
ADEL@OKE 2017: A Generic Method for Indexing
Knowlege Bases for Entity Linking

Julien Plu1, Raphaël Troncy1, Giuseppe Rizzo2

1 EURECOM, Sophia Antipolis, France
julien.plu|raphael.troncy@eurecom.fr

2 ISMB, Turin, Italy
giuseppe.rizzo@ismb.it

Abstract. In this paper, we report on the participation of ADEL, an adaptive
entity recognition and linking framework, to the OKE 2017 challenge. In partic-
ular, we propose an hybrid approach that combines various extraction methods to
improve the recognition level and an efficient knowledge base indexing process
to increase the efficiency of the linking step. We detail how we deal with fine-
grained entity types, either generic (e.g. Activity, Competition, Animal for the
task 2) or domain specific (e.g. MusicArtist, SignalGroup, MusicalWork for the
task 3). We also show how ADEL can flexibly disambiguate entities from differ-
ent knowledge bases (DBpedia and MusicBrainz). We obtain promising results
on the OKE 2017 challenge training dataset for the first three tasks.

Keywords: Entity Recognition, Entity Linking, Feature Extraction, Indexing, OKE
Challenge, ADEL

1 Introduction

In this paper, we present our participation to the first three tasks of the OKE 2017 chal-
lenge, namely: 1) Focused NE Identification and Linking; 2) Broader NE Identification
and Linking; 3) Focused Musical NE Recognition and Linking. This requires to de-
velop a system that can extract a broad range of entity types: generic in the Task 1,
fine-grained in the Task 2 or music-specific in the Task 3. This also requires to develop
a system that can handle multiple knowledge bases such as DBpedia and MusicBrainz.

We further develop the ADEL framework that is particularly suited to handle such
a system adaptivity called by those different requirements [3,4]. We improve the entity
extraction and recognition process which now includes a powerful dictionary extractor
that handles regular expressions. We also propose a more sophisticated indexing process
that allows to index the content of any RDF-based knowledge base such as DBpedia
or Musicbrainz. This paper mainly focuses on entity recognition and knowledge base
indexing. Entity recognition refers to jointly performing the appropriate extraction and
typing of mentions. Extraction is the task of spotting mentions that can be entities in the
text while Typing refers to the task of assigning them a proper type. Linking refers to
the disambiguation of mentions in a targeted knowledge base. It is also often composed
of two subtasks: generating candidates and ranking them accordingly to various scoring
functions. Following the challenge requirements, we make use of the 2016-04 snapshot
of DBpedia and a 2016-12 snapshot of Musicbrainz as the targeted knowledge bases.



2 Approach

In this section, we describe how we extract mentions from texts that are likely to be
selected as entities with the Extractor Module. After having identified candidate men-
tions, we resolve their potential overlaps using the Overlap Resolution Module. Then,
we describe how we disambiguate candidate entities coming from the extraction step.
First, we create an index over a targeted knowledge base, e.g. the April 2016 DBpedia
snapshot, using the Indexing Module. This index is used to select possible candidates
with the Candidate Generation Module. If no candidates are provided, this entity is
passed to the NIL Clustering Module, while if candidates are retrieved, they are given
to the Linker Module.

Extractor Module. We make use of five kinds of extractors: i) Dictionary, ii) POS
Tagger, iii) NER, iv) Date, and v) Number. Each of these extractors run in parallel.
At this stage, an entity dictionary reinforces the extraction by bringing a robust spot-
ting for well-known proper nouns or mentions that are too difficult to be extracted
for the other extractors. We have developed a new approach for the dictionary extrac-
tion that consists in using a generic SPARQL query that will retrieve all entity labels
given a list of entity types. We developed a common API for these extractors based on
Stanford CoreNLP [2] that is publicly available at https://github.com/jplu/
stanfordNLPRESTAPI.

Indexing Module. An index can be seen as a two-dimensional array where each
row is an entity in the index and each column is a property that describes the entity.
Indexing the English DBpedia snapshot and retaining only properties that have literal
values yields 281 columns. Once we have this index, we can search for a mention in
this index and retrieve entity candidates. Searching, by default, over all columns (or
properties used in the knowledge base), negatively impacts the performance of the in-
dex in terms of computing time. In order to optimize the index, we have developed
a method that maximizes the coverage of the index while querying a minimum num-
ber of columns (or properties) [5]. For the DBpedia version 2016-04, there are ex-
actly 281 properties that have literal values, while our optimization produced a reduced
list of 8 properties: dbo:wikiPageWikiLinkText, dbo:wikiPageRedirects, dbo:demonym,
dbo:wikiPageDisambiguates, dbo:birthName, dbo:alias, dbo:abstract and rdfs:label.
This optimization drastically reduces the time of the query from around 4 seconds to
less than one second. The source code of this optimization is also available3. Previously,
we were using an index stored in Lucene. We have, however, observed unexpected be-
havior from Lucene such as not retrieving resources that partially match a query even if
the number of results was not bound due to the lack of parameters and control of what
can be searched on. The index is now built using Elasticsearch as a search engine which
provides better scoring results. The indexing of a knowledge base follows a two-step
process: i) extracts the content of a knowledge base, and creates the Elasticsearch index;
ii) runs the optimization method in order to get the list of columns that will be used to
query the index.

