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Abstract. Parameter inference in mechanistic models of biopathways based on systems
of coupled differential equations is a topical yet computationally challenging problem,
due to the fact that each parameter adaptation involves a numerical integration of the
differential equations. Techniques based on gradient matching, which aim to minimize
the discrepancy between the slope of a data interpolant and the derivatives predicted
from the differential equations, offer a computationally appealing shortcut to the infer-
ence problem. However, gradient matching critically hinges on the smoothing scheme
for function interpolation, with spurious wiggles in the interpolant having a dramatic
effect on the subsequent inference. The present article demonstrates that a time warping
approach aiming to homogenize intrinsic functional length scales can lead to a signifi-
cant improvement in parameter estimation accuracy. We demonstrate the effectiveness
of this scheme on noisy data from a dynamical system with periodic limit cycle and a
biopathway.

1 Scientific Background
The elucidation of the structure and dynamics of biopathways is a central objective of
systems biology. A standard approach is to view a biopathway as a network of biochem-
ical reactions, which is modelled as a system of ordinary differential equations (ODEs).
This system can typically be expressed as:

ẋ =
dx

dt
= f (x(t),θ) , (1)

where x = (x1, . . . , xr) is a time-dependent vector of r state variables, and the parame-
ters θ determine the kinetics of the interactions. For complex biopathways, only a small
fraction of θ can typically be measured. Hence, the elucidation of the biopathway dy-
namics requires the major proportion of kinetic parameters to be inferred from observed
(typically noisy and sparse) time course concentration profiles. In principle, this can be
accomplished with standard techniques from machine learning and statistical inference.
These techniques are based on first quantifying the difference between predicted and
measured time course profiles by some appropriate metric, to obtain the likelihood of
the data. The parameters are then optimized to maximize the likelihood (or a regularised
version thereof). However, the nature of the ODE-based model (1) renders the inference
problem computationally challenging in two respects. Firstly, for nonlinear functions
f(.), the ODE system (1) usually does not permit closed-form solution. One therefore
has to resort to numerical integration every time the kinetic parameters θ are adapted,
which is computationally onerous. Secondly, the likelihood function in the space of
parameters θ is typically not unimodal, but suffers from multiple local optima. Hence,



even if a closed-form solution of the ODEs existed, inference by maximum likelihood
would be NP-hard, calling for a computationally expensive iterative optimisation .

To circumvent the excessive computational complexity of explicitly solving the ODE
system, as described above, various authors have adopted an approach based on gradient
matching [Ramsay et al., 2007, Xun et al., 2013, Calderhead et al., 2009, Dondelinger
et al., 2013, Macdonald et al., 2015, González et al., 2013, 2014]. The idea is based on
the following two-step procedure. In a first smoothing step, obtain an estimator of the
solution directly from the data. In a second inference step, estimate the kinetic param-
eters θ by optimizing a functional criteria constructed from the difference between the
slope from the estimated solution and the θ-dependent time derivative from the ODEs.
In this way, the ODEs never have to be solved explicitly, and the initial conditions do not
have to be inferred. A problem intrinsic to this approach is the critical dependence of
the inference scheme on the form of the interpolant. Small ”wiggles”, which are hardly
discernible at the level of the interpolant itself, can have dramatic effects at the level of
the derivatives, which determine the parameter estimation. For noisy data, an adequate
smoothing scheme is essential. Any smoothing scheme is based on intrinsic functional
length scales, though, and these length scales may vary in time.

In the present paper, we present a new method that aims to homogenize the intrin-
sic length scales. The basic idea is that a regular sinusoid is easy to learn, whereas a
quasi-periodic signal with varying frequencies is not. The objective, hence, is to find
a warping of the time axis that counteracts the inhomogeneity in the period. This can
easily be effected in principle. The characteristic feature of a regular sinusoid is the
proportionality of the original function to its second derivative. Hence, we need to find
a bijective transformation of time such that some metric quantifying the difference be-
tween the original function and a rescaled version of its second derivative is minimized
in warped time. The procedure thus reduces to a double minimization problem, with
respect to both the parameters of the map and the scaling parameter.

2 Materials and Methods
We assume that we have time series of n noisy observations ys = (ys1, . . . , ysn)

′ of the
states xs = (xs1, . . . , xsn)

′, subject to iid additive Gaussian noise εk ∼ N(0, σ2I):

ys = xs + εs (2)

and the objective of inference is to learn θ from these noisy measurements. We adopt
an approach based on reproducing kernel Hilbert spaces (RKHS), where functions are
expressed as a linear combination of kernel functions evaluated at the data points

x(t) =
n∑

i=1

bik(t, ti) (3)

with bi ∈ R and ti is the ith time point. In this framework, the unknown concentrations
in eq.(1) for the sth component of the dynamical system at time t (which impliesm = 1)
can be modelled as

gs(t; bs) =
n∑

i=1

bsik(t, ti) (4)

with derivatives

ġs(t; bs) =
n∑

i=1

bsi
∂k(t, ti)

∂t
=

n∑
i=1

bsik̇(t, ti) (5)

g̈s(t; bs) =
n∑

i=1

bsi
∂2k(t, ti)

