A leading institution at the heart of the digital society

V2X Communications for Autonomous Driving – Roadmap for WiF-V2X and Cellular-V2X

Jérôme Härri

IEEE Vehicular Networking Conference

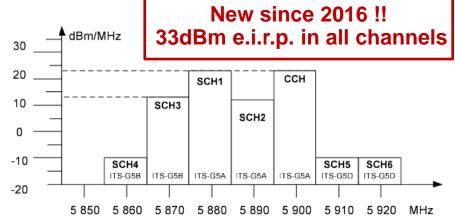
November 27th 2017

Cooperative Communication for Automated Driving - WiFi-based V2X ITS-G5

Specification completed in 2010 (IEEE 802.11p-2010)

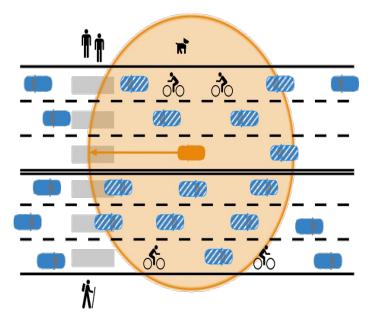
Later integrated in IEEE 802.11-2012

Key characteristics


- 5.9 GHz frequency domain
- Based on IEEE 802.11a (OFDM PHY)
- BCC encoder
- 10 MHz channel bandwidth
- Rates: 3, 4.5, 6, 9, 12, 18, 24, 27 Mbps
- Operates without a BSS

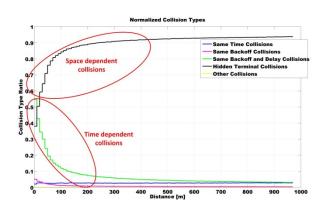
ITS Frequency Band

Name	Center Frequency	Туре	30
SCH6	5920		20
SCH5	5910	ITS-G5D - Future ITS	0
SCH4	5860	ITS-G5B - Non-Safety	-10
SCH3	5870	related	-20
SCH2	5880		-20
SCH1	5890	ITS-G5A - Safety-Related	
ССН	5900		


CAR 2 CAR

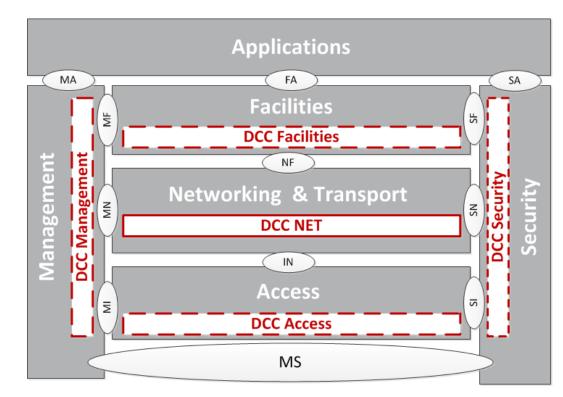
ITS-G5 main Focus: Safety Critical V2X

- Periodical GPS / speed / heading updates (CAM / BSM)
- Geographic <u>broadcast</u>: all of the road users in proximity are recipients
- Purpose: spread and acquire awareness
 - Delay-sensitive information
- Building block for Cooperative Intelligent Transportation Systems (C-ITS)

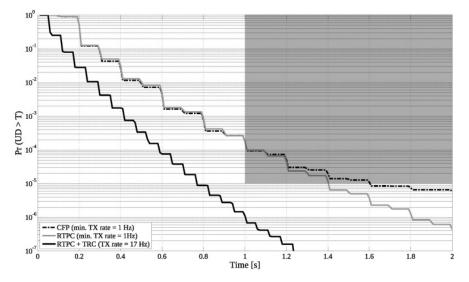


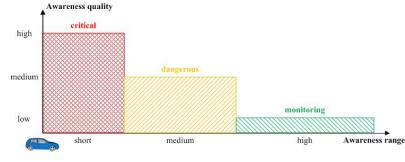
Challenges of ITS-G5 for V2X Communications

- Challenging Safety-critical V2X Communications:
 - Safety-critical application require 'periodic TX'
 - DSRC has been optimized for busty traffic
 - Unacknowledged broadcast traffic reliable for low traffic density
 - All cars TX at 10Hz up to 500m congested channel
 - Hidden Terminal DSRC cannot detect a transmission on the channel
 - Solutions exist for Unicast; not for Broadcast
 - Low mutual mobility & Similar transmit range
 - Recurring hidden terminal on same nodes
- The underlying challenge:
 - Dependable 1-hop broadcast !!
 - In space & in time

