
Formal Specification of Security Guidelines for
Program Certification

Zeineb Zhioua
EURECOM

zeineb.zhioua@eurecom.fr

Yves Roudier
UCA - I3S - CNRS

Université de Nice Sophia Antipolis
yves.roudier@i3s.unice.fr

Rabea Ameur-Boulifa
LTCI, Télécom ParisTech,

Université Paris-Saclay
rabea.ameur-boulifa@telecom-paristech.fr

Abstract—Secure software can be obtained out of two distinct
processes: security by design, and security by certification.
The former approach has been quite extensively formalized as
it builds upon models, which are verified to ensure security
properties are attained and from which software is then derived
manually or automatically. In contrast, the latter approach
has always been quite informal in both specifying security
best practices and verifying that the code produced conforms
to them. In this paper, we focus on the latter approach and
describe how security guidelines might be captured by security
experts and verified formally by developers. Our technique
relies on abstracting actions in a program based on modularity,
and on combining model checking together with information
flow analysis. Our goal is to formalize the existing body of
knowledge in security best practices using formulas in the MCL
language and to conduct formal verifications of the conformance
of programs with such security guidelines. We also discuss our
first results in creating a methodology for the formalization of
security guidelines.

Index Terms—Security Guidelines, Security Best Practices,
Program Certification, Information Flow Analysis, Model Check-
ing, Labelled Transition Systems

I. INTRODUCTION

Organizations and companies develop very complex soft-
ware today. Errors and flaws can be introduced at differ-
ent phases of the software development lifecycle and lead
to exploitable vulnerabilities. Establishing a set of security
objectives helps produce secure software. However, ensuring
that some program complies with those security objectives is
a challenging task. Two techniques can be adopted: security
by design and security by certification. The former technique,
also called model-driven engineering for security, has been
extensively developed in the academic community, and follows
a specify, model, verify, and then implement approach. It is
well suited to classical software development featuring for in-
stance an organized V-cycle, and security objectives generally
correspond to security properties expected from software com-
ponents or communication protocols (see for instance [1]). In
contrast, the latter technique follows a build, then detect flaws
approach, based on the description of security best practices
and programming style and idioms. Apart from the safety-
critical domain, this approach has received a much wider
acceptance in the industry because security is often addressed
from a developer point of view, in a programmatic style,

rather than from a security architect perspective, as through
a comprehensive model. A number of security guidelines is
defined forming a program-oriented security policy that the
developer has to adhere to. This model is also adapted to
very different styles of software engineering including agile
methods. Unfortunately, this technique lacks automation and
formality in the way best practices are specified and verified.

In practice, companies following the security by certification
approach perform review processes and conduct audit sessions
(e.g.,[2]) comprising a wide range of experiments to verify
the compliance with general and security related policies. A
number of certification processes like the Common Criteria
methodology, for instance, account for such reviews in the way
security objectives and the target of certification are specified.
Manual reviews can be time-consuming and very costly to
companies in terms of human and financial resources, and
they can fall short in detecting security policy violations.
From a developer perspective, interpreting and applying se-
curity policies is not trivial, as those policies, translated into
security guidelines, are often written in an informal style, use
ambiguous language, and require domain expertise to interpret
them [3].

In this paper, we focus on how to capture the security
guidelines defined by security experts that developers have to
follow in the security-by certification approach. Most notably,
our ambition is firstly to help security experts disambiguate
the complex guidelines described above by formalizing them.
We make use of logical formulas based on the MCL language
in order to express such guidelines. Our technique relies
on building formulas based on actions abstracted from the
program API, that is the different software modules and their
interfaces.

We secondly aim to assist developers in their task by
automating and speeding the conformance tests that must
normally be carried out after development. Such tests usually
take weeks before a program can be deemed secure or simply
thrown back to the developer for rework. Such situations
typically arise in the framework of mobile applications stores,
that usually take up to a few days of code review. To this end,
our verification technique analyzes MCL formulas defining
security guidelines through a combination of information flow
analysis and model checking. This notably makes it possible to
analyze not only explicit, but also implicit data dependencies.
In addition, keeping our analysis as close as possible to the978-1-5386-1925-4/17/$31.00 c© 2017 IEEE

actual program code makes it easier to provide a meaningful
feedback to developers as we show in an example discussed
in Section III.

To illustrate our discussion, we will use throughout the pa-
per the sample program depicted in Figure I. In this program,
user credentials (user name and password) are provided as
inputs (lines 64 and 65).

