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ABSTRACT

The I4U’s submission to SRE’16 was a result from the col-
laboration and active exchange of information among re-
searchers across sixteen Institutes and Universities across 4
continents. The submitted results were based on the fusion
of multiple classifiers. A lot of efforts have been devoted to
two major challenges, namely, test duration variability and
dataset shift from Switchboard and Mixer corpora to the new
Call My Net dataset.

Index Terms— I4U, SRE’16, Call My Net

1. INTRODUCTION

The consortium (I4U) submission is a joint effort of 16 re-
search Institutes and Universities across 4 continents. The
first I4U meeting was conducted via WebEx1 on May 11,
2016. This was followed by regular bi-weekly and weekly
meetings toward the end of SRE’16. An online group was
also set up, providing a discussion platform across various
issues surrounding NIST SRE’16. In particular, test segment
variability, domain adaptation for language and channel shift,
uncertainty propagation, score normalization, session com-
pensation, and various issues concerning score calibration
(quality measure, supervised versus unsupervised) have been
actively discussed. Solutions were put in place as part of the
I4U submission. Along the way, we are fortunate to have a
group of dedicated researchers joining the I4U efforts toward
NIST SRE’16.

Different from previous SREs, the test segments used in
SRE’16 were expected to have varying duration ranging from
10 to 60 seconds with uniform distribution. The duration vari-
ability was encountered for with the use uncertainty propa-
gation [1] and variance compensated length-norm [2] for i-
vector PLDA system. At the score level, we found score nor-
malization (s-norm, t-norm) and the use of quality measure as
part of score calibration were useful. The second challenge
is dataset shift from Switchboard (SWB) and Mixer datasets
used in the previous SREs to the new Call My Net dataset
used in SRE’16. Two major challenges are the languages mis-
match and the changes in data collection infrastructure (e.g.,
telephone network, front-end devices). In particular, the SWB
and Mixer corpora were mainly English utterances collected
in North America, while the Call My Net corpus consists of
Cebuano, Tagalog, Mandarin, and Cantonese utterances col-
lected in Asia Pacific. To this end, we found the Inter Dataset
Variability Compensation (IDVC) [3] was extremely effec-
tive. Most sub-systems developed by I4U were equipped with
the duration and dataset compensation techniques mentioned
above.

1Thanks Nick Evans and his team for facilitating the conference call.

2. PRIMARY AND CONTRASTIVE SUBMISSIONS

I4U submitted three systems to SRE’16 Fixed Training Con-
dition, one primary and two contrastive, with different classi-
fier selection and fusion strategies. The primary system is a
linear fusion of 17 sub-systems selected from a pool of 33
sub-systems contributed by I4U members. The fusion pa-
rameters were trained using logistic regression fusion imple-
mented in the BOSARIS toolkit [4]. The first contrastive sys-
tem is a fusion of 4 sub-systems with a simple unsupervised
score calibration using unlabeled dataset. The second con-
trastive system is a fusion of all 33 subsystems. A slightly
different fusion strategy was used, as detailed in Section 5.
The 17 sub-systems used in I4U primary submission are listed
in Table 1.

It is worth mentioning that almost all the sub-systems
listed in Table 1 are based on i-vector [5], which repre-
sents the mainstream technique in text-independent speaker
recognition. In addition, a rich set of acoustic feature ex-
traction front-ends were used in our submission, which in-
clude MFCC, Bottleneck Feature, Tandem feature, and ICMS
(Section 4.14). At the i-vector extraction stage, we have
sub-systems that use either UBM or DNN posteriors [2, 6].
In addition to i-vector, we also experimented with GMM-
UBM and GMM-SVM which we included in the contrastive
system. Detailed description is provided in the system de-
scription presented in Section 4.