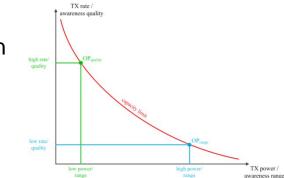


ETSI DCC Architecture (TS 103 175, TS 102 687, TS 102 636-4-2)


- The Wireless Vehicular Radio Channel has limited resource
 - > WiFi is only best effort
 - In Ad-hoc (OCB): requires coordinated access
- DCC controls the load with various mechanisms
 - Adjust Tx Rate DCC FAC
 - Adjust Tx Power DCC NET
 - Adjust Modulation (MCS) DCC FAC
 - Adjust Sensing Threshold DCC ACC
 - Offloading on different channels – DCC MGMT



Decentralized Congestion Control for ITS-G5


Strategy: Decentralized Congestion Control

- Adjust Tx parameters to maintain the channel load in an operational limit
- Based on cooperation between vehicles
- Mostly adaptation of Tx power and Tx Rate (flow control)

Bernhard Kloiber, Jérôme Härri, Thomas Strang, Stefan Sand, Cristina Rico Garcìa, "Random Transmit Power Control for DSRC and its Application to Cooperative Safety", IEEE Transaction of Dependable and Secured Communication, 2015

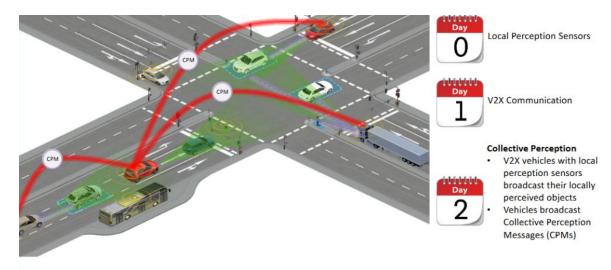
DAY 2 C-ITS Applications

NEW WORK ITEMS AND MESSAGE SETS

ETSI ITS Innovative Work Items

- TR 102 638 services)
- TS 102 890-2 (EN 302 890-2)
- TS 103 141
- TR 103 298
- TR 103 299
- TR 103 300-1
- TS 103 300-2
- TS 103 300-3
- TR 103 562
- TS 103 324
- TS 103 561
- TR 103 579 standardisation study
- TR 103 439

BSA Release 2 (incorporation of the new


Facility Position and Time Facility Communication Congestion Control Platooning pre-standardisation study C-ACC pre-standardisation study VRU pre-standardisation study **VRU** Architecture **VRU Service** Informative Report Collective Perception **Collective Perception Service** Manoeuvre Coordination Service Charging/Tolling applications via ITS-G5 pre-

Multi Channel Operation study

Sharing Sensor Information for Automated Vehicles

Collective Perception Message (CPM) –

> TS 103 324, TR 103 562

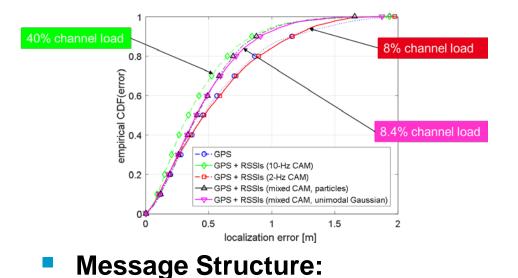
Message Structure:

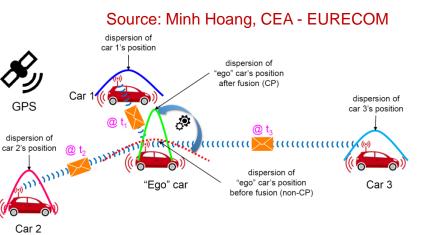
Source: Hendrik-Jörn Günther (VW), ETSI

- As CAM one-hop broadcast
- Contains Raw & Processed Sensor data of a car
 - Can also piggyback those from one car in front

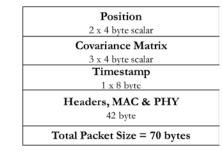
ITS-PDU header Origin Station Sensor Information Detected Objectt

Reference - Hendrik-Jörn Günther et al., **Realizing Collective Perception in a Vehicle**, IEEE Vehicular Networking Conference (VNC), 2016


