Balancing between cost and availability for
CDNaaS resource placement

Louiza Yala*, Pantelis A. Frangoudisi, Giorgio Lucarelli®, and Adlen Ksentinit
*IRISA/University of Rennes 1, France
iEURECOM, Sophia Antipolis, France
§Univ. Grenoble Alpes, CNRS, INRIA, LIG, F-38000 Grenoble France
Email: *louiza.yala@irisa.fr, name.surname @eurecom.fr, §gi0rgio.lucarelli@imag.fr

Abstract—We focus on the problem of optimal compute re-
source allocation and placement for the provision of a virtualized
Content Delivery Network (CDN) service over a telecom oper-
ator’s Network Functions Virtualization (NFV) infrastructure.
Starting from a Quality of Experience (QoE)-driven decision on
the necessary amount of CPU resources to allocate to satisfy
a virtual CDN deployment request with QoE guarantees, we
address the problem of distributing these resources to virtual
machines and placing the latter to physical hosts, optimizing
for the conflicting objectives of management cost and service
availability, while respecting physical capacity, availability and
cost constraints. We present a multi-objective optimization prob-
lem formulation, and provide efficient algorithms to solve it by
relaxing some of the original problem’s assumptions. Numerical
results demonstrate how our solutions address the trade-off
between service availability and cost, and show the benefits of our
approach compared with resource placement algorithms which
do not take this trade-off into account.

I. INTRODUCTION

Network Functions Virtualization (NFV) has emerged as
a disruptive new paradigm for network service provision.
NFV decouples network functions from specialized hardware
implementations, allowing their execution as virtual instances
on top of cloud infrastructures on general purpose hardware.
This brings flexible service deployment, automatic scaling
capabilities, and, in turn, dynamic and optimized resource
management and better response to service demand dynamics.
Therefore, cost efficiency and improved end user experience
can be achieved.

Significant standardization efforts are in progress with re-
spect to NFV. The ETSI has recently proposed an NFV
Management and Orchestration framework (NFV-MANO) [1],
which specifies a set of architectural components and in-
terfaces to realize the NFV vision. Among the many use
cases envisioned in such an environment is the provision of a
virtualized Content Delivery Network (vCDN) service [2, Use
Case #8].

Content delivery is a field which has received significant
attention, in particular regarding the interactions between
CDN providers and network operators [3]. These interactions

This work has been partially supported by the French FUI-18 DVD2C
project. It has also been supported in part by the European Union’s Horizon
2020 research and innovation programme under the 5G!Pagoda project with
grant agreement no. 723172.

give rise to various content delivery models which involve
different degrees of cooperation between stakeholders [4].
One such model is the telco CDN, where a network operator
installs and operates its own content delivery infrastructure
at strategically selected points in its network, offering a
complete CDN service to content providers. Proposing such
a service over a virtualized infrastructure has specific benefits
for the network operator and is facilitated by NFV. Instead
of deploying dedicated hardware to host CDN components,
such as content origin servers, caches, load balancers, and
DNS resolvers, the operator can lease its telco cloud resources
for launching virtual instances (Virtual Machines (VMs) or
other containers) of the above components on demand, allocate
resources intelligently at the optimal locations in its network,
and scale them to match dynamic workloads.

In our prior work [5], we presented an architecture for CDN-
as-a-Service (CDNaaS) provision over a network operator’s
cloud, with a design following the NFV-MANO spirit. Our
architecture allows content providers to request the dynamic
instantiation of a full vCDN using a REST API, expressing
their target end-user demand per region, as well as Quality
of Experience (QoE) and service availability requirements.
Specific service orchestration components are then responsible
for taking all necessary steps for the deployment and run-
time management of the vCDN instance on the underlying
NFV Infrastructure (NFVI) of the operator, abstracting internal
details and offering the customer (content provider) only the
necessary entry point to the vCDN, e.g., to infuse content or
terminate the service.