Table 1. Subsystems used for I4U primary submission

Component classifiers Site
1. PNCC IV-PLDA + GMM-UBM AAU
2. Alibaba4:Symmetric SVM Alibaba
3. CRSS1:UBM IV LDA PLDA CRSS
4. CRSS2:UBM IV LDA PLDA CRSS
5. CRSS3:UBM IV SVDA PLDA CRSS
6. ICMC IV PLDA EURECOM
7. hda4 HDA
8. I2R MFCC IV-PLDA I2R
9. I2R Tandem DNN IV-PLDA I2R
10. LIUM MFCC DNN I-vector LIUM
11. NTU1 Tandem IV-PLDA NTU
12. polyu3 IV-PLDA HK Poly U
13. UEF1 MFCC i-vector-PLDA UEF
14. UNSW MFCC i-vector/PLDA UNSW EET
15. VSO2 PLP i-vector/PLDA ValidSoft
16. UoNottingham DNN i-vector/PLDA Nottingham
17. LIA MFCC GMM i-vector/PLDA LIA



3. TRAIN AND DEVELOPMENT DATASETS

Table 2 lists datasets that we used for the parameter train-
ing, optimization of the component classifiers and the fu-
sion. All of these datasets were provided by NIST and LDC
for Fixed Training Condition. In particular, the Call My
Net (LDC2016E46 SRE16 Call My Net Training Data) and
SRE’10 were used as the development-test set.

Table 2. Corpora
Corpus Task

LDC2016E46 SRE16 Cal My Net Development Test Set 01
LDC2016E46 Score normalization,

(Unlabeled subset) Score calibration
SRE10 CC5 Development Test Set 02

SRE04, 05, 06, 08

UBM, T matrix, PLDA
Switchboard-2 Phase II
Switchboard-2 Phase III

Switchboard Cellular Part 1
Switchboard Cellular Part 2

Switchboard-1 Release 2 DNNFisher 1, Fisher 2

4. COMPONENT CLASSIFIERS

Within the I4U consortium, participating sites contribute to
the SRE’16 submission in one form or another. Listed below
are the descriptions of the component classifiers used for I4U
submission.

4.1. Institute for Infocomm Research (I2R)

I2R contributed two sub-systems to I4U submission. Pre-
sented below is a description of various components in the
pipeline from feature extraction, i-vector extraction, pre-
processing to PLDA scoring used in the two subsystems.
More details can be found in [7].

MFCC I-VECTOR – The MFCC feature vectors con-
sist of 20 static coefficients together with their first and sec-
ond delta coefficients. A simple energy-based VAD was used
based on the C0 component of the MFCC feature. The al-
gorithm is based on thresholding the log-mel energy and tak-
ing the consensus of threshold decisions within a window of
11 frames centred on the current frame. The 60-dimensional
MFCC feature vectors were then used to train the UBM and
T matrix. A randomly selected set of 16,000 utterances were
used to train a UBM with 2048 Gaussians with diagonal co-
variance matrices. Based on the diagonal-covariance UBM, a
full-covariance UBM with 2048 components was trained on
a randomly selected set of 32,000 utterances. All utterances
were used to train the i-vector extractor with the T matrix of
a matrix rank of 600. The entire chain from MFCC feature to

i-vector extraction was implemented using the KALDI toolkit
[8].

DNN I-VECTOR – A deep neural network containing
a bottleneck layer was trained to generate 80-dimensional
bottleneck feature vectors using the KALDI toolkit [8]. They
were then used together with another set of 57-dimensional
MFCC features [9]. The concatenated features (137 dimen-
sions) are referred to as tandem features. The bottleneck
DNNs were trained using the fisher and switchboard land-
line data, which all come with transcriptions. The DNN
was trained to predict 8724 senones. The input features are
43-dim consisting of 40-dim filter bank features and 3-dim
pitch features. Delta and delta-delta coefficients were com-
puted using the 43-dimensional raw features yielding a 129-
dimensional feature vector. The features were then expanded
to a 21-frame window to take account of the speech context
leading to an input layer of 2709 units. The DNN contains
7 hidden layers of 1024 hidden units with RELU activation
function except the 3rd hidden layer, which has 80 units with
linear activation function serving as the bottleneck layer. To
extract the posterior features, another DNN was trained with
the same topology as the bottleneck DNNs but trained as a
p-norm [10] DNN using only the switchboard landline data
(with 8797 senones). To save hard disk and memory usage,
for each frame, we only output the top 88 posteriors. The
DNN posteriors were used in place of GMM posteriors in
the i-vector extractor. We also performed senone tying [4] to
reduce the number of tied Gaussian components to 2395. We
set the rank of T matrix to 400 for DNN i-vector.

