
Resource Management for Parallel Processing
Frameworks with Load Awareness at Worker Side

Son-Hai Ha
Orange Labs & EURECOM

sonhai.ha@orange.com

Patrick Brown
Orange Labs

patrick.brown@orange.com

Pietro Michiardi
EURECOM

pietro.michiardi@eurecom.fr

Abstract—Many resource management systems and large-scale
data processing frameworks use a reservation-based model for
managing resources and scheduling tasks. We observe from the
reported traces of Facebook and Google that this model leads
to resource being wasted because the tasks do not use effectively
the allocated resources. We confirm the problem with a trace of
our production cluster. We propose an algorithm to estimate the
resource usage at worker nodes. This estimation is used as an
input for the scheduler at the resource manager. We verify the
stability of the new system in a simulator and develop a prototype
of this approach for YARN. Our results in the simulator show
that the new model can flexibly match the actual demand of
the workload to the capacity of the cluster avoiding resources
over-reserved by users. Comparing the worst scenario of our
management model and the best scenario of the reservation
model, we obtain almost the same performance and comparable
system stability. In practice, our prototype for YARN completes
jobs faster from 23% to 44%.

Index Terms—big data; cloud computing; resource usage slack;
scheduling; feedback

I. INTRODUCTION

To analyze large datasets, it has become typical to use
clusters of machines to execute jobs consisting of many
tasks. The types of computations people run have diversified
from MapReduce batch jobs to a very rich type of jobs,
including interactive analytics, stream and graph processing,
iterative machine learning, MPI-style computations, and com-
plex pipelines. Recent resource management systems such as
Mesos [1], Omega [2], Hadoop YARN [3], Kubernetes [4], and
Corona [5] are popular frameworks to run these workloads.

We observe that these cluster management frameworks use
reservation-based model for scheduling tasks. However, from
our trace and from data of different studies [6], [7], [8], we see
that this model is not an optimal choice for scheduling since
it leads to resource being wasted. A reservation-based model
uses a resource vector ă resourceA, resourceB, ... ą to de-
scribe the resource demand of task. The resource management
system reserves a resource segment on its managed nodes with
fundamental requirement: resource demand cannot exceed the
capacity that the node can provide at the time. In practice,
there are also other parameters for a scheduler to place a task
on a node such as data-locality, fairness,... In this paper we
focus on the resource demand vector and the node capacity
when considering a location for placing task. The reservation
model assumes that users know in advance the resource that
their jobs need, but in practice jobs at different phases have
different resource demands; different tasks in the same phase
may also have different resource demands; and even the same
tasks at different moments require different type of resources.

A static resource configuration for a job or for a task is not
an optimal approach.

Our motivation is to enhance the existing resource manage-
ment infrastructures by scheduling tasks with the reference to
the current utilization at each worker node in the cluster. In the
reservation model, a popular approach is to learn the workload
resource in advance to determine the optimized reservation of
each jobs [7], [9]. Another is to over-commit server resources
to cope with the variability of workload resource usage [10].
While the former needs to accurately track resource usage of
identical or similar workloads in advance, the latter consists in
allocating applications more server resources than the servers
can actually provide. This reduces system stability during peak
time and requires detailed observation on the workloads.

In this paper, we introduce a method to estimate the resource
usage on worker nodes and determine the available resource
that we can use for placing tasks for the parallel processing
frameworks without sacrificing the system stability and with-
out the necessity to learn exactly the resource consumption of
each job in the workload in advance.

With the new approach, we prove that there is a better
way to manage the cluster resources for parallel processing
frameworks. When we apply this approach to the real system -
in our case Hadoop YARN - we show that cluster performance
improves. Using Hive Testbench [11], which is a standard large
scale system benchmarking for Hive, we observe jobs complete
23% - 44% faster in average.

In addition, we provide a tracing tool 1 to track the cluster
utilization on YARN, which can study various workloads and
learn job resource demand. We also introduce a simulator to
simulate the system and replay trace with information on real
usage of jobs, enabling new ideas for scheduling or to study
the response of different monitoring parameters when running
production workloads. We also present a prototype implemen-
tation 2 of the proposed method for YARN which considers the
current resource utilization at node for scheduling, to improve
the job performance.