Fig. 1. Account creation sample code

Suppose that we want to verify whether the sample code
adheres to the guideline MSC62-J: ”Store passwords using
a hash function” from the CERT secure coding standards. If
we want to verify if the sample code is compliant with this
specific guideline that recommends to hash passwords before
storing them, we would notice the following: the password
variable was assigned to user.setPassword at line 65. Then, this
sensitive data was hashed using the MD5 method at line 73.
The developer then invoked the logging operation (logger.log)
at line 80, which is also seen as storage operation on log files.
We might then draw different conclusions: from pure control
flow angle, the guideline in terms of methods invocation was
met. The password was hashed before being stored (logged),
and this is the flow that the guideline recommends. However,
if we take a closer look at the propagation of the password
data, we would notice that it was assigned to another variable
named xx at line 68. It is true that the digest of the password
was stored, but the password in plain text contained in the
variable xx was also stored, which constitutes a clear violation
of the guideline that will not be detected if we do not include
the analysis on the information flow level. Nowadays, formal
methods, in particular formal verification are increasingly
being used to enforce security and safety of programs.

The paper flow is as follows: we provide in Section 2
an overview of the proposed approach for the specification
and verification of security guidelines. This section is then
followed by a presentation of security guidelines, and their
specification in the Model Checking Language (MCL) in
Section 3. We validate our formal specification and verification

on a concrete example. In Section 5, we present existing
approaches that dealt with guidelines specification. Section 6
concludes the paper and discusses the limitations as well as
possible directions of our work.

II. FRAMEWORK

Fig. 2. Prototype for the automatic verification of security guidelines

Figure 3 presents the architecture of our framework that
illustrates the proposed approach to help automating the sys-
tematic verification of the security guidelines. The figure high-
lights the relevant steps towards fulfilling the transformation
of security guidelines from natural language to exploitable
formulas that can be automatically verified over the program
to analyze. Our framework is composed of mainly two big
parts: the model construction that consists in constructing
an abstraction of the program to analyze, and the automatic
verification of the security guidelines. The detailed description
of the framework is illustrated in [4].

First of all, we need to make the distinction between the
main actors in our framework; the security expert and the
developer. The former plays a major role in the formal specifi-
cation of the security guidelines, and their transformation into
mathematics-based formulas that are supported by standard
model checking tools. The latter invokes the framework to
verify the compliance of his developed software with the
security guideline.

We refer to CERT Oracle Coding Standard for Java [5]
[6] as the source of the Java good programming practice we
consider as example in this paper. We show then that this
guideline can be modeled in a formalism, and can be formally
verified using a model checking tool.

In this paper, we focus mainly on the formal graph con-
struction as well as on the formal specification and the
formal verification of the security guidelines. The fine-grained
description of the approach is provided in [4] [7]. We describe
in this section the architecture of our framework in terms
of implemented components and the tools we have used in
order to automatically verify the compliance with the security
guidelines expressed in a formal language.

The different components of our framework are automatic,
except the first step that is carried out by the security expert.

First, he transforms the informal security guidelines from
natural language into exploitable formulas expressed in the
Model Checking Language (Section III.A). The security expert
extracts the key-concepts or the key-words from the informal
textual description of the guideline, and builds upon them the
formulas. The key-words are referred to as labels.

As the reader can notice, this operation is manual, and
requires security expertise to extract the context and the key-
concepts from the guidelines informal description, and then to
build upon them the formulas.

Automating this operation would be an achievement, as it
will help automating the full end-to-end tool chain, and bridge
the gap between the informal guidelines and their automatic
verification from the developer side. The reason why we
did not automate this task is that we do not have a model
against which we can verify the correctness of the formulas.
In addition, performing a deep semantic security text analytics
on the guideline’s description is not in the scope of our work.
In this step, we strongly rely on the expertise of the security
expert to formalize the guidelines. Validating the specification
with a community of security experts may be a way forward
to ensure the correctness of the proposed formulas.

The remaining components of our framework are automatic,
and consist of:

a) Program Model Construction:
• Augmented Program Dependence Graph: this component

builds the program dependence graph (PDG) from the
Java bytecode (.class) using the JOANA IFC tool [8].
We have chosen the Program Dependence Graph (PDG)
as the abstraction model for its ability to represent both
control and (explicit/implicit) data dependencies. The
generated PDG is then annotated by the PDG Annotator
with specific annotations (labels in the MCL formulas).
The automatic annotations are handled in the Security
Knowledge Base [4]. We run the information flow anal-
ysis using the JOANA IFC, that is formally proven [8]
in order to capture the explicit and the implicit depen-
dencies that may occur between the program variables.
The operation results in a new PDG that we name the
Augmented PDG.

