Random Feature Expansions for Deep Gaussian Processes

Kurt Cutajar¹, Edwin V. Bonilla², Pietro Michiardi¹, Maurizio Filippone¹

¹ EURECOM, Sophia Antipolis, France

² University of New South Wales, Sydney, Australia

ICML 2017 - August 9th 2017

Deep Gaussian Processes

- Deep probabilistic models
- \cdot Composition of functions

$$\mathbf{f}(\mathbf{x}) = \left(\mathbf{h}^{(N_{\mathrm{h}}-1)}\left(\mathbf{\theta}^{(N_{\mathrm{h}}-1)}\right) \circ \ldots \circ \mathbf{h}^{(0)}\left(\mathbf{\theta}^{(0)}\right)\right)(\mathbf{x})$$

• Inference requires calculating the marginal likelihood:

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \int p\left(\mathbf{Y}|F^{(N_{\rm h})}, \boldsymbol{\theta}^{(N_{\rm h})}\right) \times \\ p\left(F^{(N_{\rm h})}|F^{(N_{\rm h}-1)}, \boldsymbol{\theta}^{(N_{\rm h}-1)}\right) \times \ldots \times \\ p\left(F^{(1)}|\mathbf{X}, \boldsymbol{\theta}^{(0)}\right) dF^{(N_{\rm h})} \ldots dF^{(1)}$$

Very challenging!

- Variational DGP (Damianou and Lawrence, 2013)
- Sequential Inference for DGPs (Wang et al., 2016)
- DGP with Expectation Propagation (Bui et al., 2016)
- Variational Auto-Encoded DGP (Dai et al., 2017)
- Dropout as a Bayesian Approximation (Gal and Gahramani, 2016)
- Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors (Louizos and Welling, 2016)

- Variational DGP (Damianou and Lawrence, 2013)
- Sequential Inference for DGPs (Wang et al., 2016)
- DGP with Expectation Propagation (Bui et al., 2016)
- Variational Auto-Encoded DGP (Dai et al., 2017)
- Dropout as a Bayesian Approximation (Gal and Gahramani, 2016)
- Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors (Louizos and Welling, 2016)

- Variational DGP (Damianou and Lawrence, 2013)
- Sequential Inference for DGPs (Wang et al., 2016)
- DGP with Expectation Propagation (Bui et al., 2016)
- Variational Auto-Encoded DGP (Dai et al., 2017)
- Dropout as a Bayesian Approximation (Gal and Gahramani, 2016)
- Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors (Louizos and Welling, 2016)

- 1. Faster learning without compromising performance
- 2. Scalable to very large datasets
- 3. Extendable to a moderate number of layers

- 1. Faster learning without compromising performance
- 2. Scalable to very large datasets
- 3. Extendable to a moderate number of layers

- 1. Faster learning without compromising performance
- 2. Scalable to very large datasets
- 3. Extendable to a moderate number of layers

- 1. Faster learning without compromising performance
- 2. Scalable to very large datasets
- 3. Extendable to a moderate number of layers

DGP Architecture

DGPs with Random Features

• GPs are single-layered Neural Nets with an infinite number of hidden units

• Weight-space view of a GP

 $F = \Phi W$

 \cdot The priors over the weights are

 $p(W_{i}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$

- $\cdot\,$ The RBF kernel
- The first order Arc-Cosine kernel

• The RBF kernel can be approximated using trigonometric functions

$$\Phi_{\text{RBF}} = \sqrt{\frac{\sigma^2}{N_{\text{RF}}}} \left[\cos\left(F\Omega\right), \sin\left(F\Omega\right) \right] \quad \text{with} \quad p\left(\Omega_{.j} \middle| \theta\right) = \mathcal{N}\left(\mathbf{0}, \Lambda^{-1}\right)$$

allowing for scaling factors σ^2 and $\Lambda = \text{diag}(l_1^2, \dots, l_d^2)$

• The first order Arc-Cosine kernel can be approximated using Rectified Linear Units (ReLU)

$$\Phi_{ARC} = \sqrt{\frac{2\sigma^2}{N_{RF}}} \max(\mathbf{0}, F\Omega) \quad \text{with} \quad p\left(\Omega_{.j} \middle| \theta\right) = \mathcal{N}\left(\mathbf{0}, \Lambda^{-1}\right)$$

Random Feature Expansion of Kernels

• The RBF kernel can be approximated using trigonometric functions

$$\Phi_{\text{RBF}} = \sqrt{\frac{\sigma^2}{N_{\text{RF}}}} \left[\cos\left(F\Omega\right), \sin\left(F\Omega\right) \right] \quad \text{with} \quad p\left(\Omega_{.j} \middle| \theta\right) = \mathcal{N}\left(\mathbf{0}, \Lambda^{-1}\right)$$

allowing for scaling factors σ^2 and $\Lambda = \text{diag}(l_1^2, \dots, l_d^2)$

• The first order Arc-Cosine kernel can be approximated using Rectified Linear Units (ReLU)

$$\Phi_{ARC} = \sqrt{\frac{2\sigma^2}{N_{RF}}} \max(\mathbf{0}, F\Omega) \quad \text{with} \quad p\left(\Omega_{.j} \middle| \theta\right) = \mathcal{N}\left(\mathbf{0}, \Lambda^{-1}\right)$$

DGPs with RFs become DNNs

Approximating the Marginal Likelihood

DGPs with RFs - Stochastic Variational Inference

- Define $\Psi = \left(\Omega^{(0)}, \dots, \Omega^{(L)}, W^{(0)}, \dots, W^{(L)}\right)$
- Evidence lower bound

 $\log [p(\mathbf{Y}|\boldsymbol{\theta})] \geq \mathbb{E}_{q(\Psi)} (\log [p(\mathbf{Y}|\Psi)]) - D_{\mathrm{KL}} [q(\Psi) \| p(\Psi|\boldsymbol{\theta})]$ where $q(\Psi)$ approximates $p(\Psi|\mathbf{Y}, \boldsymbol{\theta})$

• D_{KL} computable analytically if q and p are Gaussian!

