix-spark. https://github.com/apache/phoenix/tree/master/phoenix-

spark.
[10] Spark-cassandra-connector. https://github.com/datastax/spark-

cassandra-connector.
[11] Spark-cloudant. https://github.com/cloudant-labs/spark-cloudant.
[12] Spark-CSV. https://github.com/databricks/spark-csv.
[13] Spark-storlets. https://github.com/eranr/spark-storlets.
[14] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar,

M. Shah, and R. Tewari. Cloud analytics: Do we really need to reinvent
the storage stack. In USENIX HotCloud’09, 2009.

[15] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark
sql: Relational data processing in spark. In ACM SIGMOD’15, pages
1383–1394, 2015.

[16] C. Chen, Y. Chen, and P. C. Roth. Dosas: Mitigating the resource
contention in active storage systems. In IEEE Cluster’12, pages 164–
172, 2012.

[17] D. V. D. C. P. M. Francesco Pace, Marco Milanesio. Experimental
performance evaluation of cloud-based analytics-as-a-service. In IEEE
CLOUD’16, page In press, 2016.

[18] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky,
and N. Thombre. Continuous analytics: Rethinking query processing
in a network-effect world. In CIDR, 2009.

[19] E. Friedman, P. Pawlowski, and J. Cieslewicz. SQL/MapReduce: A
practical approach to self-describing, polymorphic, and parallelizable
user-defined functions. VLDB Endowment, 2(2):1402–1413, 2009.

[20] C. Gkantsidis, D. Vytiniotis, O. Hodson, D. Narayanan, F. Dinu, and
A. Rowstron. Rhea: automatic filtering for unstructured cloud storage.
In USENIX NSDI’13, pages 343–355, 2013.

[21] R. Gracia-Tinedo, P. Garcı́a-López, M. Sánchez-Artigas, J. Sampé,
Y. Moatti, E. Rom, D. Naor, R. Nou, T. Cortés, and W. Oppermann.
Iostack: Software-defined object storage. IEEE Internet Computing,
20(3):10–18, 2016.

[22] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-Artigas, P. Garcı́a-
López, Y. Moatti, and E. Rom. Crystal: Software-defined storage for
multi-tenant object stores. In USENIX FAST’17, 2017.

[23] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing
queries with expensive predicates. In ACM SIGMOD’93, volume 22,
1993.

[24] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,
G. R. Ganger, E. Riedel, and A. Ailamaki. Diamond: A storage
architecture for early discard in interactive search. In USENIX FAST’04,
volume 4, pages 73–86, 2004.

[25] E. Jahani, M. J. Cafarella, and C. Ré. Automatic optimization for
MapReduce programs. VLDB’11, 4(6):385–396, 2011.

[26] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum. In-situ
MapReduce for log processing. In USENIX ATC’11, page 115.

[27] M. Mihailescu, G. Soundararajan, and C. Amza. Mixapart: decoupled
analytics for shared storage systems. In USENIX FAST’13, pages 133–
146, 2013.

[28] F. Pace, D. Venzano, D. Carra, and P. Michiardi. Flexible scheduling
of distributed analytic applications. In IEEE/ACM CCGRID’17, 2017.

[29] S. Rabinovici-Cohen, E. A. Henis, J. Marberg, and K. Nagin. Storlet
engine for executing biomedical processes within the storage system.
In Business Process Management (BPM’14), pages 59–71, 2014.

[30] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large-scale
data mining and multimedia applications. In VLDB’98, pages 62–73,
1998.

[31] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, and R. B.
Ross. On the duality of data-intensive file system design: reconciling
HDFS and PVFS. In ACM SC’11, page 67, 2011.

[32] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers,
and Y. Solihin. Active flash: towards energy-efficient, in-situ data
analytics on extreme-scale machines. In USENIX FAST’13, pages 119–
132, 2013.

[33] R. Wickremesinghe, J. S. Chase, and J. S. Vitter. Distributed computing
with load-managed active storage. In IEEE HPDC’02, pages 13–23,
2002.

[34] E. H. Wilson, M. T. Kandemir, and G. Gibson. Will they blend?:
Exploring big data computation atop traditional hpc nas storage. In
IEEE ICDCS’14, pages 524–534, 2014.

[35] T. Xiao, Z. Guo, H. Zhou, J. Zhang, X. Zhao, C. Ye, X. Wang, W. Lin,
W. Chen, and L. Zhou. Cybertron: Pushing the limit on i/o reduction in
data-parallel programs. In ACM OOPSLA’14, volume 49, pages 895–
908, 2014.

[36] C. Xu, R. Goldstone, Z. Liu, H. Chen, B. Neitzel, and W. Yu. Exploiting
analytics shipping with virtualized MapReduce on HPC backend storage
servers. IEEE Transactions on Parallel and Distributed Systems,
PP(99):1–1, 2015.

[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In USENIX
NSDI’12, pages 2–2, 2012.

[38] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A.
Nguyen, J. Cao, H. Abbasi, S. Klasky, et al. Flexio: I/o middleware
for location-flexible scientific data analytics. In IEEE IPDPS’13, pages
320–331, 2013.