Fig. 3. Model Construction: From program sources to LTS

• LTS Construction: this component translates automati-
cally the Augmented PDG into a parametrized Labelled
Transition System (pLTS) that is accepted by model
checking tools. The annotations on the PDG nodes are
transformed into labels on the transitions in the pLTS.

• Java Classes Parser: This component that we have
developed [9] takes as input the URL of the Java class
official documentation [10] [11], and parses the HTML
code (Javadoc) in order to extract all the relevant details:
the class name, the inheritance, the description, the
attributes, the constructor(s), the methods signatures,
their return type and their parameters. This component
populates the Security Knowledge Base with the
extracted information.

b) Model Checking:
• Model Checking: we carry out the model-checking anal-

ysis on the pLTS that we generate from the Augmented
PDG. We made use of the checker EVALUATOR of
the CADP toolsuite [12] to automatically verify the
security guideline expressed in MCL. The output of this
component indicates whether the guideline is met, or it
is violated, and the violation traces are returned.

• Feedback Representation: this component exploits the
output of the ”Model Checker” to provide a precise and
useful feedback to the developer to understand the source
of the violation, and possibly how to fix it.

III. FORMAL MODELS

In order to check automatically whether a program satis-
fies a given guideline, both the program and the guideline
are formulated in precise mathematical languages.

A. From informal guidelines to formal specification

Security guidelines or security good programming prac-
tices are managed by different organizations such as
CERT Coding Standard [6], OWASP [13], [14] , Apple
App Store [15], etc. The CERT Coding Standards have
been adopted by corporate companies such as Oracle
and Cisco [16], and contributed also to the development
of the Source Code Analysis Laboratory (SCALe) [17].
In order to have a clear understanding of the security
guidelines, we conducted a deep analysis on good and
bad programming practices [3] referring to positive and
negative security patterns respectively. This work led to
the classification of the guidelines regarding the flow type
they induce and the verification operation that should be
performed in order to verify the adherence or not to the
specific guideline.
Our methodology requires first to formalize the secu-
rity guidelines. This phase produces formal specification
using formal language. The formal specification is typi-
cally a mathematics-based description of guidelines using
mathematical logic. As pointed out in [3], most guide-
lines provide recommended safeguards that developers
should follow in order to ensure compliance with the

data protection. Their distinctive features is that they are
typically dealing with data parameters, and are generally
abstracted away in formal models as verification problems
are undecidable for infinite systems. The MCL logic
[18] is the relevant language that addresses this crucial
matter: representing and handling data. It allows reason-
ing naturally about systems described in value-passing
process algebras such as LOTOS. MCL is an extension of
the alternation-free regular µ-calculus with facilities for
manipulating data in a manner consistent with their usage
in the system definition. The MCL formulas are logical
formulas built over regular expressions using boolean op-
erators, modalities operators (necessity operator denoted
by [] and the possibility operator denoted by 〈 〉) and
maximal fixed point operator (denoted by µ). By using
data, one can specify state machines with an infinite
action alphabet, in which quantification over data can
be used, and propositions and variables may have data
parameters.
Most of the guidelines we studied can be expressed as
usual safety properties that we encode in MCL formal-
ism by [φ]false formula, stating the absence of bad
execution sequences characterized by regular formulas
φ or as basic liveness properties, encoded by 〈φ〉true
and stating the existence of good execution sequences
characterized by φ. Regular formulas φ are built over
action formulas and the standard regular expression oper-
ators namely concatenation (.), choice (|), and transitive-
reflexive closure (∗). Action formulas are built over
action patterns and boolean connectors. Action patterns
consist of two different kinds: action pattern for matching
values denoted by ({A !e1 . . .!en}), or for extracting and
storing values denoted by ({A ?x1 :T1 . . .?xn :Tn}), where
A is action name, ei are expressions (data variables or
functions), xi are data variables and Ti are types namely
Int, Bool, String,. . . . The true constant is used to
match a value of any action formula.
Consider the guideline MSC62-J[6] stating ”Store
passwords using a hash function”. It represents a typical
safety property and means that the storage of a password
should not be reached if the password was not hashed
beforehand. This can be expressed by the following
MCL formula:
[true∗.{setPassword ?msg :String}.true∗ .