I-Vector PLDA – Pre-processing of i-vectors consists
of the following steps: IDVC [3], PCA, whitening, and
projection-to-unit-sphere. For IDVC, we used 8 gender-
language subsets of the unlabelled data and 8 gender-corpus
subsets of SRE’04, 05, 06 and 08. After IDVC we pro-
jected the data using PCA into lower dimensional space to
physically remove those 16 dimensions that we cancelled by
IDVC. We used simplified PLDA for the scoring. To this end,
we trained PLDA model on SRE data only. We did separate
training for both i-vector types, then applied s-norm (using
the unlabelled dataset).

CPU time and memory – Major part of the computa-
tion was dedicated to the bottleneck feature extraction, DNN
posterior inference, MFCC and i-vector extraction. Table 3
shows the CPU time (single threaded) and the memeory con-
sumption per trials. In our implementation, We parallelized
the computation on 64-bit machines with Intel Xeon E5-2685
v3 @ 2.30 GHz CPU with 56 CPUs and 256G of RAM.
DNN computation was carried out on a Tesla K20m GPU
with 4742MB memory. I-vector scoring on a single core of
Intel i7-4790 @ 3.60 GHz CPU.



Table 3. I2R sub-systems – CPU time (single threaded) and
memory used to process a single trial (one enrollment and one
test segment) from acoustic feature extraction, to i-vector and
PLDA scoring

Processes/submission CPU time (sec.) Memory (MB)
DNN BNF Extraction 5.3110 774
DNN Posterior Estimation 183.7091 1606
MFCC Extraction 3.2949 3
I-vector extraction 10.4147 4016
PLDA scoring 0.0008 50

4.2. University of Eastern Finland (UEF)

UEF provided three subsystems (UEF1, UEF2, UEF3) for the
I4U submissions. All three systems are based on the same
i-vectors but they differ in i-vector processing and scoring.
From these systems, only the first one (UEF1) is included in
the primary submission, while all of them are included in the
contrastive system of all subsystems.

Feature vectors are 60-dimensional consisting of 20 base
MFCC coefficients (including energy coefficient) and their
first and second time derivatives. The features were computed
from 20ms long Hamming windowed frames with 10ms over-
lap. Speech activity detection was performed by using energy
thresholds obtained from bi-Gaussian modeling of log ener-
gies. A little tweak was made for the UEF1-system: For the
SRE16 data (enrollment, test, unlabeled), the speech activity
thresholds were set based on the maximum of the frame ener-
gies instead of bi-Gaussian modeling.

Data from SRE04-SRE06, Switchboard, and Fisher cor-
pora was used to train a 1024 component UBM with diagonal
covariance matrices and a total variability matrix for extract-
ing 600 dimensional i-vectors. In the case where three enroll-
ment segments are given per speaker, extracted i-vectors were
averaged to have only one i-vector per speaker.

UEF1: Inter dataset variability compensation (IDVC) [3]
was performed to all i-vectors using mean parameters only
(subspace dimension = 3). This reduced i-vector dimension-
ality to 597. Four different datasets were used in IDVC:
two from Switchboard corpora and two others consisting
of unlabeled minor and major data. As the last step of i-
vector processing, they were centered, length-normalized,
and whitened. Then, a simplified PLDA model with latent
variable dimensionality of 200 was trained using SRE04-
SRE08 data. After PLDA scoring, symmetric normalization
(s-norm) [11] was applied to the obtained scores. For the nor-
malization, 1000 impostor i-vectors were randomly selected
from the background data (SRE04-08 + Switchboard).

UEF2: The dimensionality of i-vectors was first reduced
to 200 by using linear discriminant analysis. The data for
LDA training was taken from the SRE04-08 and Switchboard
corpora. Then, the i-vectors were whitened with the unlabeled

data and length normalization was performed. Trials were
conducted using cosine similarity scoring.

UEF3: The i-vectors were processed in the same way as
in UEF2. For this system, a support vector machine with lin-
ear kernel was trained using data from SRE04-08 and Switch-
board corpora.