Improving Positioning for Automated Vehicles

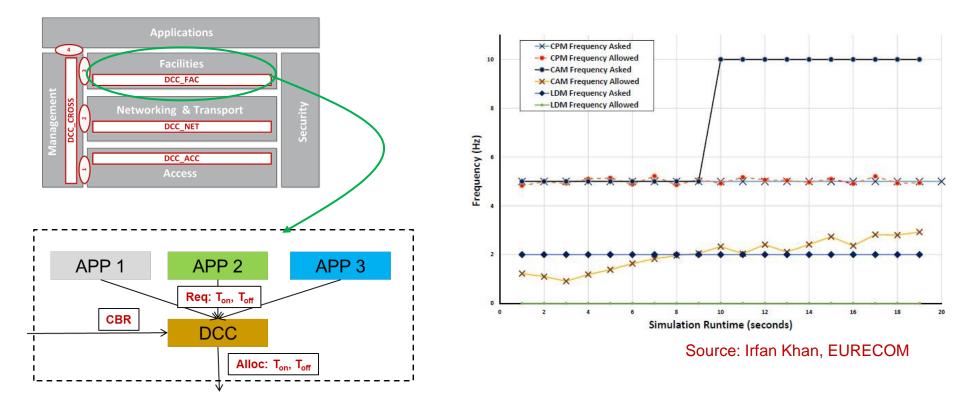

Providing sub-meter awareness 'precision'

No GPS transmission, rather fusion data


Can reach 100Hz at 60% channel load

Smaller (70 bytes)

Source: Irfan Khan, EURECOM


More details: Irfan Khan, Minh Gia Hoang Jérôme Härri, "Rethinking Cooperative Awareness for Future V2X Safety-critical Applications", later today at 16:30 at VNC 2017

Multi-Message Congestion Control

Facilities-layer DCC – TS 103 141

Objective: provide fair '<u>channel access time</u>' to all message

- Potentially irrespective to the technology

IEEE 802.11px

ITS-G5 RELEASE 2

ITS-G5 rel. 2 – Design Directions & Roadmap

- In November 2016, the CAR 2 CAR initiated a WI on ITS-G5 Rel. 2
 - CAR 2 CAR white paper "Enhanced 11p Investigations and Proposal"

Design directions:

- Enhanced channel usage (modulation, congestion control)
- Enhanced information exchange (Tx what is 'required')
- Enhanced PHY & MAC
- Enhanced Capacity
 - mmWAVE bands

Input currently under discussions at the CAR 2 CAR

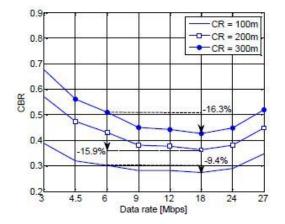
- Objectives:
 - > 5dB gain at 5GHz
 - 10x capacity at 60Hz

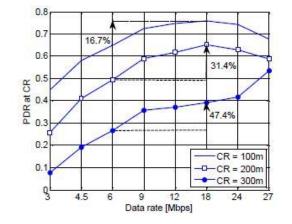
ITS-G5 rel. 2 – Enhanced Channel Usage

- ETSI EN 302 571 specifies a default QPSK ½ modulation (6mbps) modulation on CCH
 - > Why? Seminal work (2008)
 - D. Jiang, Q. Chen, L. Delgrossi, "Optimal data rate selection for vehicle safety communications", Proc. ACM international workshop on VehiculAr Inter-NETworking (VANET), San Francisco, California, USA, pp. 30-38, 15 Sept. 2008.
 - Hypothesis: Constant TX power
 - Hypothesis no longer valid...

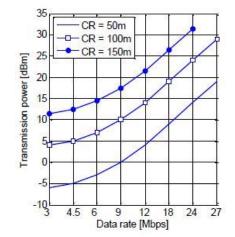
What is then the 'optimal' data rate for CCH?

- Recent paper (2017):
 - M. Sepulcre, J. Gozalvez, B. Coll-Perales "Why 6Mbps is not (always) the Optimum Data Rate for Beaconing in Vehicular Networks", IEEE Transactions on Mobile Computing, Early Access, 2017.
- Conclusions: default data rate can go up to 18 Mbps on CCH
 - Up to 3x channel capacity of ITS-G5 rel. 1


ITS-G5 rel. 2 – Enhanced Channel Usage


Principle:

- Joint adjustment of Tx power and data rate to optimize the channel occupancy 'footprint'
 - In a nutshell: considers the impact of Tx power in perturbing remote neighbors
- Objective: adjusting Tx power (and modulation) to guarantee a 95% PDR at a given TX range


ITS-G5 default 18 mbps on CCH

- The Channel Load (CBR) is reduced by 9%-16% as function of the intended distance
- The Packet Delivery Ratio is improved by 16%-47%

