CAR 2 CAR COM/ARCH

IEEE 802.11p Extension Roadmap

2017/11/29

<u>Jérôme Härri</u> (EURECOM), Matthias Alles (CREONICS), Friedbert Berens (FBConsulting)

Cooperative Communication for Automated Driving - WiFi-based V2X ITS-G5

- Specification completed in 2010 (IEEE 802.11p-2010)
 - Later integrated in IEEE 802.11-2012

Key characteristics

- 5.9 GHz frequency domain
- Based on IEEE 802.11a (OFDM PHY)
- BCC encoder
- 10 MHz channel bandwidth
- Rates: 3, 4.5, 6, 9, 12, 18, 24, 27Mbps
- Operates without a BSS

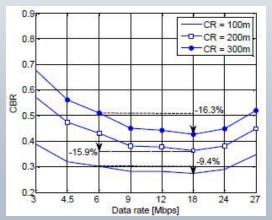
ITS Frequency Band

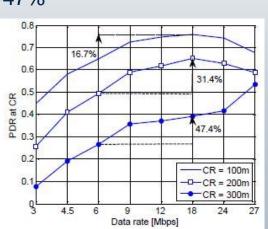
Name	Center Frequency	Туре		
SCH6	5920	ITS-G5D - Future ITS		
SCH5	5910	113-33D - Future 113		
SCH4	5860	ITS-G5B - Non-Safety		
SCH3	5870	related		
SCH2	5880			
SCH1	5890	ITS-G5A - Safety-Related		
ССН	5900			

ITS-G5 rel. 2 – Design Directions & Roadmap

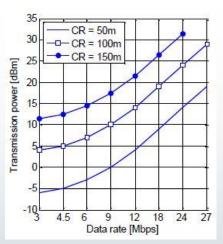
- In November 2016, the CAR 2 CAR initiated a WI on ITS-G5 Rel. 2
 - CAR 2 CAR white paper "Enhanced 11p Investigations and Proposal"
- Design directions:
 - Enhanced channel usage (modulation, congestion control)
 - Enhanced information exchange (Tx what is 'required')
 - Enhanced PHY & MAC
 - Enhanced Capacity
 - mmWAVE bands
- Input currently under discussions at the CAR 2 CAR
 - Objectives:
 - > 5dB gain at 5GHz
 - 10x capacity at 60Hz

ITS-G5 rel. 2 – Enhanced Channel Usage


- ETSI EN 302 571 specifies a default QPSK ½ modulation (6mbps) modulation on CCH
 - Why? Seminal work (2008)
 - D. Jiang, Q. Chen, L. Delgrossi, "Optimal data rate selection for vehicle safety communications", Proc. ACM international workshop on VehiculAr Inter-NETworking (VANET), San Francisco, California, USA, pp. 30-38, 15 Sept. 2008.
 - <u>Hypothesis</u>: Constant TX power
 - Hypothesis no longer valid...
- What is then the 'optimal' data rate for CCH?
 - Recent paper (2017):
 - M. Sepulcre, J. Gozalvez, B. Coll-Perales "Why 6Mbps is not (always) the Optimum Data Rate for Beaconing in Vehicular Networks", IEEE Transactions on Mobile Computing, Early Access, 2017.
 - Conclusions: default data rate can go up to 18 Mbps on CCH
 - Up to 3x channel capacity of ITS-G5 rel. 1



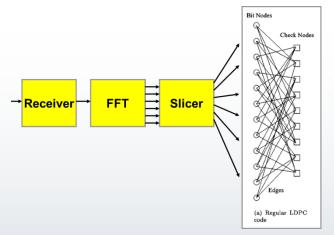
ITS-G5 rel. 2 – Enhanced Channel Usage


Principle:

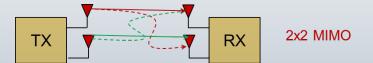
- Joint adjustment of Tx power and data rate to optimize the channel occupancy 'footprint'
 - In a nutshell: considers the impact of Tx power in perturbing remote neighbors
- Objective: adjusting Tx power (and modulation) to guarantee a 95% PDR at a given TX range
- ITS-G5 default 18 mbps on CCH
 - The Channel Load (CBR) is reduced by 9%-16% as function of the intended distance
 - The Packet Delivery Ratio is improved by 16%-47%