Two important challenges arise. First, the operator has to
appropriately dimension the service, i.e., decide on the neces-
sary amount of computing (and other) resources to dedicate
to satisfy the requirements of the customer. Second, it has
to derive an appropriate placement of the virtual resources
on its NFVI, aiming to minimize cost and potentially offer
availability guarantees. Intuitively, these two objectives are
conflicting; utilizing more virtual or physical resources to
improve on service availability via redundancy and fault
tolerance naturally increases management (e.g., energy) cost.
It should be noted that the importance of resilience and
availability for NFV has been acknowledged by the ETSI NFV
Industry Specification Group, which has published specific

requirements and guidelines, identifying, among others, the
cost-availability trade-off [6].

We have addressed the first challenge in our prior work [7]
focusing on a video content delivery service; we experi-
mentally quantified the relationship between video QoE and
service workload, and used this information to optimally
decide on the amount of CPU resources to allocate to satisfy
customer-defined minimum QoE constraints while minimizing
the cost for the operator.

In this work, we respond to the second challenge and
make the following contributions: (i) We capture the con-
flicting objectives of service availability and deployment cost
by proposing a multi-objective optimization formulation for
the problem of joint compute resource allocation and VM
placement (Section II). (ii) We provide efficient solutions to
this problem by relaxing some of its assumptions (Section III).
Our numerical results (Section IV) demonstrate quantitatively
the trade-off between availability and cost and show our algo-
rithms to outperform less sophisticated and cost/availability-
unaware resource allocation and placement schemes.

II. A MODEL FOR JOINT VCPU-TO-VM ALLOCATION AND
VM PLACEMENT

A. Preliminaries

We assume that the CDNaaS operator has data centers in
a number of regions, on which vCDN instances for video
distribution can be deployed.

The vCDN delivers video content over HTTP via a number
of caches which operate as streaming servers. Caches are
implemented as VNFs. An end-user request for a video item
is redirected to the closest cache using DNS geolocation
techniques (other options are also possible). Each cache VNF
instance is composed of a set of VMs with identical func-
tionality (HTTP servers streaming video), and user requests
are load-balanced among them. Cache management strategies
and content placement in caches are outside the scope of this
work.

A customer (content provider) uses a northbound API to
request the instantiation of a vCDN to cover a subset of
the regions where the operator has presence. The request
includes a demand specification (target maximum number of
simultaneous video streams, duration of the service) and a
quality specification (minimum acceptable video QoE and
service availability levels) per region. We focus our discussion
on a single region, since the target of the operator is to deliver
content to each region’s end users from the local data center,
thus resources are allocated in a region-local manner. The
procedures we present in this paper are to be executed per
region included in the customer request.

For each vCDN deployment request, the operator first has
to decide on the number p of virtual CPUs (vCPUs) needed
to satisfy user demand (in terms of numbers of parallel video
streams) respecting the minimum QoE constraint set by the
customer. This is a problem we have treated in our prior
work [7].

Second, the operator derives an assignment of the p vCPUs
to a number of virtual machines (VMs) and the placement
of the latter in (a subset of) the available m physical ma-
chines (PMs) of a regional data center, aiming to minimize
the deployment cost and maximize service availability, while
respecting PM vCPU capacity constraints. The outcome of this
process is a matrix X = (z;;) with ¢ € [1,p] and j € [1,m],
where x;; denotes the number of vCPUs assigned to VM 4
hosted in PM j. The upper bound for ¢ is the number of vCPUs
to assign (since our unit of processing is a vCPU, we cannot
have more VMs than the number of vCPUs to assign). The
calculation of the optimal assignment should respect physical
capacity, cost, and availability constraints.

B. Cost model

We consider that the deployment of a VM comes with a
fixed management overhead which is not a function of its
workload. For example, this cost can account for the energy
consumed for booting the VM or for operating other system- or
service-level components (e.g., operating system). We further
assume that for each PM which hosts service instances, there is
a fixed overhead which is not a function of the PM workload
nor the number of VMs hosted by it (e.g., energy cost for
keeping the physical machine in an operating state, overhead
of various system-level components). We model the above
costs as linear functions of the number of VMs and PMs
utilized by a service deployment, which is in line with the
experimental observations of Callau-Zori et al. [8].