∂t2
=

n∑
i=1

bsik̈(t, ti) (6)



The ODE parameter θ can then be estimated by minimizing the difference between
ġ(ti) and the gradient predicted from the ODEs, f(g(ti),θ), using the following loss
function:

L(θ) =
r∑

s=1

n∑
i=1

[
ġs(ti)− fs(g(ti),θ)

]2
(7)

In order to overcome the difficulties that variations in intrinsic functional length
scales impose on smooth function interpolation, we introduce a two-layer approach.
The objective of the first layer is to transform, for each of the variables s of the dy-
namical system, time t via a bijection t̃ = ws(t) such that in warped time t̃, the un-
known solutions xs of the dynamical system show less variation in their intrinsic length
scales. More specifically, we target oscillating functions and aim to transform them into
a regular sinusoid by exploiting the fact that a sinusoid is closed under second-order
differentiation (subject to a rescaling). We define the transformation of time as

t̃ = ws(t, b
w, lw) =

n∑
j=1

exp (bwj )S(t− tj, lw); S(z, lw) = 1

1 + exp(−lwz) (8)

where the strict monotonicity of S(.) and the non-negativity of exp(.) guarantee bijec-
tivity. The number of basis functions n can, in principle, be treated as a model selection
problem. In practice, we found that setting n to the actual number of observations gave
satisfactory results (as reported in Section 3). In the original time domain, the sth vari-
able of the dynamical system, xs(t), is approximated by the smooth interpolant gs(t).
This function is now transformed, by virture of the bijection (8), into qs(t̃), where

gs(t) = qs ◦ ws(t) = qs(t̃) (9)

and ws(t) is shorthand notation for the bijection defined in (8).

Step 1: Initialization We initialize the system with standard kernel ridge regression.
This gives us the smooth interpolants gs(t) in the original time domain t. We then
initialize t̃ = t and gs(t) = qs(t̃), for each of the variables s of the dynamical system in
turn.

Step 2: Time warping. The bijection between the original time domain t ∈ [T0, T1]
and the warped domain t̃ ∈ [T̃0, T̃1] is obtained by minimising the objective function

Lw =

∫ (
q̈s(t̃) + [λw]2qs(t̃)

)2
dt̃+ λt

((
T̃1 − T1

)2
+
(
T̃0 − T0

)2)
(10)

The first term is minimized if qs(t̃) is a regular oscillation (i.e. phase-shifted cosine or
sinusoid) with angular frequency λw. In practice, we usually have some prior knowledge
about typical periods. This can easily be incorporated by restricting the domain of λw,
e.g. by modelling it as the output of a rescaled sigmoidal function. The second term is a
regularization term, weighted by a penalty parameter λt > 0, to discourage degenerate
solutions. The practical choice of λt is not critical as long as it is sufficiently large. (The
practical procedure is to increase λt until the results are invariant wrt a further increase.).
The integral in (10) is analytically intractable and needs to be solved numerically:

Lw =
n∑

i=1

(
q̈s(t̃i) + [λw]2qs(t̃i)

)2
+ λt

((
T̃1 − T1

)2
+
(
T̃0 − T0

)2)
(11)

The parameters λw, lw and bw are optimized iteratively until some convergence criterion
is met.



Step 3: Interpolation. The second layer deals with function interpolation. The orig-
inal data points ys(ti) are mapped to the warped time points, y(t̃i). We then apply
standard kernel ridge regression with RBF kernel in the warped domain, which gives us
the smooth interpolant qs(t̃), for each of the variables s in the dynamical system in turn:

qs(t̃; b
q
s ) =

n∑
j=1

bqsjk(t̃, t̃j) (12)

Note that this interpolation problem is less susceptible to overfitting or oversmoothing,
due to the fact that the initrinsic functional length scales (i.e. periods for an oscillating
signal) have been homogenized by virtue of the time warping. Unwarping qs(t̃) back
into the original time domain t is straightforward. Since ws(t) is bijective, we have
gs(t) = qs(t̃), and

dgs(t)

dt
=
dqs(t̃)

dt
=

n∑
j=1

bqsj
∂k(t̃, t̃j)

∂t̃

dt̃

dt
=

n∑
j=1

bqsj
∂k(t̃, t̃j)

∂t̃
w′s(t) (13)

Step 4: Gradient matching. We finally estimate the ODE parameters with gradient
matching, i.e. by minimizing the following objective function1 with respect to θ:

L(θ) =
r∑

s=1

n∑
i=1

[
ġs(ti)− fs(g(ti),θ)

]2
=

r∑
s=1

n∑
i=1

[
dqs(t̃i)

dt̃i

dt̃i
dti
− fs(q(t̃i),θ)

]2
(14)

3 Results
The objective of our simulation study is to evaluate the performance of the novel two-
level time-warping method proposed in Section 2 with the standard RKHS gradient
matching method summarized in Section 1. This method is akin to the one proposed
in [González et al., 2013, 2014] and hence representative of the current state of the art.
We refer to these methods as RKGW (W for warping) and RKG, respectively. For this
comparative evaluation, we have generated time series from one well-known dynamical
system and a biopathway. We have repeatedly and independently subjected these data
to additive iid Gaussian noise, over a range of signal-to-noise ratios (SNR).