{store !msg}] false
The formula expresses a bad sequence of actions that
we want to prevent. This sequence is specified by the
following regular expression:
true∗.{setPassword ?msg :String}.true∗.{store !msg}.
This expression tries to match sequences that
begin with zero or more of any action (denoted
true∗) followed by a password creation action
({setPassword ?msg :String}) followed by any
action, and end with a storage action ({store !msg}).
This logic also enables to express liveness properties by
using the fixed point formula.

Table I shows examples of MCL formulas represent-
ing the specification of security guidelines we collected
(listed informally in [3]) from several sources. Most of
these programming practices that programmers should
be aware of, are safety properties that can be verified
by a model checker. They can be specified as security
patterns usable within the validation phase of the software
development lifecycle.
Similarly to Dywer’s work [19], we propose a catalog
of patterns for security guidelines for facilitating the
programmer’s task at the verification level. These patterns
identified in [18] will allow programmers who are not
experts in formal language to read formal specification.
The automatic generation of formula from a given guide-
line requires first an instantiation of the labels, and this
operation induces a heavy load on the programmer. We
overcame this difficulty by automating the mapping of
the program instructions to the labels on which the MCL
guidelines formulas are built; the automatic mapping is
carried out by the PDG Annotator through the Security
Knowledge Base.
The proposed formalization in MCL language presents
the key concepts or actions required by each of the
guidelines. The challenge is to define those concepts and
actions and have a unified yet extensible set of keywords
that can be used by security expert(s) for the formal
specification. We tried to reduce the security expert
intervention by introducing the Security Knowledge Base
which is a central repository containing the different
labels serving to compose the guidelines, together with
their description and semantic meaning. The security
expert maps the labels composing the security patterns
to Java methods, objects, instructions, etc.

B. Security Guidelines Verification

The model checking technique [20] involves several al-
gorithms for the verification of systems. In our approach,
the system to be verified is modeled as a finite transition
system and the property is expressed as a formula of
temporal logics. More specifically, this technique relies
on translating the system to be verified to formal models
that are precise in meaning and amenable to formal analy-
sis, in particular accepted by model checking algorithms.
In the context of our work, the models are parametrized
Labelled Transition System (pLTS). pLTS extends the
general notion of Labelled Transition Systems (LTS)
[21] by adding parameters and value-passing features.
These additional parameters were strongly required for
the verification of security guidelines that we treat in our
work. A parameterized LTS is an LTS with parameterized
actions, with a set of parameters and variables attached
to each transition.
Definition 1 (pLTS): A pLTS is a tuple (S, s0, L,→)
where:
• S is a set of states.
• s0 ∈ S is the initial state.

TABLE I
EXAMPLES OF CERT GUIDELINES FORMULATED IN MCL LANGUAGE

Code Guidelines and corresponding MCL formulas

IDS01-J Normalize strings before validating them
[true∗.(¬({normalize ?msg :String}))∗ .{validate !msg}]false

IDS03-J Do not log unsanitized user input
[true∗.{userInput ?msg :String}.(¬({sanitize !msg}))∗ .{log !msg}]false

OWASP Store unencrypted keys away from the encrypted data
∀loc1, loc2 :String.(<true∗.{create key ?key :String}.true∗.{save !key !loc1}.true∗.
{encrypt ?data :String !key}.true∗.{save !data !loc2}> true⇒ [true∗.{depend !loc1 !loc2}]false)

IDS07-J Sanitize untrusted data passed to the Runtime.exec() method
[true∗ .{isUntrusted ?msg :String}.(¬({sanitize !msg}))∗.{invokemethod ′′Runtime′′ ′′exec′′ !msg}]false

IDS08-J Sanitize untrusted data included in a regular expression
[true∗.{isUntrusted ?msg :String}.(¬({sanitize !msg}))∗.{regex !msg}]false

CWE 129 Improper Validation of Array Index
[true∗.{isArrayIndex ?index :int}.(¬({validate !index}))]false

MSC03-J Never hard code sensitive information
[true∗.{isSensitive ?msg :String}.(¬({obfuscate !msg})]false

MET53-J Ensure that the clone() method calls super.call()
[true∗.{invokemethod ′′clone′′}]µY.〈true〉true ∧ [¬{invokemethod ′′super.clone′′}]Y