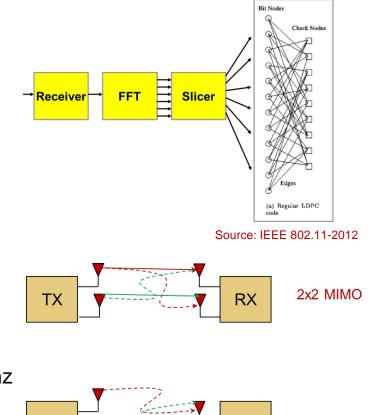
Source: M. Sepulcre, J. Gozalvez, B. Coll-Perales "Why 6Mbps is not (always) the Optimum Data Rate for Beaconing in Vehicular Networks", IEEE Transactions on Mobile Computing

ITS-G5 rel. 2 – IEEE 802.11px enhanced PHY

Critics says: IEEE 802.11p is an old technology

- Indeed developed 10 years ago
- But not the limit of what WiFi can do !!

IEEE 802.11ac

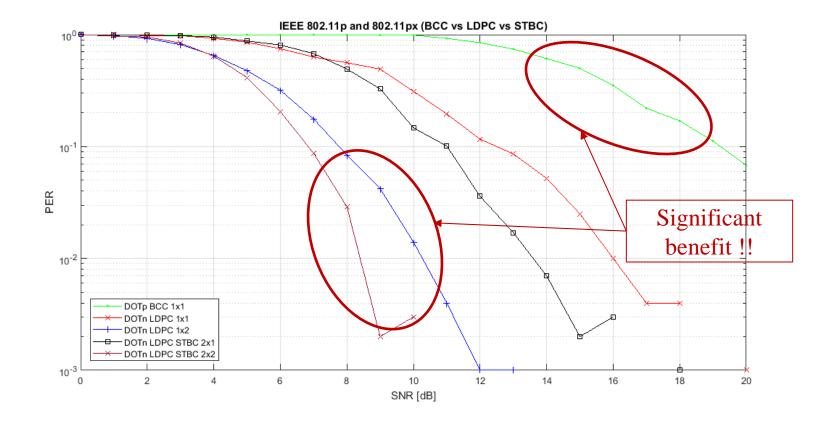

- Current state-of-art WiFi Technology
- > Up to 1Gbps

Main features

- > Physical Layer:
 - LDPC coding
 - STBC (space-time coding)
 - Enhanced channels width: 80Mhz, 160Mhz

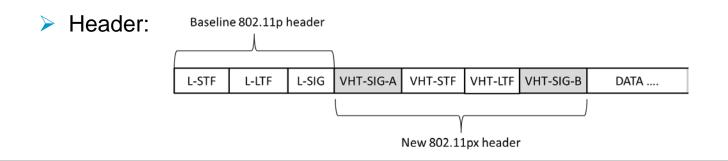
Design Guideline of IEEE 802.11px

- Take the 802.11ac PHY
- Adapt it to OCB and High Mobility
- Keep Backward compatible with 802.11p



ΤХ

2x1 Legacy


RX

IEEE 802.11px – Impact of LDPC w/o STBC

IEEE 802.11px – Basic Proposal

- IEEE 802.11px on IEEE 802.11-2016
 - dotOCBActivated = TRUE OCB mode for WiFi
 - VHT PHY provision for LDPC and STBC
 - **STBC** code with two streams (2x1)
 - LDPC flag in VHT-SIG-A turned to 1
 - > 10Mhz half-clock rate mitigate coherence time and Doppler spread
 - 5.9 GHz band in Europe (5.855–5.925 GHz) default channel to operate the OCB mode.
 - Ethertype Protocol discrimination shall also be used as mentioned in 802-2014.

IEEE 802.11px – Coexistence & Backward compatibility

Coexistence with Legacy 802.11p

- IEEE 802.11px devices
 - IEEE 802.11px profile able to understand each other
- IEEE 802.11px vs. Legacy
 - any IEEE 802.11-2016 VHT PHY device may also decode non-HT preamble, any legacy IEEE 802.11p will be decoded and understood at the same Sensitivity level (no PHY hidden terminal).
- Legacy vs. IEEE 802.11p
 - any IEEE 802.11-2016 VHT PHY includes a non-HT preamble, and as such at least the preamble of any IEEE 802.11-2016 PHY PSDU will be decoded
- Legacy vs. Legacy
 - As current situation