In matrix X, the number of non-zero elements represents the
number of VMs deployed. Therefore, the cost of an assignment
X at the VM level is given by

P m

Cv(X)=ev Y > lay, (1)
i=1j=1

where ey is the fixed cost per deployed VM. In a similar spirit,

the cost of an assignment X at the PM level is determined by

the number of PMs that host at least one VM. This corresponds

to the number of columns in X that contain at least one non-

zero element. This cost is thus given by

m P
Cp(X)=epy 1> i >0), 2)
j=1 =1

where ep is the fixed cost per used PM, and the overall cost
of an assignment follows:

C(X) = Cv(X) + Cp(X). 3)
C. Availability model

We define service availability as the ability of the system to
offer at least a minimal service, i.e., to have, at any time, at
least one VM accessible, which implies that at least one PM
should be up to host the respective VM(s).

We make the following assumptions:

e« A VM i can fail with probability ql(v), independently of

the other VMs and PMs, and irrespectively of the load
imposed on the VM.

o Each PM j can fail with probability q](-P), independently

of the other PMs or the load imposed on it. The above
probabilities are assumed to be known by the operator
as a result of measurement studies, prior experience, or
other historical information. (The same applies to VM
failure probabilities.)

o If a PM fails, all VMs deployed on it are assumed to fail
because of that.

Therefore, a VM may become inaccessible either because
it fails or because the PM that hosts it fails. VM failures can
be correlated due to their dependence on the underlying PMs.
Based on this, we define a correlated group of VMs as the
VMs which are executed on the same PM. For a correlated
group to be available, the following conditions should be met:

o The PM is up.
o At least one of the VMs deployed on the PM does not
fail.

The probability that a correlated group deployed on PM j
is available is thus given by
a=0-¢"a- [4« *)

i€[1,p]|zi; >0

For a vCDN service deployment to be available, at least
one correlated group should be available. Since correlated
groups fail independently, the probability that a vVCDN service
deployment is available is given by

A(X) =1 — Pr{All correlated groups fail}

=1- 1T (1—aj)
je[l,nL]\Z,’;:Oxij >0
=1- 11 ¢+ I &7

JE[L,m][E]_owi;>0 i€[1,p]|z:;>0

&)

Since, by construction, any feasible solution includes at least
one PM with at least one VM assigned to it, both product terms
in (5) are over non-empty sets.

D. Problem formulation

The aim of the system operator is to derive an optimal
assignment X * which minimizes cost while maximizing avail-
ability. These two criteria are conflicting: the more the VMs
deployed and the PMs used to host them, the less the risk
of service unavailability, but, at the same time, the higher the
cost of the deployment. Since it is not possible to optimize
for both criteria simultaneously, we apply a scalarization
approach to transform the problem to a single-objective one.
The relative importance of the two criteria in deriving an
optimal assignment is dictated by a specific policy, which is
encoded in a pair of weights w, and w. (resp. availability
and cost) such that w, + w. = 1. Given a specific policy, the

system operator derives the optimal solution to the following
problem:

mini)gnize weC(X) — w,A(X) (6)
subjectto C(X)< E @)
AX)> A ®)

NE

1(zy; >0)<1LVie[l,p] (9
1

<.
Il

p

DY w=p (10)
i=1 j=1

p

D @i <Cj V5 € [1,m]. (11)

i=1

To deal with the potential difference in the magnitude of
the two components of the objective function, the values of
C(X) and A(X) are appropriately normalized in the (0,1)
interval using the upper-lower-bound approach [9]. This model
supports specific maximum cost and minimum availability
constraints (C' and A, respectively; see (7) and (8)). Con-
straint (9) ensures that, for any VM, its vCPU resources are
allocated on a single PM, since a VM cannot be split. Note that
an assignment can result in this sum being zero for multiple
values of 4. This occurs when the number of VMs to deploy
is less than the number of vCPUs to assign, a case typical in
practice. Constraint (10) ensures that all vCPUs are allocated,
and constraint (11) guarantees that the CPU capacity of each
PM is not exceeded.

III. SOLVING A RELAXED VERSION OF THE PROBLEM

Deriving an exact optimal solution to this problem is
prohibitive computationally,! and we resort to a heuristic
algorithm instead. Specifically, instead of jointly deciding on
optimally distributing the number of vCPUs to VMs and
placing the latter in PMs, we treat the two subproblems
independently in two phases: We first decide on the number
of VMs to utilize, and then on their actual physical placement
and CPU resource distribution. Both steps can be efficiently
solved in polynomial time.