MET56-J Do not use Object.equals() to compare cryptographic keys
[true∗.{isKey ?key1 :String)}.true∗.{isKey ?key2 :String}.
{call ′′Object.equals′′ !key1 !key2)}|{call ′′Object.equals′′ !key2 !key1}]false

MSC62-J Store passwords using a hash function
[true∗.{setPassword ?msg :String}.true∗.{store !msg}]false

EXP02-J Do not use the Object.equals() method to compare two arrays
[true∗.{isArray ?ar1 :String}.(isArray ?ar2 : String).{invokemethod′′Object′′ ′′equals′′ !ar1 !ar2}]false

OBJ10-J Do not use public static non final fields
[true∗.{isPublic ?data :String}.(isStatic !data).(¬{isFinal !data})]false

• L is the set of labels encoding the set of instructions
that a program can perform: xj := ej encoding
an assignment of the variable xj , ej encoding an
expression built over program variables and m−→p
encoding a call to the method m with a finite set
of arguments −→p .

• →⊆ S × L× S is the transition relation.

Informally, a pLTS describes mainly the behavior of a
program as a set of reachable states and actions (in-
structions) that trigger a change of state. Parameterized
LTS have a rich structure, for they take care of value
passing in the instructions, of assignment of variables,
of expressions and parameters of method calls. In fact,
the states express the possible values of the program
counter, and they indicate whether a state is an entry
point of a method (initial state), a sequence state, a call
to another method, a reply point to a method call, or
a state in which the method terminates. Each transition
describes the execution of a given instruction, the labels
represent the instructions code. Furthermore, the pLTS we
extract from program sources subsume data dependencies
both explicit and implicit between all the variables in
the program. During the PDG construction, we adopt
a known technique used in taint analysis, and consists

of renaming [22] the program variable; we rename each
definition of a variable x to a different name and rename
every use of x by the new name, to ensure that operations
carried out on this specific data keep the same variable
name.
We construct pLTS of a program from its interme-
diate representation, the Augmented Program Depen-
dence Graph (PDG) structure which constitutes an over-
approximation of the program information flow in the
program behavior. We generated the PDG using the
JOANA IFC tool that has the strength of tracking both
explicit and implicit information flows in a program.
Figure4 shows the graphical representation of the pLTS
model corresponding to the program of Figure I. As
shown in the middle of the pLTS a linear trace encoding
naturally all the instructions of the program source. It
depicts also all the data flow relationships that occur
between the variables in the program source. For this,
a special action, called the depend action is introduced.
A transition labelled with an action depend d1 d2 means
that there is data dependence between the variable (d2)
attached to source state and the variable (d1) attached to
destination state.
Once the model is built, it can be used for verification

0

1

2

3

4

5

6

7

89

10

11

12

reader:=new BufferReader

println ’userName’

println ’passWord’

setUsername !in1

setPassword !in2

depend !hash_password !in2 depend bytes_password in2
depend !xx !in2

xx:=in2

depend !logMessage !in2 hash:=MessageDigest

bytes_password:=in2hash_password:=digest !bytes_passwordhash !hash_password

logMessage:=in1+in2+xx

log !logMessage

Fig. 4. pLTS for the program code from Figure I

by model checking. Verifying a property against a model
consists in comparing the behavior specified in the prop-
erty with that permitted by the model, in our case the
pLTS. For example, we express the security guideline
MSC62-J (given in Section I) by the following MCL:
[true∗ .{setPassword ?msg :String}.true∗ .(log !msg |
{depend ?msg1 :String !msg}.true∗ .{log !msg1})]false

This formula specifies that for each possible value of msg
(the identifier of a password), the logging action with this
password as it stands without hashing, cannot be reached.
Moreover, this is not possible for all the variables which
depend on this password. As one can notice, we use
deliberately log action instead of store. One of the
features of log framework is to store Java log messages
to a database. As the sensitive information password

can flow through the variable xx; we capture the explicit

information flow in the second part of the alternation:
({depend ?msg1 :String !msg}.true∗ .{log !msg1}).
We are totally aware that the consideration of the de-
pendent information flows in the specification of the
guideline might not be trivial to the security expert
when formalizing the guideline. In order to cover this
specific issue, and also to increase the automation of the
guidelines specification, we are currently implementing
a script that computes the possible combinations of the
different parameters dependences in the guideline mini-
mal formula. By using the model checker EVALUATOR
of the CADP toolbox [12], the formula is evaluated to
FALSE, which means the property is not satisfied and
a counterexample is produced, and reported as a trace
illustrating the violation that occurred starting from the
initial state (Figure 5).