4.3. LIUM

LIUM contributed three sub-systems to I4U submission. Pre-
sented below is a detailed description of various components
in the pipeline from feature extraction, i-vector extraction,
pre-processing to PLDA scoring used in the three subsys-
tems. All LIUM sub-systems have been developed using
SIDEKIT [12]; documentation and scripts are available at
http://lium.univ-lemans.fr/sidekit

MFCC GMM I-VECTOR

Static coefficients consist of 19 dimensional MFCC plus the
log-energy. After adding their first and second derivative,
RASTA filtering is applied, selection of frames based on the
energy and CMVN are applied. The i-vector extractor is made
of a 2048 GMM with diagonal covariance and a Total Vari-
ability matrix of rank 500. 29,301 sessions from SWB, NIST-
SRE 04, 05, 06 and 08 are used to train the TV matrix and
a subset of 647 sessions are used for the UBM (329 female
/318 male sessions).

MFCC DNN I-VECTOR

A 5-layer Neural Network (1200-1200-80-1200-1200) using
sigmoid activations is trained with SIDEKIT linked to Theano
[13]. It is used to compute the frame alignments on the 2,304
senones of the soft-max layer of the network. Input of the
network are 15 acoustic frames (7 + 1 + 7). A fake 2,304
distribution GMM-UBM is obtained using 647 sessions [6]
and a classic i-vector extractor of rank 400 is build on top.

TANDEM GMM I-VECTOR

previously described MFCC are concatenated with 80 dimen-
sional that extracted using the same neural network. CMVN
is applied per utterance on the tandem features and VAD is
shared with other systems. The i-vector extractor consists of
a 1024 distribution GMM-UBM with diagonal covariance and
a TV matrix of rank 400.

Back-end

All three LIUM subsystems share the same backend. I-
vectors are whitened and length-normalized with parameters
estimated on 34,218 telephone sessions from SWB, SRE04,
05, 06 and 08.A scaling factor of 0.5 is used during training
and enrollment phase. The mean of the PLDA is replaced



by the mean of the Call-My-Net development data. Multi-
ple utterances of a same speaker are averaged. Uncertainty
propagation is used only with test utterance uncertainty [1].

Timing information and more details can be found in
LIUM’s system description.

4.4. CRSS

CRSS1: UBM i-Vector LDA PLDA. This system is mainly
modified version of Kaldi (sre10/v1). 60 dimensional feature
vectors for each frame is adopted here including 20 dimen-
sional MFCC features appended with ∆ + ∆∆. Unvoiced
parts of the utterances are removed with energy based voice
activity detection (VAD). For training 2048-mixture UBM
and total variability (TV) matrix, SRE2004, 2005, 2006,
2008, telephone data of SRE 2010, Switchboard II phase
2,3 and Switchboard Cellular Part1 and Part2 (SWB) and
Fisher English are used. Next, 600 dimensional i-Vectors
are extracted and their dimensions are reduced to 580 with
LDA. For training LDA/PLDA, only SRE 04-08 are used; in
addition, speakers who have less than 4 utterances is filtered
out. Also, unsupervised speaker clustering is performed; 75
speaker clusters for unlabeled minor data and 300 for unla-
beled major data are generated. Before PLDA scoring, mean
subtraction is also applied.

CRSS2: UBM i-Vector LDA PLDA. An alternative
UBM i-Vector system also adopted from Kaldi (sre10/v1).
In this system, feature vectors contain 20 MFCCs appended
with (∆+∆∆) coefficients. The window length and shift size
are 25-ms and 10-ms, respectively. In addition, we did cep-
stral mean normalization using 3-sec sliding window. Next,
Non-speech frames are discarded using energy-based voice
activity detection. 2048-mixture full covariance UBM and
total variability matrix have been trained using data collected
from SRE2004, 2005, 2006, 2008 and Switchboard II phase
2,3 and Switchboard Cellular Part1 and Part2. At the back-
end, after extracting i-Vectors, the global mean calculated
from minor and major unlabeled data is subtracted from all
i-Vectors. Next, i-Vectors are length-normalized and their
dimension are reduced from 600 to 400 using LDA. Again,
i-Vectors are length-normalized. Finally, trial-based mean
subtraction is applied (the participant i-Vectors in a trial are
averaged and the value is subtracted from both i-Vectors) and
scores are calculated using PLDA. The front end is trained
with SWB and SRE04-08; however, the back-end only uses
SRE04-08. For back-end mostly MSR [14] toolkit has been
adopted.