In section III, we present our problem statement which is
verified by our tracing tool on a production cluster at Orange
(France Telecom). We propose a new algorithm to improve
resource usage efficiency in section IV and then develop a
simulator to replay the trace and to verify the stability of
our approach in section V. In section VI, we show how our
prototype performs on a YARN cluster. Even though we only

1. Yarn Tracking is published at https://bitbucket.org/hasonhai/yarntracking

2. Yarn Prototype is published at https://github.com/hasonhai/hadoop

2017 IEEE 6th International Congress on Big Data



apply these ideas to YARN - a Hadoop resource management
system, we believe that our approach can be applied to other
distributed platforms as well.

II. RELATED WORKS

Cluster are generally under-utilized because of either re-
source usage slack or allocation slack. The resource usage
slack represents the resource that is allocated to jobs but
not used by jobs. In some contexts, this is also called over-
allocation. The allocation slack is the available resource that
is not allocated because of some system constraints or because
of a lightweight workload.

In order to increase resource utilization, jobs and tasks are
profiled to study resource demands or to estimate jobs and
tasks runtime. So that identical jobs can be scheduled more
efficiently [9], [12], [13], [14] or tasks are placed on node
more optimized [7]. The authors in [7] state that the current
scheduling algorithms which are only based on one or two
types of resource (memory and CPU) are not optimal. They
introduces Tetris which schedules jobs based on the 4 kinds
of task demand: disk, network, CPU, and memory. Tasks are
profiled on resource demands and packed on worker node to
optimize for job makespan, solve the resource fragmentation
and over-allocation problem. For makespan, they reduce 29%
comparing to the Capacity Scheduler and 27.5% comparing to
the Dominant Resource FairShare scheduler[6]. In [14] Curino
et al. claim that the lack of predictability and time-awareness
is the key limitation for modern frameworks. With Rayon, they
attempt to increase the utilization of the cluster by providing
a declarative resource demand language (RDL) so that job
submitters can declare all of their demands at submission time.
By using a global view on the resource needs of all jobs, the
cluster management system can reserve resources ahead and
ensure predictable resource-allocation for production jobs and
also minimal latency for best-effort jobs.

Another approach is resource over-subscription. While static
over-subscription enables conservative and predictable over-
subscription, dynamic over-subscriptions shown to make over-
subscription more robust and precise for utilizing the actual
slack resources. Dynamic over-subscription has been deployed
in Borg [10] and Mesos [15]. Borg [10] gives the tasks a fixed
amount of resources in the beginning and slowly reduces the
task reservations to the actual usage with a safety margin. The
reduced amount is advertised as free resource and allowed for
other jobs to use. They claim that the reclaimed resources can
be used for 20% more of workload while the system stability
is maintained. Mesos takes similar approach but only reclaims
resources from best-effort workloads. While Borg and Mesos
manage the prediction for reservation per task, we estimate the
resource usage per node.

III. PROBLEM STATEMENT

In one study of Google [8], we see that even if cluster
resource are fully allocated to jobs or applications, the real
resource utilization is around 40 to 50% of the allocated one.
Another study on Facebook MapReduce workload trace [6]
shows that resource is allocated to job but jobs cannot use all
of them. We claim that the problem happens because of the
reservation model.

A. Tracing tool

To analyse the efficiency of the reservation/allocation model
in the context of YARN, we develop a light-weight application
that keeps track of the cluster utilization at our production
cluster including CPU, memory, storage I/O, and network I/O.
The profiling service is composed of an observer and several
trackers. A tracker is installed at each worker node. It polls
the NodeManager to know if there are containers assigned
to the NodeManager and tracks the resources used by such
containers during their execution. A container in YARN is a
Java process that runs the task. Resource used by these Java
processes is limited by the user’s reservation. The profiling
service logs the CPU utilization, memory usage, network I/O,
and disk I/O during the container lifetime. After the containers
complete their tasks, these logs are sent to a collected node
which also runs the observer. The observer polls the YARN
Timeline Server, which is a logging service of YARN, to
track the creation and completion of new jobs. When there
is new job finished on the cluster, the observer collects the
job information and the container metadata, acquires the logs
of the containers running the tasks, and merges them with
the resource utilization which is produced by the tracker. The
merged information is stored in JSON format for analyzing.

B. Cluster Resource Usage

The cluster has 3 master nodes which are installed with
master services and 6 worker nodes to run the tasks. Nodes
in this cluster have 24 cores and 64GBs of memory. YARN
is configured to used 144 cores and 324GBs of memory for
container allocation and execution. Job types are varied from
interactive jobs to batch jobs but the majority of them are short
batch jobs. Users submit jobs through hive, pig, oozie, and
Spark. We perform our profiling service during one week and
log around 8000 jobs in which there are 110000 containers.

