

Device-to-Device for Public Safety (DDPS)

4th OpenAirInterface Workshop November 7th and 8th, 2017 Orange Gardens, Paris France

Contact: Jérôme Härri Email: haerri@eurecom.fr

NIST DDPS contact: Richard Lau Email: clau@vencorelabs.com

This work was performed under the following financial assistance award 70NANB17H167 from U.S. Department of Commerce, National Institute of Standards and Technology.

Acknowledgements

- DDPS is a National Institute of Standards and Technology (NIST) Public Safety Innovation Accelerator Program (PSIAP)
- Vencore Labs (Prime) and EURECOM collaborate on DDPS technology
- Vencore Labs
 - Richard Lau (NIST DDPS PI)
 - Tony Triolo (NIST DDPS co-PI)
 - Stephanie Demers
 - William Johnson
 - Heechang Kim
 - James Dixon
- EURECOM
 - Raymond Knopp
 - Panagiotis Matzakos
 - Tien-Thin Nguyen
 - Cedric ROUX

OpenAirInterface

5G software alliance for democratising wireless innovation

http://www.openairinterface.org/

Problem Space & Stakeholders

Key Stakeholders:

- Law enforcement
- Firefighters
- Medical personnel
- Military organizations
- Volunteer groups

Key CONOPS for Public Safety:

- Fall back in the event of complete LTE network failure, e.g. natural disasters
- UE-UE communication within coverage
- UE-UE communication outside coverage
- Mixture of UE communication within and outside coverage

Key Services:

- ✓ Mission-Critical Voice
- ✓ 3GPP Proximity Service (ProSe)
- ✓ 1:1 and 1:many Group Communication
- ✓ Service Continuity

DDPS Objectives

- Build complete ProSe stack by extending current OpenAirInterface[™] implementation to include ProSe services based on 3GPP Rel-14 specifications
- Solve open issues related to resource allocation, time synchronization, and service continuity
 - Develop new scheduling algorithms for autonomous resource allocation to minimize collision probability.
 - Develop novel multi-antenna-based synchronization techniques to achieve significant improvement in UE autonomous synchronization
 - Solve complex service continuity challenges for on-, off-, and partial-on-network operations
- Demonstrate ProSe solution on software defined radio platform
- Help create an ecosystem that can be provided to interested vendors for commercialization on a systemon-a-chip platform

Service Continuity

DDPS Scenarios

Scenario 1: Off-Network D2D

Two UEs are off-network but
communicate directly via a sidelink channel

• Scenario 2: On-Network D2D

 Two UEs are located closed to their eNodeB but communicate directly via a sidelink channel

Scenario 3: UE-to-Network Relay

UE A is closed to its eNodeB while a second
UE B is out-of-coverage but within coverage of
UE A. UE A acts as a relay to remote UE B and relay its traffic (e.g., to a FTP server, or another on-network UE C)

PC5

eNB

URECOM

PC3

ProSe Function

ENCORELABS

EPC

LTE ProSe 3GPP Standardization Timeline

ProSe: Proximity Services

LTE Proximity Services (ProSe)

- LTE ProSe enables establishment of communication paths between two or more ProSe-enabled UEs.
- LTE ProSe enables communication functions
 - 1. <u>One-to-One</u> Direct UE-to-UE Communication
 - 2. One-to-Many Communication to a ProSe group
- LTE ProSe Functions:
 - Discovery
 - Mode A 'I am here'
 - Mode B 'how is there ?'
 - Direct Communication
 - Mode 1 Coordinated by eNB
 - Mode 2 Ad-Hoc mode

Restricted to Public Safety (rel.14)

LTE Prose Extended Architecture

New Architecture Elements:

- a) **ProSe Function** management of D2D communication (authentication, discovery)
- b) PC5 interface UE to UE
- c) PC3 interface Prose Function to UE

LTE ProSe – New Slidelink (SL) Channels

EURECOM

Discovery & One-to-One Communication

Relay Discovery, Selection & Direct Communication

OAI Architecture for ProSe Interfaces

OAI Emulation Extensions for DDPS

© 2017 Vencore Labs, Inc. All rights reserved.

D2D for Public Safety on OAI – RoadMap

Phase 1 Stage 1 - Emulation

- Redesign of emulation mode new PHY STUB
- Phase 1 Stage 2 Implementation
 - Part A Implementation of the ProSe Function/RRC/PDCP/RLC/MAC
 - Part B Implementation of the PHY
- **Phase 1 Stage 3: Performance Evaluation**
 - Emulation-based Proof-of-Concept and Performance Evaluation

EURECOM

Device-to-Device for Public Safety (DDPS)

4th OpenAirInterface Workshop November 7th and 8th, 2017 Orange Gardens, Paris France

Contact: Jérôme Härri Email: haerri@eurecom.fr

NIST DDPS contact: Richard Lau Email: clau@vencorelabs.com

This work was performed under the following financial assistance award 70NANB17H167 from U.S. Department of Commerce, National Institute of Standards and Technology.