NIL Clustering Module. We propose to group the NIL entities (emerging entities)
that may identify the same real-world thing. The role of this module is to attach the

3 https://gist.github.com/jplu/a16103f655115728cc9dcff1a3a57682

https://github.com/jplu/stanfordNLPRESTAPI
https://github.com/jplu/stanfordNLPRESTAPI
https://gist.github.com/jplu/a16103f655115728cc9dcff1a3a57682


same NIL value within and across documents. For example, if we take two different
documents that share the same emerging entity, this entity will be linked to the same
NIL value. We can then imagine different NIL values, such as NIL 1, NIL 2, etc. We
perform a string strict matching over each possible NIL entities (or between each token
if it is a multiple token mention). For example, in that Task 1 dataset, sentence 23, both
the mention “Sully” and the mention “Marine Jake Sully” will be linked to the same
NIL entity. We are also testing a version that uses co-references [5].

Linker Module. This module implements an empirically assessed function that
ranks all possible candidates given by the Candidate Generation Module:

r(l) = (a · L(m, title) + b ·max(L(m,R)) + c ·max(L(m,D))) · PR(l) (1)

The function r(l) is using the Levenshtein distance L between the mention m and the
title, and optionally, the maximum distance between the mention m and every element
(title) in the set of Wikipedia redirect pages R and the maximum distance between
the mention m and every element (title) in the set of Wikipedia disambiguation pages
D, weighted by the PageRank PR, for every entity candidate l. The weights a, b and
c are a convex combination that must satisfy: a + b + c = 1 and a > b > c >
0. For our experiments, the values of those parameters are a = 16/21; b = 4/21
and c = 1/21 as defined in [3,4]. We take the assumption that the string distance
measure between a mention and a title is more important than the distance measure
with a redirect page which is itself more important than the distance measure with a
disambiguation page. Contrarily to DBpedia, we do not have a computed PageRank for
the MusicBrainz entities. For this reason, we replace the PageRank score by a scoring
function that modify the score retrieved by Elasticsearch4 in normalizing it between 0
and 1, while redirect and disambiguation pages are ignored in the case of MusicBrainz.

3 Preliminary Results and Discussion

We present some preliminary results for the Task 1 (Table 1) and Task 2 (Table 2), per-
forming a four cross-fold validation using the given training set for each task provided
the size of the OKE 2017 dataset that prevents to use more folds. The three default mod-
els from Stanford NER (3-classes, 4-classes and 7-classes) trained on the CoNLL 2003
dataset have been combined with the NER model trained on each fold, in this order,
using the NER model combination algorithm described in [4].

No other extractors have been used. We have conducted multiple other experiments
using the flexibility offered by ADEL and we report below some lessons learned.

ADEL offers a broad range of entity extractors. In the Task 1, we have tried to in-
clude the Dictionary extractor. This leads to a precision decrease of 13% with a gain of
2% in recall. We also tried to include the POS extractor that considers that any singular
or plural proper nouns are mentions. This leads to a precision decrease of 36% with a
gain of 5% in recall. Consequently, we observe that while those two extractors enable

4 https://www.elastic.co/guide/en/elasticsearch/reference/
current/search-request-rescore.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-rescore.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-rescore.html


Precision Recall F1
strong mention match 74.9 75.4 75.1
strong link match 47 54.5 50.3
Table 1: Results for Task 1 using the nel-
eval scorer

Precision Recall F1
strong mention match 70.7 67.9 69.2
strong link match 40.8 45.8 42.9
Table 2: Results for Task 2 using the nel-
eval scorer

to find more mentions, they also bring significant noise. In the Task 1 dataset, the dic-
tionary contains 423.513 entries while for the Task 2 dataset, 2.094.719 entries have
been added. Therefore, dictionaries bring back the issue of dealing with synonymy.
For example, in Task 1, the sentence 22 contains the preposition against while a few
bands named Against exist in the knowledge base5. The Dictionary will extract any oc-
currence of the preposition mixing it with the band. The POS extractor will extract all
proper nouns as mentions, even though those were not annotated in the Task dataset. For
example, in Task 1 in the same sentence 22, the mention World War II will be extracted,
but this entity does not belong to the types that are considered in the task definition.