The overall procedure of deriving an appropriate resource
allocation and placement following a customer’s CDNaaS
instance deployment request involves three subproblems sum-
marized below:

1) Find an optimal number of vCPUs to allocate per region
to serve customer demand. We solve this problem using
an algorithm proposed in our prior work [7], which
decides on the minimum amount of vCPU resources
necessary to satisfy operator capacity and customer QoE
constraints. This algorithm uses empirical models of
QoE as a function of the service workload per pro-
cessing unit (vCPU), which we derived after testbed
experiments.

I'Single-objective variants of the VM placement problem where each VM
has predefined resource specifications have been shown to be NP-hard by
reduction to the bin packing problem [10].

2) Decide on the optimal number of VMs to launch under
a specific policy, satisfying cost and availability con-
straints.

3) Place the decided number of VMs on an optimal number
of physical hosts and distribute vCPUs to them, by
implementing a suitable placement algorithm having as
input the results of the previous steps (optimal number
of VMs, number of vCPUs). Specific host capacity, cost,
and availability constrains apply.

We detail our mechanisms to solve the second and third
subproblems in sections III-A and III-B respectively. We treat
each subproblem independently, providing for each one a
problem formulation and an algorithm to optimally solve it.
We should note that, for each subproblem, the same mini-
mum availability constraint value (A) as the original problem
is applied (although the availability functions may differ).
Regarding management cost, there is a specific budget for
each subproblem (Ey and Ep for the VM- and the PM-level
problems respectively), such that By + Ep = E. It is up to
the system operator to decide how the overall budget is split;
we do not consider this issue in this work.

A. Deciding on the number of VMs to launch

In this section, we describe the second step of our problem,
which aims to find the optimal number of VMs to launch.
We define an objective function to minimize, which includes
a management cost and an availability component.

1) Availability: Given a known VM failure probability gy,
assumed to be fixed and identical for all VMs of the same
type included in a vCDN instance (VMs of a specific type,
e.g. streaming servers, are considered identical and their failure
probability does not depend on the resources allocated to them
nor their workload), we define service availability at the VM
level as

Ay (z) =1-qy, 12)

where z is the number of VMs to deploy. This expression
for availability corresponds to the probability that at least one
VM is available and is heuristic in the sense that it ignores
PM failures and considers VM failures independent.

2) Management cost: The management cost at the VM
level is given by (1). A simplified expression defined in terms
of the number z of VMs to deploy is

Cy(z) =eya. (13)

3) Problem formulation: Applying the specified policy ex-
pressed as the combination of weights (w., w,), the function
to minimize at the VM level becomes

minimize w.Cy (z) — w, Ay (2) (14)
subjectto Ay (z) > A, (15)
Cv(z) < Ev, (16)
r <p, (18)

where A, Fy are the respective constraints of availability and
cost, and My, 1S the minimum number of PMs capable of
accommodating the required number of vCPUs. The latter is
given by

!
Mmin = min{l € [1,m]] ZCi > p},

i=1

19)

where C; > Cy > C3 > ... > (), are the capacities of the
m PMs of a given region in non-increasing order.

Minimizing (14) means finding an optimal number of x
VMs, under reliability (15) and cost (16) constraints. Con-
straint (17) ensures that z is such that no single VM is
assigned more vCPUs than the maximum single-host available
capacity. (For instance, when x=1 (with p vCPUs), if there is
no physical host with a capacity superior to p, such a solution
is infeasible.) On the other hand, (18) ensures that the VMs
to be launched will not be more than the number of vCPUs
to allocate.

4) Selection of the optimal number of VMs: To solve (14)
under a specific policy defined by w, and w., we propose an
algorithm whose input is (i) the total number, p, of vCPUs
to be allocated across the region’s hosts in order to serve the
customer request, derived in step 1, (ii) the constraints per
objective (A, Ey), and (iii) the combination of weights w,, w,
that defines the adopted policy.