CRSS3: UBM i-Vector SVDA PLDA [15]. The i-
Vectors are the same with CRSS2 system, the only difference
between CRSS3 and CRSS2 is the discriminant analysis
method used for dimension reduction. In this system, LDA
is replaced with discriminant analysis via support vectors
(SVDA). SVDA uses only distinct support vectors to calcu-
late the between and within class covariance matrices. For

training SVM classifier in SVDA framework, 1-vs-rest strat-
egy has been chosen; since, we wanted to use unlabeled minor
and major data without needing their labels. Therefore, when
one class is classifying against the rest, the minor and major
unlabeled data are added to the rest class. SVDA reduces
the dimension of i-Vectors from 600 to 400. More details on
SVDA can be find in [15].

CRSS4: DNN i-Vector LDA PLDA. This is a DNN
i-Vector system using Kaldi (sre10/v2) based on the multi-
splice time delay DNN (TDNN) [16]. TDNN is trained with
only a small portion of Fisher English data (1239 utterances).
The feature vectors contain 40 dimensional f-bank features.
TDNN has six layers; the hidden layers have an input di-
mension of 350 and an output dimension 3500. The softmax
output layer computes posteriors for 3859 triphone states.
More details on the TDNN structure and training procedure
are provided in [16]. After TDNN training, 20 MFCCs ap-
pended with (∆ + ∆∆) coefficients (overall 60 features) are
employed for training TV matrix. Next, 600-dimensional
i-Vectors are extracted. After i-Vector extraction, we ap-
ply similar strategies for back-end such as LDA and PLDA,
briefly described in CRSS2.

4.5. Hochschule Darmstadt (HDA)

HDA contributed two sub-systems to I4U submission (hda2
& hda4), which are based on four processing schemes and
fourteen quality metrics employed in a quality-informed fu-
sion scheme [4] prior to I4U fusion. HDA i-vector/PLDA
systems contributed to I4U are based on two LIUM i-vector
extractor front-ends [17]: MFCC24 clustered by a 4096-
component UBM for extracting 600-dimensional i-vectors,
and MFCC40 clustered by a 2048-component UBM for ex-
tracting 500-dimensional i-vectors. The MFCC24 front-end
extracts 12 MFCCs and the log-energy, whereas the MFCC40
front-end extracts 19 MFCCs and the log-energy. First and
second order derivatives are computed using CMVN [17].
All implementations rely on SIDEKIT [12] and BOSARIS
[4].

hda2: the conventional i-vector/PLDA comparator uti-
lizes MFCC24 i-vectors. Spherical projection is conducted
by LDA projection to 400 dimensions, WCCN and length-
normalization. Gaussian PLDA with a 250-dimensional
speaker sub-space is employed carrying out comparisons.
LDA, WCCN and PLDA are trained on previous SRE data.
Neither score normalization, nor pre-calibration are em-
ployed.

hda4: a pre-fused quality-informed system based on three
domain-adapted processing schemes. After reduction to 400
dimensions by LDA, the processing schemes conduct whiten-
ing instead of WCCN (mean shift & rotation). The domain
adaptation is trained on all unlabeled SRE’16 development
data. Two processing schemes are based on the MFCC24
front-end employing two covariance (2Cov) and PLDA (250-



dimensional sub-space) comparators, respectively. The third
processing scheme is based on the MFCC40 front-end, and
accounts for uncertainty during the i-vector extraction in
terms of employing Uncertain LDA (ULDA) [18] instead
of LDA for projecting i-vectors to a 400 dimensional bio-
metric feature space. ULDA comparisons are carried out by
2Cov. The hda4 sub-system is pre-fused and calibrated using
BOSARIS’ quality-informed calibration scheme [4] and the
seven divergence and no-reference quality estimates depicted
in [19]. Pre-fusion is carried out on the full SRE’16 labeled
development set.