We define the allocation efficiency as the ratio of total
resource used to the resource allocated for container during
its lifetime.

Ec “
řn

i“0 uiřn
i“0 ri

where
— Ec is the allocation efficiency of the container c
— n is the duration of the container
— ui is the resource used at time i
— ri is the resource reserved at time i
Figure 1 shows the cumulative distribution of the allocation

efficiency. We present the container, job, and user allocation
efficiency. Container allocation efficiency is the ratio of the
total resource used and the total resource allocated to a con-
tainer. Job is a group of containers. Job allocation efficiency is
the ratio between the total resource used and the total resource
allocated by all containers that belong to the jobs. Similarly,
user executes multiple jobs on a cluster. We define the user
allocation efficiency as the ratio of the total resource used and
the total resource allocated by all containers that belong to all
the user’s jobs.

Concerning CPU usage, 60% of the containers use less than
their allocation. However, they can use the resource upto 2
times their allocation. CPU over-utilization in some jobs can
be explained by two reasons. i) The default setting of YARN



(a) CPU (b) Memory
Figure 1: Cumulative distribution function of container’s allocation efficiency

does not isolate the CPU used between containers. Since each
application’s thread can use entirely one CPU core, containers
with many threads can use more CPU than their allocation.
ii) The majority of our observed jobs are short duration batch
jobs which are CPU hungry [16]. We believe when the cluster
has more interactive jobs which requires user input with long
idle time, or when the cluster was configured with cgroups for
CPU isolation, resource usage slack will appear clearer.

Concerning memory usage, each container’s memory is
isolated inside each JVM. YARN is able to control the memory
that a container uses. 90% of the containers use less than 50%
of the memory that is reserved. 90% of the applications use
less than 24% of the memory that they reserve. 90% of the
users use less than 35% of the memory that they reserves.
This may be a result of bad configuration. For example, we
see that all the containers that run the application masters only
occupy at most 35% of the memory. Our first question is if
there is a way to avoid this mis-configuration? Mappers and
Reducers do not have the same load, so there is no common
size for memory that they need. Our second question is that
if we can find a dynamic value to represent the reservation
of mappers and reducers? We present our approach to answer
these questions in section IV.

Our results indicate that we need a better way to allocate
the resource on the cluster and preferably an automatic way
which does not require human intervention and tunning. If the
scheduler is aware of the actual load on each worker node, it
can decide to push more container to that node without hurting
the performance of other containers running on the same node.
Increasing concurrency level of job can reduce job makespan.
This is the seed for our idea in the next section.

IV. ESTIMATION-BASED SCHEDULING

Nodes in a cluster generally do not have the same load si-
multaneously. Reservation-based scheduling treating all nodes
as the same is clearly not optimal. Scheduling based on real
utilization at worker nodes (WNs) can be an alternative way
to effectively utilize the resources. It allows the system to
dynamically adapt to the current state of each WN in the whole
cluster. However, as we have learned so far, tasks and resources
allocation cannot only be based on real resource utilization. We
take two examples, one with memory and one with CPU. Task

needs a few seconds to load data to memory, or longer if data
is retrieved remotely via the network. Scheduling based on
the instant value of memory utilization may lead us to assign
too many tasks because some of the tasks are at the start-up
time. Similarly, the CPU utilization varies erratically during
job execution time. If we consider only the instant load of the
CPU which can be a short decline at peak time, we may assign
too many tasks to a heavy loaded node which will introduce
the costly context switching.

To get the advantages of both paradigms (reservation and
real usage), we propose a mechanism which takes into account
both the reservation and the real utilization at node. The main
idea is doing an estimation on the resource that the task can
use by i) taking the reference on the actual usage at WNs
by averaging (eq. 1), this averaging method also prevents
the estimation to vary too fast and with high amplitude, ii)
preparing for the low usage of the resource at the start-up
time of the tasks (eq. 2) iii) correcting the estimation when it
goes wrong because of sudden utilization spikes (eq. 3).

