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Random Feature Expansions for Deep Gaussian Processes

Table 1. Performance of our proposal on large-scale datasets.

Dataset Accuracy
RBF ARC

MNLL
RBF ARC

MNIST8M 99.14% 99.04% 0.0454 0.0465
AIRLINE 78.55% 72.76% 0.4583 0.5335

4.2. Large-scale Datasets

One of the defining characteristics of our model is the abil-
ity to scale up to large datasets without compromising on
performance and accuracy in quantifying uncertainty. As
a demonstrative example, we evaluate our model on two
large-scale problems which go beyond the scale of datasets
to which GPs and especially DGPs are typically applied.

We first consider MNIST8M, which artificially extends the
original MNIST dataset to 8+ million observations. We
trained this model using the same configuration described
for standard MNIST, and we obtained 99.14% accuracy
on the test set using one hidden layer. Given the size of
this dataset, there are only few reported results for other
GP models. Most notably, Krauth et al. (2017) recently
obtained 99.11% accuracy with the AutoGP framework,
which is comparable to the result obtained by our model.

Meanwhile, the AIRLINE dataset contains flight informa-
tion for 5+ million flights in the US between Jan and Apr
2008. Following the procedure described in Hensman et al.
(2013) and Wilson et al. (2016), we use this 8-dimensional
dataset for classification, where the task is to determine
whether a flight has been delayed or not. We construct the
test set using the scripts provided in Wilson et al. (2016),
where 100, 000 data points are held-out for testing. We
construct our DGP models using 100 random features at
each layer, and set the dimensionality to DF (l) = 3. As
shown in Table 1, our model works significantly better
when the RBF kernel is employed. In addition, the results
are also directly comparable to those obtained by Wilson
et al. (2016), which reports accuracy and MNLL of 78.1%
and 0.457, respectively. These results give further credence
to the tractability, scalability, and robustness of our model.

4.3. Model Depth

In this final part of the experiments, we assess the scala-
bility of our model with respect to additional hidden layers
in the constructed model. In particular, we re-consider the
AIRLINE dataset and evaluate the performance of DGP-RBF
models constructed using up to 30 layers. In order to cater
for the increased depth in the model, we feed-forward the
original input to each hidden layer, as suggested in Duve-
naud et al. (2014).
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Figure 4. Left and central panels - Performance of our model on
the AIRLINE dataset as function of time for different depths. The
baseline (SV-DKL) is taken from Wilson et al. (2016). Right
panel - The box plot of the negative lower bound, estimated over
100 mini-batches of size 50, 000, confirms that this is a suitable
objective for model selection.

Figure 4 reports the progression of error rate and MNLL
over time for different number of hidden layers, using the
results obtained in Wilson et al. (2016) as a baseline (re-
portedly obtained in about 3 hours). As expected, the
model takes longer to train as the number of layers in-
creases. However, the model converges to an optimal state
in every case in less than a couple of hours, with an im-
provement being noted in the case of 10 and 20 layers over
the shallower 2-layer model. The box plot within the same
figure indicates that the negative lower bound is a suitable
objective function for carrying out model selection.

5. Conclusions
In this work, we have proposed a novel formulation of
DGPs which exploits the approximation of covariance func-
tions using random features, as well as stochastic varia-
tional inference for preserving the probabilistic representa-
tion of a regular GP. We demonstrated how inference using
this model is not only faster, but also frequently superior
to other state-of-the-art methods, with particular empha-
sis on competing DGP models. The results obtained for
both the AIRLINE dataset and the MNIST8M digit recogni-
tion problem are particularly impressive since such large
datasets have been generally considered to be beyond the
computational scope of DGPs. We perceive this to be a
considerable step forward in the direction of scaling and
accelerating DGPs.

The results obtained on higher-dimensional datasets
strongly suggest that approximations such as Fastfood (Le
et al., 2013) could be instrumental in the interest of using
more random features. We are also currently investigating
ways to mitigate the decline in performance observed when
optimizing Ω variationally with resampling. The obtained
results also encourage the extension of our model to in-
clude residual learning or convolutional layers suitable for
computer vision applications.
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Deep Gaussian Processes
! Deep probabilistic models;

! Composition of functions:

f(x) =
(
h(Nh−1)

(
θ(Nh−1)

)
◦ . . . ◦ h(0)

(
θ(0)

))
(x);

h(0)(x) h(1)(x) h(0)
(
h(1) (x)

)

Fig. 1: Illustration of how stochastic processes may be composed.

! Inference requires calculating the marginal likelihood:

p(Y |X,θ) =

∫
p
(
Y |F (Nh),θ(Nh)

)
× p

(
F (Nh)|F (Nh−1),θ(Nh−1)

)

× . . .× p
(
F (1)|X,θ(0)

)
dF (Nh) . . . dF (1);

! Extremely challenging!