IV. DISCUSSION

We proposed a formalization of security guidelines in
MCL capturing the main actions and key concepts pre-
sented in the guidelines informal textual description.
MCL provides a basis for security experts to build the for-
mulas. The objective is to increase the precision and strip
away the ambiguities when interpreting the guideline.
We were able to formalize a number of guidelines, and
proceed to the formal verification through model check-
ing. The performed formalization revealed ambiguities,
unclarities and imprecision in the keywords, for example
in the guideline MET03-J: Methods that perform a
security check must be declared private or final [6],
the extraction of precise key concepts (security check)
is not trivial for the lack of precision in the guideline
description.
We were not able to provide a precise formalization for
other guidelines such as IDS15-J: Do not allow sensitive
information to leak outside a trust boundary [6]. The
notion of trust boundary can lead to misinterpretation,
hence to improper implementation. From a developer
perspective, it is tough to identify all the sensitive infor-
mation in his program, the complexity of this operation
increases with the complexity and the program size. The
notion of trust boundaries is another ambiguity we found
in different guidelines. This notion is ambiguous and
its imprecision can be perceived from the difficulty of
defining the system boundaries.
The guideline Store unencrypted keys away for en-
crypted data is imprecise and contains the implicit notion
of location that can be expressed in different manners
such as file location, insert in database, add to an array,
etc. We have discussed this guideline in [4].
If we go back to the sample code of Figure I and
invert the statements order as follows: We declare a
String variable named x that contains the password’s
value. We assign it to the log message logMessage = x;.
We invoke the logging operation on this logMessage

(logger.log(Level.INFO, logMessage);). Then, we as-

840 51 62 73

setPassword !in2

reader:=new BufferReader

xx:=in2println ’userName’

depend !logMessage !in2println ’passWord’

log !logMessage
setUsername !in1

Fig. 5. Trace expressing the counter-example

sign this variable x to the attribute password of the object
User (User.setPassword(logMessage)). This actions
flow comprises an implicit violation of the guideline,
as it carries out the logging of a data that seems at
a first glance non-sensitive, in addition to the fact that
semantically speaking, has a non-significant name x. Our
formalization does not cover this specific scenario, as
we use as intermediate representation the PDG which
is flow-sensitive, meaning that it considers the order of
statements. We tested this sample code using the JOANA
IFC tool, and it did not capture the implicit flow. We
are currently working on addressing this issue through
PDG traversal and annotations propagation (forward and
backward propagation). State space explosion [23], [24]
is another limitation that our framework might be faced
to. State space explosion is a widely known limitation of
model checking, and it occurs in programs presenting a
wide range of interacting components and data structures.
In these programs, the number of states can be very
large, which results in an important amount of time and
required memory resources. As usual in this setting, we
can use slicing techniques on the Augmented Program
Dependence Graph to reduce the number of nodes and
edges, and limit the size of the subgraph. We can also
use slicing and abstraction techniques on the pLTS.

V. RELATED WORK

The specification of security guidelines has also been
addressed in the literature. In the technical report [25]
of the joint work between TU Darmstadt and Siemens
AG, the authors provide formalizations of secure coding
guidelines with the objective of providing precise refer-
ence points. The authors make use of the LTL formalism
to specify the guidelines; however, LTL leverage events
and actions model security policies, and put more focus
on actions rather than data. The mapping between the
labels of LTL formulas and the program instructions is
performed by the developers, which is an overhead to
them. The Verification Support Environment [26] is a tool
for the formal specification and verification of complex
systems. The approach adopted by the authors is similar
to model-driven engineering, in the sense that the formal
specification results in code generation from the model.
Aoraı̈ plugin [27] provides the means to automatically
annotate C programs with LTL formulas that translate
required properties. The tool provides the proofs that the
C program behavior can be described by an automaton.
The mapping between states and code instructions is