Assume that we have a cluster with one resource manager
(RM) and several worker nodes for executing the tasks. Denote
by URpnq, the utilization of resource R measured at time n
and sent by a worker node to the RM. We assume the time
is discretized. The nodes of the cluster periodically send to
the RM the current level of utilization of the resources. The
resource manager updates its estimate, EUR pnq, of the resource
R with the measurement URpnq sent by the node to which
R is attached, and its previous estimate, EUR pn´1q, with an
averaging formula:

EUR pnq “ p1´ αqEUR pn´1q ` αURpnq (1)

where α is a damping factor. As an important advantage
compared to today’s RM solutions, this method allows adjust-
ing the estimate of the level of utilization of resource R with
a correcting factor composed of the measured utilization level
at the node. This allows for the RM to allocate supplementary
jobs if the utilization level is lower than the reservation, or
on the contrary to avoid allocating more jobs if the utilization
level is too high.

Denote by RRJ the resource requirement for a resource of
the same type as resource R declared by a job J . When the
RM decides to allocate RRJ of resource R to job J at time



Figure 2: Memory and CPU utilization of the cluster when reservation model is used (top figures) and when the estimation
model is used (bottom figures).

n, the RM instantly updates the current value of its estimate
of that resource usage, EUR pnq, in the following way:

EUR pnq ÐÝ EUR pnq `RRJ (2)

This allows for the RM to allocate at least as many jobs
using R as it would basing only on reserved resources. The
RM can take instant decisions without having to wait to
“learn” how much resource the job will effectively use. So
equations 1 and 2 allow simultaneously to “learn” how much
resources the jobs are using by taking into account the resource
usage measurements (cf. equation 1) and to take instantly into
account the resource requested reservation (cf. equation 2). A
user submitting a job may now not worry about a precise
estimation of the resources that her job will consume. A
resource requirement for her job are only used as a gross
estimate to know if there is enough space for it to run. Even
if it is overestimated or mis-configured, the update performed
by equation 1 will allow the over-estimated resources to not
be blocked indefinitely until the job stops. If we apply these to
the cases where jobs are idle in an intermittent manner such as
interactive jobs waiting for user inputs, or real time services at
low load moment, the blocked resources by user’s reservation
can be reclaimed for other jobs during these idle periods.

The current resource usage at a node may increase suddenly
due to external load by other applications, by a sudden input
from user of interactive jobs, or by the arriving at peak time of
data processed by real time services. We correct the resource
estimation with equation 3 to prevent later scheduling decision
overloading the node.

EUR pnq “ URpnq if EUR pnq ă URpnq (3)

The damping factor can control how fast the estimation
adapts to the real utilization at the node. When the damping
factor is too small, it takes long time for the estimation to
converge to the real utilization and leave resource wasted. Let
nJ be the execution time of task J , we apply equation 4 when
task J finishes to remove the residual estimation for task J
from the estimation for the node.

EUR pnq ÐÝ EUR pnq ´ p1´ αqnJRRJ (4)

V. EVALUATION ON SIMULATOR

To study the performance of the new scheduling model,
we develop a simulator to replay the trace that we collected
with our profiling tool. The simulator simulates a cluster with
many nodes. Each node is defined with a number of cores
and an amount of memory. When assigning a task to a node,
the simulator priories the node that has more resources. Input
tasks are parsed from the trace that we analyzed in section III.
They are queued to run in FIFO order based on the creation
time.

We classified resources into two different types: compress-
ible and non-compressible resources. Compressible resources
are rate-based like processing power, network I/O bandwidth,
and disk I/O bandwidth. If these resources are overloaded, the
task will not crash but slow down. In our simulator, when all
the tasks demand the CPU resource more than the capacity of
the node, some of the tasks will be served only a part of their
demands, the remains will be served in the next second. This
is to simulate the context switching penalty.

On the other hand, non-compressible ones are like memory
or disk space which will cause the task to crash if it is
over-used. If the crashed task is an important task like the
application master in YARN which manages the whole job
or a critical task in the middle of a complex data flow, the
penalty of crashing is worse. In our simulator, when memory
demanded reaches the node capacity, all the demanding task
will break and send back to the scheduler for later execution.
Our simulator treats all tasks equally so there is no dependence
between tasks. Therefore, if one task fails, only that task will
be re-scheduled.