Quality estimates: our sub-systems estimate the “acous-
tic richness”2 underlying to an i-vector extraction process.
Thereby, the top-1 scoring UBM component is tracked re-
sulting in a component lattice, assuming UBM components
cluster acoustic groups of similar properties e.g., phonemes
in a generalized point of view. For the purpose of utilizing
lattice-based quality estimates in a quality-informed calibra-
tion scheme, quality divergence and no-reference quality are
estimated and reduced to one or two scalar representations, re-
spectively. Quality estimates are based on 60 MFCCs includ-
ing log-energy, first, and second order derivatives, extracted
from a MFCC24 front-end. For the purpose of deriving qual-
ity estimates, lattices are interpreted as graphs, i.e. adjacency
matrixes, or as histograms. Adjacency matrixes are exam-
ined regarding their spectra [20, 21], i.e. eigenvalues, and the
Bhattacharrya similarity of corresponding covariance repre-
sentations [22]. Histogram information is examined in terms
of the Bhattacharyya coefficient, the dot product, and the nor-
malized McNemars Chi-squared test. I-vector posterior co-
variances are compared by the Jensen-Bregman LogDet di-
vergence [23].

Timing and preliminary performance reporting are de-
picted in Tab. 4. Front-ends computations were carried out
on LIUM servers, comparisons were conducted on Intel(R)
Xeon(R) CPU E5-2698 v3 2.30GHz, and pre-calibration and
fusion were performed on Intel(R) Core(TM) i7-4700MQ
CPU @ 2.40GHz. Performance reporting is referred to the
full labeled development set.

System Performance Enrol Verify
hda2 22.79 / 0.90 / 8.77 0.30 0.30
hda4 16.91 / 0.72 / 0.78 0.57 0.57

Table 4. Preliminary performance (EER / minDCF’16 /
actDCF’16), and execution time reporting as a portion of real-
time.

4.6. University of Nottingham

University of Nottingham contibuted two subsystems. Both
of them were developed on SIDEKIT ([12]) and the i-vectors

2Term coined by Rahim Saeidi during pre-SRE’16 disussions.

were generated by Anthony Larcher from LIUM (see the
corresponding section for details regarding training sets and
CPU execution time). Subsystem 1: UoNottingham GMM-
iVector/PLDA with Uncertainty propagation This subsys-
tem uses a UBM-based i-vector representation with MFCC.
MFCC features are extracted with the following configura-
tion. After pre-emphasis filtering, 40 Mel-scaled filters are
used to extract 19 MFCCs and the log-energy of each frame.
First and second derivatives are computed and normalized
using per-utterance CMVN. The UBM has 4096 components
with diagonal covariance matrices, while the i-vectors are
400-dimensional. The i-vectors are length-normalized with
prewhitening statistics (means and covariance) estimated on
the Call-My-Net unlabelled corpus. A scaling factor of 0.4
is used during training and enrollment phases, in order to
increase the uncertainty of the speaker statistics. Moreover,
the mean of the PLDA is set equal to the mean of the Call-
My-Net unlabelled corpus. In cases of speaker models with
3 enrollment utterances, i-vector averaging is applied without
changing the second order statistics of the speaker model.
Finally, uncertainty propagation is used, taking into account
only the uncertainty of the test utterances [1]. The results on
the development set are: EER = 18.46 % and minCprimary
= 0.706. In terms of minCprimary, the most effective idea is
the scaling factor, which leads to 0.05 absolute improvement.
Uncertaity propagation is doing well in terms of EER but
slightly degrates the performance in terms of minCprimary.
Finally, the use of Call-My-Net data for prewhitening and
PLDA centering is very effective in both EER and minCpri-
mary.

Subsystem 2: UoNottingham DNN-iVector/PLDA This
subsystem uses a DNN for Baum-Welch statistics estimation.
The DNN has 2304 senones and is trained on Switchboard
corpora. The frame posteriors are estimated using the DNN
and are combined with MFCC frames (described above) to
extract Baum-Welch statistics [6]. Again, the prewhitening of
the i-vectors is performed using first and second order statis-
tics estimated on the Call-My-Net unlabelled corpus. The
backend is a PLDA model with scaling factor of 0.4. How-
ever, we did not apply uncertainty propagation, due to a no-
table degradation on the Cprimary. The subsystem was in-
cluded in the I4U primary submission. The results on the de-
velopment set are: EER = 19.67 % and minCprimary = 0.695.
Again, the use of the scaling factor contributed about 0.04 ab-
solute improvement on minCprimary, while the prewhitening
and PLDA centering based on Call-My-Net data were both
helpful (about 0.03 absolute improvement on minCprimary).