made based on the transition properties that keep track of
the pre- and post- conditions of the methods invocation;
those conditions refer to the set of authorized states
respectively before and after the method call.
Schneider [28] carries out a rather dynamic approach
for the verification of a class of security policies known
as EM (Execution Monitoring). He represents safety
properties as security automaton. The automata serve as
a basis to terminate the program once the security policy
is violated. In the same line of work [29] proposed an
extension of Schneider’s security automata, and defined
edit and suppress automata that enforce security policies
through the modification of the security automata, hence
to instrument programs. In the same line of work, [30]
defines Security Automata SFI Implementation (SASI)
which is a tool that enforces security policies. [31]
proposes a translation from security automata to the
annotations on the code level, and that serve to present
pre- and post-conditions on the methods. SecureDIS [32]
makes use of model checking together with theorem-
proving to verify and generate the proofs. The authors
adopt the Event-B method to specify the system and the
security policies. In this work, it is not clear how the
policies parameters are mapped to the system assets. In
addition, the policy verification and enforcement are not
extended on the program level.
GraphMatch [33] is a code analysis tool/prototype for
security policy violation detection. GraphMatch considers
examples of positive and negative security properties, that
meet good and bad programming practices. GraphMatch
is more focused on control-flow security properties and
mainly on the order and sequence of instructions based on
the mapping with security patterns. However, it doesn’t
seem to consider implicit information flows that can be
the source of back-doors and secret variables leakage.
The Jif [34] language implements type-checking that
makes use of the Decentralized Label Model (DLM)
[35]; it allows defining a set of rules to be followed by
programs to prevent information leakage. Jif programs are
type-checked at compile-time, which ensures type-safety
as well as that rules are applied. However, the labels,
which define policies for use of the data, apply only to a
single data value, and are not checked at run-time.
PIDGIN [36] introduces an approach close to our work.
The authors propose the use of PDGs to verify security
guidelines. The specification and verification of security
properties rely on a custom PDG query language that

serves to express the policies and to explore the PDG to
verify policies satisfiability. The parameters of the queries
are labels of PDG, which supposes that the developer is
fully aware of the complex structure of PDGs, identifies
the sensitive information and the possible sinks they
might leak to. PIDGIN limits the verification to the
paths between sinks and sources, however, there might
be information leakage that occurs outside this limited
search graph. The authors do not provide the proof that
their specification is formally valid.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach for formalizing
security guidelines from different sources with the objec-
tive of stripping away ambiguities. This first effort led to
the specification of a set of guidelines, and to a proof-of-
concept. Our approach aims at extending the verification
and validation of guidelines at the different phases of
the software development lifecycle. Our formalization
can reduce the risk of misinterpretation of guidelines
and improve its applicability while reducing the overhead
on the developer. The output of the verification phase
indicates whether the guideline is met, or if it is violated,
in which case a violation trace is returned. Based on
this output, the developer obtains a precise and useful
feedback specifying the source of the violation. Our
work strongly relies on the correctness of the PDG
structure which we first generate by the JOANA IFC tool
and that we augment with relevant details. PDG adopts
conservative approximation of the program information
flows. Our future work will focus on further experimental
validations of our proposal and the development of a cen-
tralized repository for modular and composable security
guidelines.

REFERENCES

[1] Y. Roudier and L. Apvrille, “SysML-Sec: A model driven ap-
proach for designing safe and secure systems,” Model-Driven
Engineering and Software Development (MODELSWARD), 2015
3rd International Conference, pp. 655–664, Feb. 2015.

[2] D. P. Commissioner, “Facebook Ireland Ltd: Report of Re-Audit,”
2012.

[3] Z. Zhioua, Y. Roudier, S. Short, and R. Ameur-Boulifa, “Security
guidelines: Requirements engineering for verifying code quality,”
in ESPRE 2016, 3rd International Workshop on Evolving Security
and Privacy Requirements Engineering, September 12th, 2016.

[4] Z. Zhioua, Y. Roudier, R. Ameur-Boulifa, T. Kechiche, and
S. Short, “Tracking dependent information flows,” in ICISSP
2017: 3rd International Conference on Information Systems Se-
curity and Privacy, Porto, Portugal, Feb. 2017.

[5] C. Administrator, “SEI CERT coding standards,” 2017.
[6] CERT, “SEI CERT oracle coding standard for Java.”
[7] Z. Zhioua, Y. Roudier, and R. Ameur-Boulifa, “Formal speci-

fication and verification of security guidelines,” in Dependable
Computing (PRDC), 2017 IEEE 22nd Pacific Rim International
Symposium on. IEEE, 2017, pp. 267–273.

[8] J. Graf, M. Hecker, M. Mohr, and G. Snelting, “Checking
applications using security APIs with JOANA,” July 2015, 8th
International Workshop on Analysis of Security APIs.