A. Avoiding the reservation bottleneck

The goal of our first experiment is to show if the new model
can avoid resource wastage because of user over-demand
and avoid the reservation bottleneck. In this experiment, the
simulated cluster composes of 8 worker nodes. Each node is set
with 32 GBs of memory and 24 cores. In each node, 28 GBs of
memory and 18 cores are configured for the parallel processing
framework to use. The workload are parsed from a one-day
trace on our production cluster which contains about 18000



Figure 3: Resource utilization for the reservation model (top strip) and the estimation model (bottom strip) shows almost
identical performance. The reservation model in its ideal scenario where it knows the maximum resource usage of task. The
reservation model in its worst scenario to avoid tasks crash where it schedule based on the past estimation in a memory-
constraint cluster with tied reservation from user

tasks. We compare the resource utilization of the reservation
model and our estimation model.

Figure 2 shows the utilization for the whole cluster which
is a summation of all node at the same point in time. In the
legends, the capacity is the total capacity of the cluster. The
allowance is the desired maximum utilization that we would
like to have. In the reservation model, the allowance is the
configured node capacity that the administrator configures at
each node. The estimation is our current estimation on the
resource usage of the cluster. The gap between the allowance
and the estimation is the available resources that we can
allocate tasks. The gap between the allowance and the capacity
can be used as a safety margin for our estimation algorithm
since sometimes the estimation and the real utilization can
exceed the allowance and cause tasks to break. The reservation
is the total resource reserved by all executing tasks at the
current time. The reservation model allocates tasks based on
the reservation while the estimation model allocates them
based on the current estimation.

We show 16% faster completion times of all tasks in the
trace when our estimation algorithm is applied. The top strip
shows that the reservation model gets bottleneck because
users over-demand for memory resource. With the traditional
reservation scheduling, even if we always have tasks to execute,
the node will only use around 50% of the available memory.
This leads to longer time to finish the workload. With the
estimation algorithm (the bottom strip in the two figures),
the system learns the resource usage by the workload and
automatically shift the bottleneck from memory resource to
CPU resource which the best response that the system should
have. We observe that there is zero task failed because of the
memory consumption in the test.

B. Avoiding memory saturation

Because of the resource usage slack, our scheduling model
likely assigns more concurrent tasks to the node than the
reservation model. If disk swapping is disabled, tasks will
crash when the memory of the system saturates. We would
like to confirm the response of our scheduling model when
memory is the main constraint on the cluster.

To simulate the case where memory is the bottleneck, we
create one simulated cluster with eight slave nodes. Each node
has 32 GBs of memory and 64 cores. Nodes were configured
to allow the utilization of memory to go up to 28 GBs, and
of CPU to go up to 58 cores when executing tasks. Note that
one core and one GB of memory are assigned by default to
the OS and the other applications.

We replay also the trace of one day of our production cluster.
The task durations fall in between several seconds and 1000
seconds, but the majority of them have duration from 10 to
100 seconds. In this experiment, we assume that users know
in advance the memory that their task needs. So the resource
reservation for each task is the exact maximum memory and
CPU used. This setting is called Extreme Fit Reservation. To
implement this setting, we replace the old reservation value
of the memory in the trace with the maximum memory used
by the task. This setting is the ideal case for the reservation
model because: i) it minimizes the resource usage slack so all
the tasks will complete fastest. ii) it guaranties that, at any
moment, the total consumption of memory of all tasks will
not be higher than the allowance. Therefore there is no task
failed because of insufficient memory and every task has its
resource ready for use. However, applying this workload to
our estimation algorithm will place it in the worst situation to
avoid memory saturation and container crashes.

Figure 3 is our simulation results where the top strip is
for the reservation model, and the bottom strip is for the
estimation model. We select damping factor of 0.125 (see
the next section for a discussion on the sensitivity of the
damping factor). Even though this is an ideal scenario for
the reservation model and our estimation model in its most
disadvantaged scenario, the performance of the two models is
almost similar. Through several test runs, we observe a failure
rate of 0,37% (or 64/17385 failed tasks) which does not impact
the job performance.

C. Damping Factor Sensitivity
The only parameter in our algorithm is the damping factor

in equation 1. The damping factor controls how fast the
estimation adapts to the real utilization at worker nodes. The
damping factor has an impact on the stability of the system.



When the damping factor is zero, our model acts like a
reservation model which is the most stable but also more
resource wasted. When it is one, the system depends only
on the current load at the worker nodes, which wastes less
resource but is also less stable.