4.7. Alibaba

Alibaba1: DNN-iVector PLDA: Kaldis recipe (sre10/v2) is
adopted [8]. iVector dimension is 600. It is reduced to 370
dimension with LDA. All iVectors are subtracted mean of the
all the 2472 unlabeled data of SRE2016.



Alibaba2 and Alibaba3: GMM-iVector PLDA: Kaldis
recipe (sre10/v1) is adopted [8]. For Alibaba5 and Alibaba6,
iVector dimension is set as 600 and 800, respectively. It is
reduced to 400 dimension with LDA. All iVectors are sub-
tracted mean of the all the 2472 unlabeled data of SRE2016.

Alibaba4: Symmetric SVM: It is shown SVM based back-
end can boost the speaker recognition performance [24]. Sim-
ilar framework as followed here with some modification. Us-
ing iVectors from DNN-iVector PLDA (Alibaba2) framework
as features, two SVM model is built for each trial. It is known
that each trial involves an enrollment speaker and test seg-
ment. In the first SVM, the mean of all the data samples from
the involved enrollment speaker is used positive sample, all
the iVectors of the unlabeled data are used as negative sam-
ples. In the second SVM, the iVector of the test segment is
used as positive sample, all the iVectors of the unlabeled data
are used as negative samples. Linear kernel is adopted. It is
based on LibSVM [25]. The output probability is converted
into log likelihood with logarithm operation.

4.8. University of Avignon (LIA)

LIA system is based on i-vector/PLDA paradigm [5]. The
front-end is based on MFCC features. MFCC features consist
of 20 dimensional MFCC with their delta and delta-delta. A
simple energy-based VAD was used on the C0 component
of the MFCC feature. The MFCC are used to train an UBM
and T matrix. The size of the UBM is 4096 and the i-vectors
are 400-dimensional. For UBM and T matrix training all
SRE04-08 and SWB are used. For PLDA training and i-
vectors normalization only SRE04-08 is used. The i-vectors
are length-normalized with prewhitening statistics (means
and covariance) estimated on the train corpus [26, 27]. In-
ter dataset variability compensation (IDVC) [3] is applied
to remove the inter-dataset variability. We used six differ-
ent datasets in IDVC based on language and gender and the
additional subset of development data from the major lan-
guage provided by NIST (the latter only for mean-subspace
removal, as this subset is unlabeled). Then the between-
and within-covariance matrix are estimated with PLDA. A
post-PLDA normalization procedure is proposed that simul-
taneously diagonalizes between- and within-class covariance.
Finally, a new length-normalization is applied.

4.9. Nanyang Technological University (NTU)

NTU system is based on i-vectors/PLDA framework. Tandem
features are used to replace traditional MFCCs for extracting
i-vectors.

4.9.1. Front-end

The features of this system are based on 90-dim Tandem fea-
tures which are formed by MFCCs and bottleneck features
(BNFs). For MFCCs, we adopt the standard MFCC extraction

process. 19 MFCCs together with energy plus their 1st- and
2nd-derivatives are extracted, which leads to 60-dimensional
features. For BNFs, we select switchboard data provided
by NIST to train the stacked bottleneck neural network [28]
(BNFs extractor), then extract the 30-dimensional BNFs from
the given speech file. Finally, we concatenate 60-dim MFCCs
and 30-dim BNFs at frame level to obtain 90-dim tandem fea-
tures. The tandem features are processed by cepstral mean
normalization with a window size of 3 seconds. An energy
based voice activity detection (VAD) method is used to re-
move the silence frames.

4.9.2. I-Vector Extraction

We select 71,917 utterances from SRE16 switchboard train-
ing data, NIST SRE04 SRE08 to train UBM with 2048 Gaus-
sians. The same dataset is used to train a total variability ma-
trix with 400 total factors.

4.9.3. Channel Compensation and Scoring

Because data in SRE16 is obtained from CallMyNet that is
quite different from the past NIST SRE data, Inter dataset
variability compensation (IDVC) [5] was applied to remove
the inter-dataset variability. After IDVC, PCA is applied to
transform 400-dim i-vectors into 350-dim i-vectors. Length
normalization is performed on the PCA projected i-vectors.
Then, we perform LDA on the resulting i-vectors to reduce
the dimension to 200 before training the PLDA models with
150 latent variables. The evaluation scores are obtained by
PLDA scoring method.