FitzHugh-Nagumo The FitzHugh-Nagumo system is a two-dimensional dynamical
system used for modelling spike generation in axons[FitzHugh, 1955]. It has two state
variables, x1 and x2, and three parameters: a, b and c. We generated equidistant time
series of length n = 37 from

ẋ1 = c ·
(
x1 − x31/3 + x2

)
, ẋ2 = −c−1 (x1 − a+ b · x2) (15)

Biopathway A model for the interactions of five protein isoforms, S, dS,R,RS,Rpp,
in a signal transduction pathway was studied by Vyshemirsky and Girolami [2008],
based on mass action and Michaelis-Menten kinetics:

[Ṡ] = −k1 · [S]− k2 · [S] · [R] + k3 · [RS]
[ ˙dS] = k1 · [S]
˙[R] = −k2 · [S] · [R] + k3 · [RS] +

k5 · [Rpp]
k6 + [Rpp]

˙[RS] = k2 · [S] · [R]− k3 · [RS]− k4 · [RS]
˙[Rpp] = k4 · [RS]−

k5 · [Rpp]
k6 + [Rpp]

(16)

1Recall that ti depends on s, so a more accurate (but cumbersome) notation would be gs(ti)→ gs(t
s
i ).
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Figure 1: Method comparison in parameter space. The box plots represent, for each true parameter
L, the distribution (from 50 independent noise instantiations) of differences between the absolute error
of the parameter estimates with the standard method (RKG, Section 1, no warping), and the absolute
error of estimates with the proposed method (RKGW, Section 2, with time warping). Positive values
(above the dashed horizontal line) indicate that time warping improves performance. The horizontal axis
shows different signal-to-noise ratios for each DE parameter. Asterisks above a box indicate where the
performance improvement is significant (based on a paired t-test).
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Figure 2: Method comparison in function space. Similar boxplot representation as in Figure 1, but
showing the distribution of the differences between the absolute errors of the function estimates; these
function estimates are obtained by inserting the estimated parameters into the ODEs. Positive values indi-
cate that the proposed method outperforms the standard method, asterisks indicate that the improvement
is significant (paired t-test).

The results are shown in Figures 1 and 2 and demonstrate that the proposed time
warping method achieves a significant improvement in the ODE parameter inference.

4 Conclusion
Carrying out parameter inference in biopathway models described by ODEs is generally
difficult due to the need to repeatedly perform computationally expensive numerical in-
tegration to solve the ODEs. While gradient matching approaches mitigate this issue,
their success critically hinges on the quality of the interpolation scheme. In cases where
the solutions to the DE systems exhibit nonstationarity and substantial variations of
intrinsic length scales, standard RKHS or Gaussian process approaches typically fail
to accurately represent the unkown true functions, leading to poor ODE parameter esti-
mates. In this paper, we have proposed a remedy for this problem by combining gradient
matching techniques and time warping. The latter, in particular, is inspired by the work
in Calandra et al. [2016], where Gaussian processes are made nonstationary by a repa-
rameterization of the input space. In our work, we use a RKHS interpolation approach
instead, and we learn the reparameterization by optimizing a separate objective func-
tion that particularly aims to homogenize the intrinsic functional length scales. We have
demonstrated that the proposed time warping is effective in improving the quality of



gradient matching approaches in two applications that are representative of biological
dynamical systems, one with a limit cycle, the other with a stable equilibrium point.

Our work proposes a first proof of concept that time warping is useful to improve
parameter inference in ODE models. We are currently investigating extensions of our
work in the direction of including some form of regularization in the estimation of the
parameters based on the structure of the ODEs. This could come in the form of alter-
nating the revising of the interpolant in light of the estimated ODE parameters and the
estimation of the ODE parameters, or in the form of a prior, following, e.g., the work on
hierarchical Bayesian models in Xun et al. [2013].
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Javier González, Ivan Vujačić, and Ernst Wit. Reproducing kernel Hilbert space based estimation
of systems of ordinary differential equations. Pattern Recognition Letters, 45:26–32, 2014.

Benn Macdonald, Catherine Higham, and Dirk Husmeier. Controversy in mechanistic mod-
elling with Gaussian processes. In Journal of Machine Learning Research: Workshop and
Conference Proceedings, volume 37, pages 1539–1547. Microtome Publishing, 2015.

Jim O Ramsay, G Hooker, D Campbell, and J Cao. Parameter estimation for differential equa-
tions: a generalized smoothing approach. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 69(5):741–796, 2007.

Vladislav Vyshemirsky and Mark A Girolami. Bayesian ranking of biochemical system models.
Bioinformatics, 24(6):833–839, 2008.

Xiaolei Xun, Jiguo Cao, Bani Mallick, Raymond J Carroll, and Arnab Maity. Parameter Estima-
tion of Partial Differential Equation Models. Journal of the American Statistical Association,
108(503):37–41, 2013. ISSN 0162-1459. doi: 10.1080/01621459.2013.794730.