We define the stability of the system as the failure count
of the executed tasks (assuming disk swapping is isolated).
Large clusters focus on resource isolation to keep system
stability, while small clusters often squeeze for every bit of
performance from the hardware. The reason for reservation
model to be popular in many resource management systems is
that it is simple and it provides resource isolation protection
for tasks. That means job j reserves an amount of resource r
for task t, that resource r will be kept until task t finishes.
The best scenario happens when users know in advance the
demand of theirs tasks. This is why there are two approaches
to improve resource utilization for reservation model: i) learn
the exact demand of tasks so that in later runs the system
can prepare resource better or the user can reserve better. The
benefit of this method is that the stability of the system is
preserved because the total consumption of resource never
exceeds the capacity of the system. However it requires to learn
the resource usage of identical tasks. Even though it is proved
that this method can improve the performance[7], applying
the resource usage learnt from identical tasks to different
data may result in different resource usage, which may give
unexpected performance. ii) over-subscribe the cluster. The
benefit of this method is that it just needs the administrators to
observe the global load of cluster and configure the resource
and the workload to best fit their cluster. This requires human
intervention some stability studies for the workload (like borg
[10] has done to choose safety margin when doing resource
reclaiming for over-subscribing).

We repeat the experiment in V-B with different settings for
the damping factor to study the stability of the system. We
compare the impact of the damping factor for the test case
with the Resource Requested by Users (RRU) and for the
test case with Extreme Fit Reservation (EFR). In figure 4 we
presents the fraction of crashed tasks to the total submitted
tasks and the completion times of the workloads for different
damping factors. For EFR, failure count starts to raise when
damping factor is 0.1 while it does so for RRU when the
damping factor is 0.175. We observe that completion times
for the workloads on the system decrease until the damping
factor reaches 0.3 (and stay constant after) even though we
have more crashed tasks and we have to re-schedule them.
Note that in our simulator as with Map and Reduce tasks,
tasks are not depended on each other so a failed task will not
cause other tasks to fail. However, in practice, tasks may have
dependency and the penalty of task crashing can be critical.
It is preferable to select the damping factor with low value.
We care for system stability so we select the damping factor
of 0.125 for all of our tests in the simulator and in the real
implementation.

VI. EVALUATION ON REAL SYSTEM

We implement our solution for YARN as a prototype to
study the performance that we can get in practice.

Figure 4: Fraction of crashed tasks to the total submitted tasks
because of memory over-demanded

Figure 5: Node parameters to consider for scheduling

A. New YARN implementation

In YARN, the term container often means a task or a
group of tasks executed inside a Java Virtual Machine (JVM).
When discussing about the container, we means the task or
the process that run inside the JVM. In this paper, we only
consider the case of one task per JVM. Figure 5 indicates
the parameters that we consider when allocating resource to
node. While the original YARN only takes into account the
allowance (the static resource capacity of node configured by
administrators) and the current allocation (total reservation by
all users), we consider also the real capability of the node,
the current node utilization and the aggregated utilization of
all containers. The node utilization is the current utilization of
all applications and OS on the whole node. The aggregated
container utilization is the total resource utilized by only the
YARN containers.

Described in figure 6 is our prototype for YARN. At node
registering process, worker nodes report to the Resource Man-
ager their real resource capacity together with the configured
capacity set by administrators which we call the "allowance".
A resource monitoring service is added to track the resource
usage of node. This service can run the estimation described
in section IV at a worker node to shift the overhead from the
Resource Manager RM to the NodeManager (NM). Running
the estimation at worker side will introduce a small amount
of allocating latency at maximum of two heartbeats due to
RM waiting for the resource update from NM. Running the
estimation at master side increases the heartbeat processing
time which is critical for big clusters with thousands of nodes.
For small clusters, we prefer to calculate at the master side,
while for big clusters, we prefer doing it at worker side. The
dash line is the feedback flow when we run the estimation at



Figure 6: Implementation of the new YARN

NM.
Finding the available memory of the system is a delicate

task. Memory in Linux is managed by pages and each applica-
tion has a virtual memory space which has each page mapped
to another page in the physical memory space. Because of
the optimization of the OS, the unused memory can be used
for page caching to increase application performance and the
system will dump the inactive page cache if needed to satisfy
allocation requests. Therefore the free memory reported in
/proc/meminfo file is alway low. It is not a good measure for
the available memory because not all cache is needed and
useful for improving application performance. Recent Linux
kernels built from 2016 provide an estimation on how much
memory is available for starting new applications without
pushing the system into swap. This is a good estimation of
the space available for containers. However, this information
is not available in older kernels. For those kernels, we estimate
the available memory by the free memory size and half of the
inactive page size.