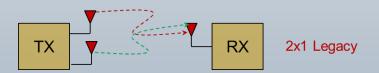
<u>Source</u>: M. Sepulcre, J. Gozalvez, B. Coll-Perales "Why 6Mbps is not (always) the Optimum Data Rate for Beaconing in Vehicular Networks", IEEE Transactions on Mobile Computing

ITS-G5 rel. 2 – IEEE 802.11px enhanced PHY

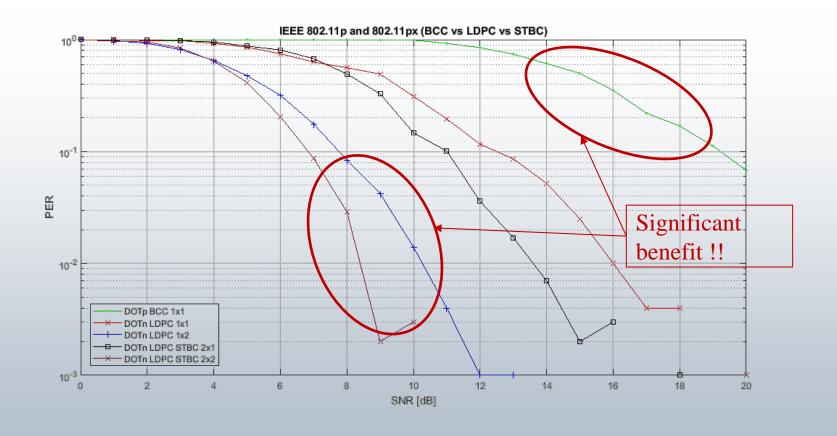

- Critics says: IEEE 802.11p is an old technology
 - Indeed developed 10 years ago
 - But not the limit of what WiFi can do !!
- IEEE 802.11ac
 - Current state-of-art WiFi Technology
 - Up to 1Gbps

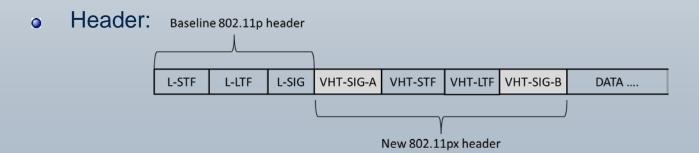
Main features


- Physical Layer:
 - LDPC coding
 - STBC (space-time coding)
 - Enhanced channels width: 80Mhz, 160Mhz


Design Guideline of IEEE 802.11px

- Take the 802.11ac PHY
- Adapt it to OCB and High Mobility
- Keep Backward compatible with 802.11p


Source: IEEE 802.11-2012


IEEE 802.11px – Impact of LDPC w/o STBC

IEEE 802.11px – Basic Proposal

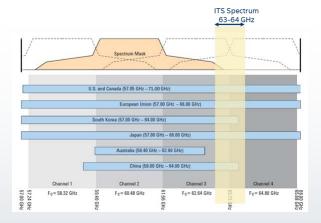
- IEEE 802.11px on IEEE 802.11-2016
 - dotOCBActivated = TRUE OCB mode for WiFi
 - VHT PHY provision for LDPC and STBC
 - STBC code with two streams (2x1)
 - LDPC flag in VHT-SIG-A turned to 1
 - 10Mhz half-clock rate mitigate coherence time and Doppler spread
 - 5.9 GHz band in Europe (5.855–5.925 GHz) default channel to operate the OCB mode.
 - Ethertype Protocol discrimination shall also be used as mentioned in 802-2014.