We made the same observations experimenting on the dataset of Task 2. Adding the
Dictionary extractor leads to a precision decrease of 15% with a gain of 4% in recall.
Adding the POS extractor leads to a precision decrease of 24% with a gain of 8% in
recall. In terms of F1, adding those two extractors penalize less in Task 2 than in Task
1 since a much broader set of entity types should be extracted in the Task 2.

We observe a significant drop in performance at the disambiguation stage. The link-
ing formula which is currently being used is sensitive to the noise brought at the ex-
traction step since this module does not take into account the entity context but instead
relies on a combination of string distances and the PageRank global score. For exam-
ple, in the Task 1 dataset, sentence 1, the string distance score over the title, the redirect
and the disambiguation pages between the mention Trump and the entity candidate
db:Trumpet is higher than with the correct entity candidate db:Donald Trump.

We also evaluate the efficiency of our candidate generation module that, given a
mention, should always provide the correct disambiguation link among a set of candi-
dates. The evaluation is done as follows: from a training dataset, we perform a SPARQL
query in order to get all mentions with their disambiguation link; then, for each men-
tion, we query our index by using the list of columns listed in Section 2 to get a set of
candidates and we check if the proper link is contained in that set. The minimum index
of the correct link in this set is 1 while the maximum index is 1729 for the Task 1 and
1943 for the Task 2. For the Task 1, the recall@1729 is 94.65% and for the Task 2, the
recall@1943 is 90.22%. Most often, when the correct link is not retrieved, it is because
the mention does not appear in the content of the queried columns, such as 007’s6 in
the sentence 37 of the Task 1 dataset.

5 https://en.wikipedia.org/wiki/Against
6 http://dbpedia.org/resource/James_Bond_(literary_character)

https://en.wikipedia.org/wiki/Against
http://dbpedia.org/resource/James_Bond_(literary_character)


4 Conclusion and Future Work

We have presented an entity extraction and linking framework that can be adapted to
the kind of entities that have to be extracted and adapted to the knowledge base to
disambiguate to making it particularly suited for participating in 3 tasks of the OKE
2017 challenge. While the recognition and the candidate generation process provide
good performance, the linking step is currently the main bottleneck in our approach.
The performance drops significantly at this stage mainly due to a fully unsupervised
approach.

We plan to investigate a new method that would modify Deep Structured Semantic
Models [1] to make it compliant with knowledge bases and use it as a relatedness score
between each candidate to build a graph composed of these candidates where each edge
is weighted by this score. The path that has the highest score is chosen as the good one to
disambiguate each extracted entity. This method should be agnostic to any knowledge
base as it will uses the relations among the entities. We also plan to align the entity
types from different NER models, in order to have a more robust recognition step. The
association of multiples kind of extraction techniques makes our approach extracting a
significant amount of false positives. For this reason, we are also investigating to add a
pruning step at the end of the process in order to reduce this amount of false positives.
Finally, to improve the extraction by dictionary, we plan to make an automated regu-
lar expression generator that, given an entity, would match as many cases as possible.
SPARQL queries using those seeds will then generate a dictionary composed of regular
expressions that would match multiple derivation of the entities.

Acknowledgments

This work was primarily supported by the innovation activity PasTime (17164) of EIT
Digital (https://www.eitdigital.eu).

References
1. P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning Deep Structured

Semantic Models for Web Search Using Clickthrough Data. In 22nd ACM International Con-
ference on Information & Knowledge Management (CIKM), 2013.

2. C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky. The Stan-
ford CoreNLP Natural Language Processing Toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, 2014.

3. J. Plu, G. Rizzo, and R. Troncy. A Hybrid Approach for Entity Recognition and Linking. In
12th European Semantic Web Conference (ESWC), Open Knowledge Extraction Challenge,
2015.

4. J. Plu, G. Rizzo, and R. Troncy. Enhancing Entity Linking by Combining NER Models. In
13th European Semantic Web Conference (ESWC), Open Knowledge Extraction Challenge,
2016.

5. J. Plu, G. Rizzo, and R. Troncy. ADEL: ADaptable Entity Linking. Semantic Web Journal
(SWJ), Special Issue on Linked Data for Information Extraction, (under review), 2017.

6. G. Rizzo, M. van Erp, and R. Troncy. Inductive Entity Typing Alignment. In 2nd International
Workshop on Linked Data for Information Extraction (LD4IE), 2014.

https://www.eitdigital.eu

	ADEL@OKE 2017: A Generic Method for Indexing Knowlege Bases for Entity Linking