DGPs with RFs - Stochastic variational inference

Assume factorized likelihood:

$$p(\mathbf{Y}|\mathbf{X}, \Psi, \boldsymbol{\theta}) = \prod_{k} p(\mathbf{y}_{k}|\mathbf{x}_{k}, \Psi, \boldsymbol{\theta})$$

Stochastic unbiased estimate of the expectation term
– Mini-batch

$$\mathbb{E}_{q(\Psi)}\left(\log\left[p(\mathbf{Y}|\mathbf{X}, \Psi, \boldsymbol{\theta})\right]\right) \approx \frac{n}{m} \sum_{\mathbf{k} \in \mathcal{I}_m} \mathbb{E}_{q(\Psi)}\left(\log\left[p(\mathbf{y}_{\mathbf{k}}|\mathbf{x}_{\mathbf{k}}, \tilde{\Psi}, \boldsymbol{\theta})\right]\right)$$

- Monte Carlo

$$\mathbb{E}_{q(\Psi)}\left(\log\left[p(\mathbf{y}_{k}|\mathbf{x}_{k},\Psi,\boldsymbol{\theta})\right]\right) \approx \frac{1}{N_{\mathrm{MC}}}\sum_{r=1}^{N_{\mathrm{MC}}}\log\left[p(\mathbf{y}_{k}|\mathbf{x}_{k},\tilde{\Psi}_{r},\boldsymbol{\theta})\right]$$

with $\tilde{\Psi}_r \sim q(\Psi)$

DGPs with RFs - Stochastic variational inference

Factorized approximate posterior

$$q(\Psi) = \prod_{ijl} q\left(\Omega_{ij}^{(l)}\right) \prod_{ijl} q\left(W_{ij}^{(l)}\right)$$

where

$$q\left(\Omega_{ij}^{(l)}\right) = \mathcal{N}\left(\mu_{ij}^{(l)}, (\sigma^2)_{ij}^{(l)}\right) \quad \text{and} \quad q\left(W_{ij}^{(l)}\right) = \mathcal{N}\left(m_{ij}^{(l)}, (s^2)_{ij}^{(l)}\right)$$

DGPs with RFs - Stochastic variational inference

Factorized approximate posterior

$$q(\Psi) = \prod_{ijl} q\left(\Omega_{ij}^{(l)}\right) \prod_{ijl} q\left(W_{ij}^{(l)}\right)$$

where

$$q\left(\Omega_{ij}^{(l)}\right) = \mathcal{N}\left(\mu_{ij}^{(l)}, (\sigma^2)_{ij}^{(l)}\right) \quad \text{and} \quad q\left(W_{ij}^{(l)}\right) = \mathcal{N}\left(m_{ij}^{(l)}, (s^2)_{ij}^{(l)}\right)$$

Reparameterization trick

$$\left(\tilde{W}_{r}^{(l)}\right)_{ij} = (s^{2})_{ij}^{(l)} \epsilon_{rij}^{(l)} + m_{ij}^{(l)}$$

with $\epsilon_{rij}^{(l)} \sim \mathcal{N}(0, 1)$

Optimization Strategies for Ω

- Random features can be fixed
 - PRIOR-FIXED
 - or treated variationally
 - VAR-FIXED (with fixed randomness)
 - VAR-RESAMPLED (resampled at each iteration)

Evaluation

Model Comparison - Binary Classification

EEG Dataset

 Consistently outperforms competing techniques both in terms of speed and predictive performance

Model Comparison - Multiclass Classification

MNIST Dataset

· Model performance remains resilient compared to other techniques

• Over 99% accuracy on variant of MNIST with 8.1 million images!

Dataset	Accuracy		MNLL		
	RBF	ARC	RBF	ARC	
MNIST8M	99.14%	99.04%	0.0454 0.4583	0.0465	_
MNIST8M AIRLINE	99.14% 78.55%	99.04% 72.76%	0.0454 0.4583	0.0465 0.5335	

Performance of Deeper Models - Airline Dataset

- Model converges to an optimal state for every configuration
- NELBO confirmed to be a suitable criteria for model selection
- · Includes feed-forward of inputs to each layer

Performance of Deeper Models - Airline Dataset

- Model converges to an optimal state for every configuration
- NELBO confirmed to be a suitable criteria for model selection
- Includes feed-forward of inputs to each layer

Conclusions

\cdot Contributions

- A complete evaluation of DGPs inspired by DNNs
- Scalable and practical DGP inference without requiring Cholesky
- A study of various options for optimizing random features
- Distributed implementation using Parameter-Server framework

Conclusions

· Contributions

- A complete evaluation of DGPs inspired by DNNs
- Scalable and practical DGP inference without requiring Cholesky
- A study of various options for optimizing random features
- Distributed implementation using Parameter-Server framework

\cdot Ongoing work

- Fastfood kernel and orthogonal random features
- Convolutional GP layers for complex image datasets
- Hybrid synchronous/asynchronous distributed approach

Code in TensorFlow:

github.com/mauriziofilippone/deep_gp_random_features

Code in TensorFlow:

github.com/mauriziofilippone/deep_gp_random_features

Poster #126

Thank you!