We extend the heartbeat content of NM to include the node
utilization and the aggregated utilization of current containers.
These heartbeats are sent to RM every second or few seconds
depending on the size of the cluster. Upon receiving the
heartbeat, the RM calculates the availability of the resources
of each node as follow (see figure 5):

Denote by AR the allowed resource on node A. AR is
the desired level of utilization that we would like node A to
achieve when executing tasks on that node. Let ACU be the
current aggregated resource utilization of all tasks executed
on node A. We define the available configured resource by:
available_configured_resource “ AR´ACU (5)

Denote by RU the Resource Usage Estimation that we
calculated by applying the algorithm on section IV and by NC
the capacity of the node. We find the available node resource
by: available_node_resource “ NC ´RU (6)

The available resource is the min() of eq. 5 and eq. 6.
In our prototype for YARN, we only consider CPU and

memory. In order not to completely redesign the YARN
scheduling system, our ”available resource” is only used to
rescale the node total resource capacity as presented to Yarn
scheduling. We scale up the total resource configured for the
node if the available resource is positive and scale down if the
available is negative. In the class "RMNode" which is managed
by the main RM service, we add the information about the real
capacity of node. In the class "SchedulingNode", we store the

information of the current resource usage of node. We mostly
modified the ”abstract scheduler” class which is the base of
all YARN schedulers. In this class, we ”refresh” or "rescale"
the capacity of the worker node and update the total capacity
of the cluster after each estimation is received. Other decision
making process and scheduling policies of FairShare, Capacity,
and FIFO scheduler are kept as is.

B. System under test

To evaluate our new scheduler, we deploy a cluster with
6 Virtual Machines (VM) on OpenStack, each of them is
configured with 8 virtual cores, 8 GBs of memory, and 160
GBs HDD. VMs are installed with Ubuntu LTS 16.04, Java
OpenJDK 1.8, Hadoop 2.7.1, and Hive 2.1.0. We take the
result of original YARN (version 2.7.1) as the base to compare
with the improvement made by the modified YARN.

The original Yarn is configured with the minimum alloca-
tion set to 1 core and 1 GBs of memory. YARN is allowed
to use at most: 7 cores and 7 GBs of memory. We leave
the remaining resources to the OS and other utilities. For
the prototype, the allowance is set similarly. For doing the
estimation of node resource usage, we set the damping factor
α to 0.125 as the in previous section.

C. Workloads

In order to make the evaluation repeatable, we use the stan-
dard TPC-DS benchmark which is de-facto industry standard
benchmark for measuring the performance of decision support
solutions. This TPC-DS benchmark is re-implemented for Hive
which is published as Hive Testbench [11] by HortonWorks.
The test was run with 200GB of data input (scale factor 200),
partitioned by day. In this experiment, we focus on memory
and CPU resources. Therefore, before each query is executed,
we balance the blocks of HDFS files across the cluster once
to maximize data-locality and to minimize the chance that the
network becomes the bottleneck. A total of 60 queries were
run as-is with no additional hinting, and there was no special
tuning used for any of the queries. Some of the queries can
be complex queries involving multiple tables and generating
large intermediate datasets. Others can be queries that return
large amounts of data for further processing by other tools.

Our algorithm is just a method to estimate how much
resource the node does have and it do not change any schedul-
ing policies of the schedulers like the Capacity scheduler,
the FairShare scheduder, and the FIFO scheduler of YARN.



Therefore, we run the query serially and only make sure that
the query can fill-up the cluster with parallel tasks on each
node. Queries were executed in 3 times on MapReduce engine.
In this setting, a query is a chain of MapReduce jobs, one
MR job’s output is another MR job’s input. We notice that
some of the jobs in the chain may not occupy the whole
cluster, but the majority of them are able fill up the cluster. We
also note that the containers are generated by the same query,
so the containers are rather homogeneous, which is rather a
pessimistic assumption for our algorithm.