IEEE 802.11px – Coexistence & Backward compatibility

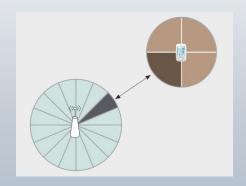
- Coexistence with Legacy 802.11p
 - IEEE 802.11px devices
 - IEEE 802.11px profile able to understand each other
 - IEEE 802.11px vs. Legacy
 - any IEEE 802.11-2016 VHT PHY device may also decode non-HT preamble, any legacy IEEE 802.11p will be decoded and understood at the same Sensitivity level (no PHY hidden terminal).
 - Legacy vs. IEEE 802.11p
 - any IEEE 802.11-2016 VHT PHY includes a non-HT preamble, and as such at least the preamble of any IEEE 802.11-2016 PHY PSDU will be decoded
 - Legacy vs. Legacy
 - As current situation
- For Legacy IEEE 802.11p to decode IEEE 802.11px
 - Double payload any IEEE 802.11-2016 VHT PHY shall integrate two aggregated data parts: VHT-related data (LDPC, STBC encoded), non-HT data (BCC encoded).
 - Double transmission any IEEE 802.11px device shall transmit twice the same message, once using VHT and once with Non-HT

IEEE 802.11px – Channel Capacity

Mod	Coding rate (R)	Coded bits per subcarrier (NBPSC)	Coded bits per OFDM symbol (NCBPS)	Data bits per OFDM symbol (NDBPS)	Data rate [Mb/s] (20 MHz channel spacing) short/long GI	Minimum Sensitivity [dBm]	SINR Threshold (dB)
BPSK	1/2	1	52	26	6.5 / 7.2	-82	5
QPSK	1/2	2	104	52	13.0 / 14.4	-79	10
QPSK	3/4	2	104	78	19.5 / 21.7	-77	13
16- QAM	1/2	4	208	104	26.0 / 28.9	-74	16
16- QAM	3/4	4	208	156	39.0 / 43.3	-70	19
64- QAM	2/3	6	312	208	52.0 / 57.8	-66	22
64- QAM	3/4	6	312	234	58.5 / 65.0	-65	25
64- QAM	5/6	6	312	260	65.0 / 72.2	-64	27
256- QAM	3/4	8	416	312	78.0 / 86.7	-59	30


IEEE 802.11px – Profile and Next steps

- Default Parameters:
 - Preamble/PHY header (non-HT and VHT fields): BPSK ½
 - Data: 64-QAM
 - Dynamic transmit power for homogeneous SINR at range R
- New Congestion control required
 - significantly shorter air-time
 - required dynamic transmit power adjustments
- Next Steps:
 - Developing LDPC codes for IEEE 802.11px (2017)
 - Performance Evaluation (2017-2018)
 - Proposal to IEEE 802.11 (2018)
 - 10Mhz VHT PHY
 - OCB on VHT PHY
 - (If necessary)New LDPC codes for VHT PHY when OCB


Minor modification required !!

IEEE 802.11px – mmWAVE PHY

- mmWAVE C-ITS reserved band
 - 63-64GHz
- IEEE 802.11ad
 - Release 2012
 - Extension of IEEE ac for mmWAVE
 - Sectorial MAC mechanisms for management
 - **0** ...

- IEEE 80211ad aims at 4-6 Gbps
 - Products already available !!
 - Minor adaptation to IEEE 802.11px (similar from .ac to .px)
- Design Guideline of IEEE 802.11px @ 60GHz
 - Optimize IEEE 802.11ad for mmWAVE C-ITS Bands VHT PHY OCB

Source: Thomas Nitsche, IEEE Com. Magazine

IEEE 802.11px – Road Map

- Short Term Opportunities
 - Increased/adaptive default ITS-G5 modulation (18 mbps)
 - Up to 40% PDR at 300m
- Medium Term Opportunities
 - LDPC support (with backward compatibilities)
 - Up to 6dB gain
 - STBC (Alamouti) 2x2
 - Up to 3dB gain
 - Adapted Modulation & Congestion Control (60mbps)
 - Up to 10x capacity gain
 - mmWAVE PHY
 - 1.5 4 Gbps capacity
- Longer Term Opportunities
 - optimized MAC

Key Message – ITS-G5 is not the issue; rather the way we use it !!