We first observe that the objective function is convex and
the value that minimizes its continuous version with z € Ry
is g = log,, —%““. Constraints (15) and (16) can be

we In q71 :
rewritten as x > 1og;/v(1 —A) and = < E—“/’, respectively.
Constraints (15) and (17) thus provide a lower bound to
the optimal value of z. Which of the two constraints is
more restrictive depends on the configuration of the problem.
Similarly, an upper bound is provided by the cost constraint
(16) and (18).

To minimize (14) we take the following steps: We calculate
the value zo € R- ¢ which minimizes the continuous version
of (14). If zo lies within the feasible region defined by the
above bounds, we select the closest (feasible) integer value
to zo as the optimal. Otherwise, we select the value of the
constraint that x(violates.

We should note that in other problem settings where the
objective function is not convex, an optimal solution can
be found in pseudo-polynomial time in p by evaluating the
objective function and the constraints for each x € [Mmpin, p]-
The case * = My, corresponds to a deployment which
minimizes the number of deployed VMs, while x = p refers
to a deployment that performs a one-to-one vCPU-to-VM
assignment. This algorithm runs efficiently for realistic values
of p.

B. VM placement and vCPU distribution

Having decided on a number of VMs to launch, we decide
on their placement on the underlying PMs and the allocation
of a number of vCPUs to each one of them. The output of

this step is an assignment X = (xz;;), with ¢ € [1,v] and
J € [1, m], which represents a heuristic solution to (6).

Similar to how we treated the sub-problem of selecting an
optimal number of VMs, we define appropriate availability and
cost functions at the PM level as follows.

1) Availability: To measure a solution’s availability, we use
(5), assuming identical PMs with a known failure probability
fixed to qg) =gqp,Vj € [1,m)].

2) Management cost: Assuming identical PMs, and in turn
a fixed management overhead for each PM on which we are
placing the customer’s VMs, irrespective of their number and
the service workload imposed, we model PM-level cost as
a linear function of the number of PMs eventually used for
hosting at least one VM. This cost is given by (2), substituting
p for v in the upper limit of the second summation, since the
number of VMs in this case is already known, as calculated
at the second step of our scheme.

3) Problem formulation: We propose the following multi-
objective formulation for the problem of placing v VMs to
a subset of the available m PMs and distributing p vCPUs
to them under capacity, availability and cost constraints and
given policy (we, wg):

mini}gnize weCp(X) — w, A(X) (20)
subjectto A(X) > A, 21
Cp(X) < Ep, (22)
Sl >0)=1VieLv] (23)
j=1
> @i < Cj V5 € [1,m] (24)

i=1
where A, Ep are the respective availability and cost con-
straints.

Constraint (23) ensures that a VM is allocated to only one
PM, and the set of constraints (24) guarantees that the available
capacity per PM is not exceeded.

4) An algorithm for VM placement and vCPU allocation:
We propose the following algorithm to derive an optimal
solution to (20) in polynomial time, whose input is (i) the
number, p, of vCPUs to be allocated, (ii) the policy and
constraints per objective, (iii) the sorted PMs in non-increasing
order of capacities, i.e, C; > Cy > C5 > ... > C,, (iv)
Momin, and (v) the number, v, of VMs; the latter three are
obtained in step 2.

This algorithm consists in creating and evaluating a can-
didate assignment of VMs to m’ PMs, for each m’ €
[Mnin, min(m, v)]. More than v PMs are not necessary, since
that would directly mean that at least one PM would not host
any VM. We observe that the value of the objective function
only depends on the number of PMs used and the number of
VMs assigned to each PM. Our algorithm starts by carrying
out the following steps for each m':

1) Distribute the v VMs among the m’ first PMs propor-
tionally to their capacities.

2) Evaluate the objective function and the constraints for
the derived assignment.
Eventually, our algorithm returns the assignment of VMs to
PMs which minimizes the objective function for the given
policy, or responds that there is no feasible solution under
the given constraints.

This procedure has O(m x min(m, v)) complexity: The two
steps have to be repeated at most min(m,v) times. Step 1
takes time linear on the number of PMs. (Using the largest
remainder apportionment method for proportional distribution
is O(m).) Evaluating the availability function could also be
implemented to take O(m) time, if we separately keep track of
the number of VMs assigned per PM in a candidate solution.