D. Results

Figure 7: CDF for speed-up factor of all queries in the tests
when comparing to original YARN as base

The speed-up factor is measured as the ratio of the comple-
tion time of the query on new system to the completion time
of query on the original system. We report in figure 7 the
cumulative distribution function of the speedup factors for all
60 executed queries. Queries having value for speedup factor
larger than one completed faster than their version executed in
standard Yarn. We reported the results of 2 different settings:
Est_3G and Est_2G. In ”Est_3G” and ”Est_2G” users request
3 GBs and 2GBs of memory for each task, respectively. Almost
all of the queries improve their completion time. A few of them
show similar or longer completion times. As we investigate,
these queries have many small stages in the data processing
pipeline which cannot take the advantages of parallelism. In
average, the queries in the ”Est_3G” test complete 23% faster,
and the queries in the ”Est_2G” test complete 44% faster.
”Est_2G" completes faster than ”Est_3G” since the actual
resource demand of tasks is less than 2 GBs of memory,
the system needs less time to converge to the real utilization
of nodes. We also ran tests with "Est_1G" but we did not
presented in the figure because tasks often failed for both
reservation model and estimation model because the memory
usage of the task exceeded the user reservation for the task.
We also confirm that during Est_3G and Est_2G tests very
few tasks failed.

VII. CONCLUSION

The reservation model is simple and is a popular model
for current resource management frameworks. However, it
will waste resources and needs careful monitoring by cluster
administrators. In this work, we aim to introduce a new
and simple model for resource management which is based
on resource usage feedback from worker nodes. This model
helps to avoid reservation bottleneck by users over estimating
their needs and to effectively utilize the resources without

sacrificing for system stability or without the necessity to learn
the workload resource usage.

In addition, we introduce a tracing tool to collect the job
utilization, an algorithm to improve scheduling decision, a
simulator to replay the trace and to study the stability of
the system, and a new improved YARN that is aware of the
resource usage at worker nodes.

With the tracing tool, we show that the reservation model
leaves a large potential space for improving resource utilization
and avoiding wasting resources. With the simulator, we prove
that there is a better model to allocate resource to tasks without
sacrificing system stability. With our modified YARN, we
show that we can reduce the completion time for the jobs
from 23% to 44% on the diversified Hive Testbench.

A thorough test on the real system with heterogeneous
worker nodes would be the extension of our paper. We mainly
focused on batch tasks. It would be interesting in a next step
to take into account interactive tasks.

ACKNOWLEDGMENT

The research leading to these results has received funding
from Orange SA and the EU commission in call H2020-
644182, project “IOStack”.

REFERENCES

[1] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.,” in NSDI, vol. 11, pp. 22–22, 2011.

[2] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
Proc. 8th European Conf. on Comp. Systems, pp. 351–364, ACM, 2013.

[3] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing, p. 5, ACM, 2013.

[4] D. K. Rensin, “Kubernetes-scheduling the future at cloud scale,” 2015.
[5] Facebook, “Scheduling MapReduce jobs more efficiently with Corona.”

https://goo.gl/13Va9z, 2012. [Online; accessed 30-August-2016].
[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and

I. Stoica, “Dominant resource fairness: Fair allocation of heterogeneous
resources in datacenters,” in Proc. of NSDI, 2010.

[7] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in ACM SIGCOMM
Computer Communication Review, vol. 44, pp. 455–466, ACM, 2014.

[8] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in Proc. 3rd ACM Symp. on Cloud Computing, p. 7, ACM, 2012.

[9] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and
S. Rao, “Efficient queue management for cluster scheduling,” in Proc.
11th European Conf. on Computer Systems, p. 36, ACM, 2016.

[10] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proc. 10th European Conf. on Computer Systems, p. 18, ACM, 2015.

[11] C. Shanklin, “Testbench for Apache Hive at any data scale..” https://goo.
gl/FCthvV, 2017. [Online; accessed 11-January-2017].

[12] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pp. 499–510, 2015.

[13] P. Delgado, F. Dinu, D. Didona, and W. Zwaenepoel, “Eagle: A better
hybrid data center scheduler,” tech. rep., 2016.

[14] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao, “Reservation-based scheduling: If you’re late don’t blame
us!,” in Proc. ACM Symp. on Cloud Computing, pp. 1–14, ACM, 2014.

[15] N. Nielsen, “Turbocharging your Mesos cluster with
oversubscription.” https://mesosphere.com/blog/2015/08/26/
turbocharging-your-mesos-cluster-with-oversubscription/, 2015.
[Online; accessed 30-August-2016].

[16] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan, “Clash of the titans: Mapreduce vs. spark for large scale data
analytics,” Proc. of the VLDB Endowment, vol. 8, no. 13, 2015.