For Legacy IEEE 802.11p to decode IEEE 802.11px

- Double payload any IEEE 802.11-2016 VHT PHY shall integrate two aggregated data parts: VHT-related data (LDPC, STBC encoded), non-HT data (BCC encoded).
- Double transmission any IEEE 802.11px device shall transmit twice the same message, once using VHT and once with Non-HT

IEEE 802.11px – Channel Capacity

Mod	Coding rate (R)	Coded bits per subcarrier (NBPSC)	Coded bits per OFDM symbol (NCBPS)	Data bits per OFDM symbol (NDBPS)	Data rate [Mb/s] (20 MHz channel spacing) short/long GI	Minimum Sensitivity [dBm]	SINR Threshold (dB)
BPSK	1/2	1	52	26	6.5 / 7.2	-82	5
QPSK	1/2	2	104	52	13.0 / 14.4	-79	10
QPSK	3/4	2	104	78	19.5 / 21.7	-77	13
16- QAM	1/2	4	208	104	26.0 / 28.9	-74	16
16- QAM	3/4	4	208	156	39.0 / 43.3	-70	19
64- QAM	2/3	6	312	208	52.0 / 57.8	-66	22
64- QAM	3/4	6	312	234	58.5 / 65.0	-65	25
64- QAM	5/6	6	312	260	65.0 / 72.2	-64	27
256- QAM	3/4	8	416	312	78.0 / 86.7	-59	30

IEEE 802.11px – Profile and Next steps

Default Parameters:

- Preamble/PHY header (non-HT and VHT fields): BPSK ½
- Data: 64-QAM
- Dynamic transmit power for homogeneous SINR at range R

New Congestion control required

- significantly shorter air-time
- required dynamic transmit power adjustments

Next Steps:

- Developing LDPC codes for IEEE 802.11px (2017)
- Performance Evaluation (2017-2018)
- Proposal to IEEE 802.11 (2018)
 - 10Mhz VHT PHY
 - OCB on VHT PHY
 - New LDPC codes for VHT PHY when OCB

Minor modification required !!

IEEE 802.11px – mmWAVE PHY

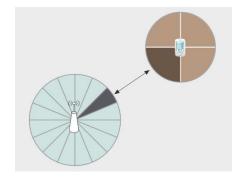
mmWAVE - C-ITS reserved band

≻ 63-64GHz

IEEE 802.11ad

≻ ..


- Release 2012
- Extension of IEEE ac for mmWAVE
- Sectorial MAC mechanisms for management


IEEE 80211ad aims at 4-6 Gbps

- Products already available !!
- IEEE 802.11px expected to have minor modifications

Design Guideline of IEEE 802.11px @ 60GHz

Optimize IEEE 802.11ad for mmWAVE C-ITS Bands VHT PHY OCB

Source: Thomas Nitsche, IEEE Com. Magazine

IEEE 802.11px – Road Map

Short Term Opportunities

Increased/adaptive default ITS-G5 modulation (18 mbps)

- Up to 40% PDR at 300m

Medium Term Opportunities

- LDPC support (with backward compatibilities)
 - Up to 6dB gain
- STBC (Alamouti) 2x2
 - Up to 3dB gain
- Adapted Modulation & Congestion Control (60mbps)
 - Up to 10x capacity gain
- mmWAVE PHY
 - 1.5 4 Gbps capacity

Longer Term Opportunities

> optimized MAC

Key Message – ITS-G5 is not the issue; rather the way we use it !!

(some) References

Research

- Bernhard Kloiber, Jérôme Härri, Thomas Strang, Stefan Sand, Cristina Rico Garcìa, "Random Transmit Power Control for DSRC and its Application to Cooperative Safety", IEEE Transaction of Dependable and Secured Communication, 2015
- M. Sepulcre, J. Gozalvez, B. Coll-Perales "Why 6Mbps is not (always) the Optimum Data Rate for Beaconing in Vehicular Networks", IEEE Transactions on Mobile Computing, 2017
- Hendrik-Jörn Günther et al., Realizing Collective Perception in a Vehicle, IEEE Vehicular Networking Conference (VNC), 2016
- Irfan Khan, Minh Gia Hoang Jérôme Härri, "Rethinking Cooperative Awareness for Future V2X Safety-critical Applications", IEEE Vehicular Networking Conference, Torino, 2017
- Irfan Khan, Jérôme Härri, "Evaluation of Facility-Layer Decentralized Congestion Control", to be submitted

Standards

- CAR 2 CAR White Paper Enhanced 11p Investigations and Proposal, 2017
- > IEEE 802.11-2016