If a feasible solution using m* PMs is found, the algorithm
ends by:

1) Distributing the p vCPUs among the first m* PMs

proportionally to their capacities.

2) For each of the first m* PMs, distributing the number

of the allocated vCPUs evenly to the VMs assigned to
it.

The complexity of the algorithm is dominated by the
first two steps. Finally, since only the number of PMs and
VMs and the placement of the latter influence the objective
function value, any method for sharing vCPUs to PMs/VMs
is equivalent.

IV. NUMERICAL RESULTS

We present numerical results from our python implementa-
tion of the proposed scheme. We begin with an experiment
where we run our algorithms for the same configuration
and under different combinations of weights (w.,w,), each
corresponding to a different policy. In particular, we use (i)
the same number of vCPUs to allocate, (ii) the same number
of available hosts and their capacities, and (ii) the same cost
and availability constraints. We set the availability constraint to
“five nines” (99,999%), a popular availability target for carrier-
grade NFV. We arbitrarily fix the overall cost constraint to
FE = 160 and assume that the costs for a singe VM and PM
are ey = 1 and ep = 1 respectively. The failure probabilities
for VMs and PMs are set to gy = gp = 0.001. We consider a
system with 50 PMs, each with a capacity between 2 and 15
vCPUs.

The obtained results of our heuristic scheme are shown in
Fig. 1 and Fig. 2. Fig. 1 presents the solution space, where
the x-axis and y-axis represent the absolute values of the cost
and availability functions respectively. Each filled square point
corresponds to the outcome of our algorithm (a vCPU-VM-
PM assignment identified as the optimal) according to a spec-
ified policy, while empty squares are feasible but suboptimal
solutions. The vertical and horizontal lines are the respective
cost and availability constraints and limit the space of feasible
solutions. (Note that in our tests it can happen that for two
different policies the same optimal solution is derived. These
points are superimposed in the figure.)

The selected solutions represent what our algorithm iden-
tifies as the Pareto frontier, which, in our context, is the set

of solutions for which it is not possible to improve on cost
without sacrificing on availability. Each such solution repre-
sents a different availability-cost trade-off. A cost-centered
policy, e.g. (w.,w,) = (0.8,0.2), guides our algorithm to
select as the optimal a low-cost solution, which, according to
the cost function, uses a small number of VMs/PMs. In turn,
this corresponds to a lower service availability (the algorithm
guarantees that it is a feasible solution, not violating the
0.99999 availability constraint). Availability is increasingly
higher (= 1) when more hosts are used. Such solutions
correspond to increasing w, values, which our mechanism
takes into account to drive the calculation to an appropriate
VNF placement with more virtual instances and PMs.

Solution space

1.00000 : - it -
- mEmE
il n
z
3
S 0.99999
©
>
<<
Selected solutions ~ ®
Availability constraint
Cost constraint
Potential solutions
0.99998 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160
Cost
Fig. 1. Solution space. The straight lines represent cost and availability

constraints. The filled boxes are the assignments selected as optimal by our
algorithm under different policies, while the empty boxes are feasible but
suboptimal solutions.

This is more evident in Fig. 2, where we detail the evolution
of the value of each objective (cost and availability) in each
optimal solution as a function of a given policy. For reasons
of clarity, the values presented are normalized by mapping the
lowest and highest value per objective to 0 and 1 respectively.
The figure indicates that as the weight of the cost objective
w, increases, both functions are decreasing. This is positive
from a cost but not from an availability perspective, and is
due to less VMs/PMs being used as w. approaches 1 and w,
approaches 0. (The inverse holds for availability.)

In our second experiment, we evaluate our heuristic solu-
tion by comparing it with two candidate algorithms, random
placement and first-fit.