DGPs with Random Features

! GPs are single layered Neural Nets with an infinite
number of hidden units;

! Taking a weight-space view of a GP:

F = ΦW ;

! The priors over the weights are:

p (W ·i) = N (0, I) ;

...

...

ΦX F

Ω W

Fig. 2: Single layered GP.

! The RBF kernel:

krbf(x,x
′) = exp

[
−1

2
(x− x′)⊤(x− x′)

]
=

∫
p(ω) exp

(
ι(x− x′)⊤ω

)
dω

can be approximated using trigonometric functions:

Φrbf =

√
σ2

NRF
[cos (FΩ) , sin (FΩ)] with p (Ω·j |θ) = N

(
0,Λ−1

)
,

allowing for scaling factors σ2 and Λ = diag(l21, . . . , l
2
d) for the kernel and the features;

! Meanwhile, the first order Arc-Cosine kernel:

karc(x,x
′) =

1

π
∥x∥ ∥x′∥ J(α) = 2

∫
max(0,ω⊤x)max(0,ω⊤x′)N (ω|0, I) dω where

J(α) = sinα+ (π − α) cosα and α = cos−1

(
x⊤x′

∥x∥∥x′∥

)

can be approximated using Rectified Linear Units (ReLU):

Φarc =

√
2σ2

NRF
max (0, FΩ) with p (Ω·j |θ) = N

(
0,Λ−1

)
.

Model Architecture
! DGPs with RFs become DNNs with low-rank weight matrices!

θ(0) θ(1)

Φ(0)X F (1) Φ(1) F (2) Y

Ω(0) W (0) Ω(1) W (1)

Fig. 3: Diagram of the proposed DGP with random features.

Stochastic Variational Inference
! Define Ψ = (Ω(0), . . . ,W (0), . . .);

! Lower bound on Marginal Likelihood:

log [p(Y |θ)] ≥ Eq(Ψ) (log [p (Y |Ψ)])−DKL [q(Ψ)∥p (Ψ|θ)] ,

where q(Ψ) approximates p(Ψ|Y ,θ);

! Factorized approximate posterior:

q(Ψ) =
∏

ijl

q
(
Ω(l)

ij

)∏

ijl

q
(
W (l)

ij

)
,

with
q
(
W (l)

ij

)
= N

(
µ(l)
ij , (σ

2)(l)ij

)
and q

(
Ω(l)

ij

)
= N

(
m(l)

ij , (s
2)(l)ij

)
;

! Assuming factorized likelihood, we can use mini-batch stochastic gradient optimization:

n

m

∑

k∈Im

Eq(Ψ)(log[p(yk|Ψ)])−DKL[q(Ψ)∥p(Ψ|θ)];

! The expectation can be estimated using Monte Carlo:

Eq(Ψ) (log [p(yk|Ψ)]) ≈ 1

NMC

NMC∑

r=1

log[p(yk|Ψ̃r)],

with Ψ̃r ∼ q(Ψ);

! Computational cost dominated by low-rank matrix multiplication - no inverses required;

! Various optimization strategies for Ω available.

1 1.5 2 2.5 3 3.5

0.2

0.4

log10(RFs)

RMSE

1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

log10(RFs)

MNLL

prior-fixed var-fixed var-resampled

Fig. 4: Performance of different strategies for dealing with Ω as a function of the number of random features.These can be fixed
(PRIOR-FIXED), or treated variationally (with fixed randomness VAR-FIXED and resampled at each iteration VAR-RESAMPLED).

Experimental Setup and Results
! Competing methods:

– DGP with RBF Kernel (DGP-RBF);
– DGP with first order Arc-Cosine Kernel (DGP-ARC);
– DGP with Expectation Propagation (DGP-EP);
– Sparse GP with Variational Inference (VAR-GP).

Regression
Power plant Dataset

(n = 9568, d=4)
Protein Dataset
(n = 45730, d=9)
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Classification
Spam Dataset

(n = 4061, d=57)
EEG Dataset

(n = 14979, d=14)
MNIST Dataset

(n = 60000, d=784)
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Fig. 5: Progression of RMSE and MNLL on test data over time for competing DGP models.

! Easily extendable architecture with option to feed-forward inputs.
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Fig. 6: Left and center - Performance of our model on the AIRLINE dataset as function of time for different depths. Right - The box
plot of the negative lower bound confirms this is a suitable objective for model selection.

Conclusions
! Our contributions:

✓ Complete specification and evaluation of DGPs based on random features;
✓ Scalable and practical DGP inference - no inverses;
✓ Synchronous/asynchronous distributed implementation available;

! Ongoing work:

– Fastfood and other kernels;
– Convolutional DGPs for image processing.
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