[9] Z. Zhioua, “https://github.com/zeineb/java-classes-parser.”
[10] Oracle, “Java platform, standard edition 8 API specification.”
[11] ——, “Java platform, standard edition 7 API specification.”

[12] F. Lang, H. Garavel, and R. Mateescu, “An overview of CADP
2001,” European Association for Software Science and Technol-
ogy (EASST) Newsletter, vol. 4, August 2002.

[13] OWASP, “Owasp secure coding practices quick reference guide.”
[14] ——, “Cryptographic storage cheat sheet.”
[15] Apple, “App store review guidelines-privacy.”
[16] CERT, “Cert secure coding professional certificates.” [Online].

Available: ”http://www.cert.org/go/secure-coding/”
[17] R. C. Seacord, W. Dormann, J. McCurley, P. Miller, R. Stoddard,

D. Svoboda, and J. Welch, “Source code analysis laboratory
(scale),” DTIC Document, Tech. Rep., 2012.

[18] R. Mateescu and D. Thivolle, “A model checking language for
concurrent value-passing systems,” in Proceedings of the 15th In-
ternational Symposium on Formal Methods, ser. FM ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 148–164.

[19] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in Proceedings
of the 21st International Conference on Software Engineering, ser.
ICSE’99. New York, USA: ACM, 1999, pp. 411–420.

[20] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[21] A. Arnold, Finite transition systems. Semantics of communicating
sytems. Prentice-Hall, 1994.

[22] M. Castro, M. Costa, and T. Harris, “Securing software by en-
forcing data-flow integrity,” in Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, ser. OSDI ’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 147–160.

[23] A. Valmari, The state explosion problem. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 429–528.

[24] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model
checking and the state explosion problem,” in LASER Summer
School on Software Engineering. Springer, 2011, pp. 1–30.

[25] M. Aderhold, J. Cuéllar, H. Mantel, and H. Sudbrock, “Exemplary
formalization of secure coding guidelines,” TU Darmstadt and
Siemens AG, Tech. Rep., 03 2010.

[26] S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock,
A. Schairer, W. Stephan, R. Vogt, and A. Wolpers, “VSE: formal
methods meet industrial needs,” STTT, vol. 3, no. 1, pp. 66–77,
2000.

[27] N. Stouls and V. Prevosto, “Aorai plugin tutorial – Frama C.”
[28] F. B. Schneider, “Enforceable security policies,” ACM Transac-

tions on Information and System Security (TISSEC), vol. 3, no. 1,
pp. 30–50, 2000.

[29] L. Bauer, J. Ligatti, and D. Walker, “More enforceable security
policies,” in Proceedings of the Workshop on Foundations of
Computer Security (FCS02), Copenhagen, Denmark. Citeseer,
2002.

[30] U. Erlingsson and F. B. Schneider, “SASI enforcement of security
policies: A retrospective,” in Proceedings of the 1999 Workshop
on New Security Paradigms, ser. NSPW ’99. New York, USA:
ACM, 2000, pp. 87–95.

[31] M. Huisman and A. Tamalet, “A formal connection between secu-
rity automata and JML annotations,” in Fundamental Approaches
to Software Engineering, ser. Lecture Notes in Computer Science,
M. Checkik and M. Wirsing, Eds., vol. 5503. Berlin: Springer
Verlag, 2009, pp. 340–354.

[32] F. Akeel, A. Salehi Fathabadi, F. Paci, A. Gravell, and G. Wills,
“Formal modelling of data integration systems security policies,”
Data Science and Engineering, pp. 1–10, 2016.

[33] J. Wilander and P. Fak, “Pattern matching security properties of
code using dependence graphs,” in In proceeding of the first inter-
national workshop on code based software security assessments,
2005, pp. 5–8.

[34] A. C. Myers and B. Liskov, “Protecting privacy using the decen-
tralized label model,” ACM Trans. Softw. Eng. Methodol., vol. 9,
no. 4, pp. 410–442, Oct. 2000.

[35] ——, “A decentralized model for information flow control,”
SIGOPS Oper. Syst. Rev., vol. 31, no. 5, pp. 129–142, Oct. 1997.

[36] J. Andrew, W. Lucas, and M. Scott, “Exploring and enforcing
security guarantees via program dependence graphs,” PLDI 2015
Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 291–302, Jun.
2015.