The random placement algorithm assigns a random number
of physical hosts where to run the virtual instances (we used
the number of VMs derived in step 2). The first-fit algorithm
places VMs directly in the first available PMs that have enough
capacity to host them. Fig. 3 presents a comparison between
our algorithm (purple curve, cross points) and the results of the
random (green curve, “x” points) and first-fit (blue curve, “*”
points) algorithms. Each point is the mean of 1000 iterations,

Cost vs. availability

1 0 0 0 X
08 ¢—o—o—o—t\ |4
06

Objective function component value

04 -
0.2 -
Cost —+—
Availability —<—
0 I I I
0 0.2 0.4 0.6 0.8 1

We=1-w,

Fig. 2. Availability and cost as a function of the selected policy.

presented with 95% confidence intervals.

Our solution minimizes the multi-objective function value,
compared with both the random and first-fit placement algo-
rithms, which take into account neither the constraints nor the
weightings selected. As can be observed in Fig. 3, the objective
function value for our algorithm remains the minimum among
the three candidate mechanisms, but after some point is
approximated or coincides with the first-fit one. This happens
for more heavily cost-centered policies (for w. > 0.7, in this
experiment configuration). The first-fit algorithm always uses
the minimum number of PMs (since it always packs a VM
in the first available PM) which however negatively impacts
availability. This is why the benefits of our scheme which aims
to balance between availability and cost are more pronounced
when availability matters.

Performance of different placement algorithms

1 T T T T
Heuristic —+— /
Random <
0.8 First-fit |
/

(0]
s X
5)
5 osf X\/K 1
©
S
(9}
2 04 //\Z\/ B
|53
2
e}
5 K

02 ¥ A B

0 | | | |
0 0.2 0.4 0.6 0.8 1

We=1-w,

Fig. 3. Comparison of our heuristics with random and first-fit placement
algorithms.

V. RELATED WORK

The placement of virtual instances to physical resources is
central in NFV, and cloud computing in general. The objective
is to find a suitable set of PMs with enough capacity to host
VMs with specific resources allocated. Mann [10] reviews
different VM placement models and algorithms, citing, among
different formulations, the problem of packing the VMs into
a minimal number of PMs, considering PM capacities and the
load of VMs. This reduces to the bin packing problem, and
various heuristics to solve it in this context exist, such as first-
fit, where the items (VMs) are placed in the first suitable bin
(PM) [11], [12].

The choice of a suitable placement is often driven by max-
imizing resource utilization or performance while minimizing
cost in the forms of energy consumption, network traffic
or penalties associated with SLA violations under various
constraints [13], [14], [15]. The common ground in the way
various flavors of the VM placement problem are tackled is
the need to provide heuristics to problems with typically high
computational complexity. Minimizing the number of physical
hosts to place VMs for cost and performance optimizations, a
procedure known as VM consolidation, may have an adverse
effect on service resilience and availability in the face of
PM failures. Contrary to the aforementioned works, service
availability is our special focus. Yang et al. [16] focus on
reliable VM placement, and, in a similar spirit to our case,
model service availability as the probability that a subset of
the requested VMs is operational. However, they address a
different VM placement problem, which, among others, does
not consider the distribution of the resources to be committed
(in our case, vCPUs; in their case, storage), assuming fixed
VM resource specifications, and does not take into account
VM-level failures.

Qu et al. [17] focus on the problem of VNF chaining and
aim to minimize the network-wide communication bandwidth
for the operation of VNF chains under service reliability
constraints. They do not consider failures at the VM level in
their reliability functions, and their focus is rather on chain
specific issues such as routing and VNF ordering, which
constrain VNF-to-host placement. Furthermore, their model
does not include CPU capacity constraints.

A relevant aspect, but outside the scope of this paper, is the
cost of fault recovery to maintain high cloud service availabil-
ity. Israel and Raz [18] present approximate algorithms with
performance guarantees and heuristics to tackle it.

VI. DISCUSSION AND CONCLUSION

We studied the problem of jointly allocating CPU resources
to virtual instances and their placement on a cloud infrastruc-
ture for the provision of CDN-as-a-Service. Our special focus
was on addressing the trade-off between service availability
and management cost. To this end, we proposed a multi-
objective optimization formulation of the problem, as well
as efficient heuristic algorithms to solve it. Numerical results
demonstrate how different policies as to the relative impor-
tance of availability and cost affect the selection of an ap-

propriate solution to the problem, and verify the performance
advantages of our scheme compared to less sophisticated,
policy-unaware mechanisms.

Our approach captures various important aspects, but it has
some specific limitations which are the subject of our ongo-
ing work. First, our model does not consider heterogeneous
machines in terms of reliability and performance. Second, our
cost functions do not consider whether PMs are already active
hosting virtual instances; it could be argued that favoring such
PMs in the placement process would lead to more significant
energy savings. Although our model can be directly extended
to cover this case, our heuristic algorithms would not apply.
Finally, taking into account failure recovery costs is another
direction for future research.

REFERENCES

[11 Network Functions Virtualisation (NFV); Management and Orchestra-
tion, ETSI Group Specification NFV-MAN 001, Dec. 2014.

[2] Network Functions Virtualisation (NFV); Use Cases, ETSI Group Spec-
ification NFV 001, Oct. 2013.

[3] B. Frank, I. Poese, G. Smaragdakis, A. Feldmann, B. Maggs, S. Uhlig,
V. Aggarwal, and F. Schneider, “Collaboration Opportunities for Content
Delivery and Network Infrastructures,” ACM SIGCOMM ebook on
Recent Advances in Networking, vol. 1, August 2013.

[4] N. Herbaut, D. Négru, Y. Chen, P. A. Frangoudis, and A. Ksentini,
“Content delivery networks as a virtual network function: A win-win
ISP-CDN collaboration,” in Proc. IEEE Globecom, 2016.

[5]1 P. A. Frangoudis, L. Yala, and A. Ksentini, “CDN-as-a-Service provision
over a telecom operator’s cloud,” IEEE Trans. Netw. Service Manag.,
2017, doi:10.1109/TNSM.2017.2710300.

[6] Network Functions Virtualisation (NFV); Resiliency Requirements, ETSI
Group Specification NFV-REL 001, Jan. 2015.

[71 L. Yala, P. A. Frangoudis, and A. Ksentini, “QoE-aware computing
resource allocation for CDN-as-a-Service provision,” in Proc. IEEE
Globecom, 2016.

[8] M. Callau-Zori, L. Samoila, A.-C. Orgerie, and G. Pierre, “An
experiment-driven energy consumption model for virtual machine man-
agement systems,” IRISA; Université de Rennes 1; CNRS, Research
Report RR-8844, Jan. 2016.

[9] R. T. Marler and J. S. Arora, “Function-transformation methods for

multi-objective optimization,” Engineering Optimization, vol. 37, no. 6,

pp. 551-570, 2005.

Z. A. Mann, “Allocation of virtual machines in cloud data centers—a

survey of problem models and optimization algorithms,” ACM Comput.

Surv., vol. 48, no. 1, p. 11, 2015.

N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual

machines for managing SLA violations,” in Proc. IFIP/IEEE IM, 2007.

W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning

for the cloud using online bin packing,” IEEE Trans. Comput., vol. 63,

no. 11, pp. 2647-2660, 2014.

J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, “Energy-saving

virtual machine placement in cloud data centers,” in Proc. IEEE/ACM

CCGrid, 2013.

N. Quang-Hung, N. T. Son, and N. Thoai, “Energy-saving virtual

machine scheduling in cloud computing with fixed interval constraints,”

in Transactions on Large-Scale Data-and Knowledge-Centered Systems

XXXI. Springer, 2017, pp. 124-145.

D. Gmach, J. Rolia, and L. Cherkasova, “Resource and virtualization

costs up in the cloud: Models and design choices,” in Proc. IEEE/IFIP

DSN, 2011.

S. Yang, P. Wieder, and R. Yahyapour, “Reliable virtual machine

placement in distributed clouds,” in Proc. 8th Int’l Workshop on Resilient

Networks Design and Modeling (RNDM), 2016.

L. Qu, C. Assi, K. Shaban, and M. Khabbaz, “Reliability-aware service

provisioning in NFV-enabled enterprise datacenter networks,” in Proc.

12th International Conference on Network and Service Management

(CNSM), 2016.

A. Israel and D. Raz, “Cost aware fault recovery in clouds,” in Proc.

IFIP/IEEE IM, 2013.

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