4.9.4. Spectral Clustering

2,472 utterances from CallMyNet are provided by SRE16 to
improve the system. But gender, speaker, language labels are
not provided. This will cause problems to adopt LDA and
PLDA. Therefore, we adopt spectral clustering to obtain the
estimated speaker label for these unlabelled utterances. Spec-
tral Clustering algorithms are a class of segmentation tech-
niques that are based on the eigenvectors of the affinity ma-
trix. The main intuition behind this approach is that the affin-
ity matrix of the data contains information of their clusters in
the data set.

After obtaining the i-vectors of the unlabelled data, LDA
projection which is estimated from dataset with true speaker
label is performed to reduce the dimensions from 400 to 200.
Then, the projected i-vectors are used to create the laplacian
based on [29] and orthogonalised according to [30]. Follow-
ing the main algorithm described in [30], spectral cluster-
ing is applied by setting the numbers of clusters set to 240.
This number of clusters was estimated by assuming that each
speakers have about 10 utterance each. The radial basis func-
tion (RBF) [31] was used as a similarity measure. The ob-
tained cluster (speakers) labels are used to train PLDA model.



4.9.5. Score normalization

We select 200 unlabelled major language utterances for test
normalization.

4.9.6. Computation Time and Performance

NTU system can be divided into two parts: front-end pro-
cessing and back-end processing. The former includes
tandem feature and i-vector extraction, which is based on
Kaldi toolkit. The latter includes channel compensation,
scoring, and score normalization, which is performed by
MATLAB. The experiments on front-end and back-end pro-
cessing are conducted on an Intel(R) Xeon(R) CPU E5-2690
v2 @ 3.00GHz and an Intel(R) Xeon(R) CPU E5-2687W
@ 3.10GHz, respectively. Because NTU system is based on
i-vector framework, the steps and CPU time for processing
enrolment and test segment are similar. The CPU time of
front-end processing per utterance is around 5.26 s. and that
of back-end processing per trial is around 0.007 s. The EER
and minimum Cprimary of NTU system on SRE16 develop-
ment set are 17.33 and 0.734, respectively.

4.10. ValidSoft (VSO)

The two subsystems denoted VSO1 and VSO2 that are re-
ported by ValidSoft are based on an UBM i-vector representa-
tion with 50-dimentional PLP-based feature vector (19 static
plus selection of delta and delta-delta coefficients). The UBM
consist in 512 Gaussians trained on NIST SRE 04 data.

The T matrix is estimated using NIST SRE 04-05-06 and
switchboard data in order to extract i-vectors of dimension
600. Three-iteration Eigen Factor Radial (EFR) normaliza-
tion are applied to i-vectors prior to dimensionality reduction
down to 400 via LDA, followed by PLDA scoring. The global
mean calculated from minor and major unlabelled data is sub-
tracted from all i-vectors prior to LDA and PLDA processes.
The audio segments used as background data for the i-vector
back-end (NIST 04-05-06-08) are processed through the ITU-
T G.729 ANNEX-A codec usually used in VoIP.

For VSO1, NIST 05-06 is not used in the backend pro-
cessing, while for VSO2 the global mean of the PLDA data is
replaced by the global mean calculated from minor and major
unlabelled data before subtraction.

4.11. University of New South Wales (UNSW)

The sub-system is an i-vector G-PLDA system with a de-
noising autoencoder applied to the i-vectors. The front-end
of the sub-system comprises of 13 dimensional MFCC fea-
tures along with their first and second derivatives estimated
in conjunction with a vector quantization model based voice
activity detector [32] prior to feature warping [33]. A gender-
independent universal background model (UBM) of 2048
Gaussian mixtures was created using 4802 utterances from

a background set comprising of NIST SRE04, 05, 06, 08,
Switchboard II Part 1, 2, 3 and Switchboard Cellular Part 1
and 2 databases. In selecting the data for training the UBM,
one utterance was chosen from each speakers available data
to retain speaker diversity while reducing the overall amount
of data [34]. A T matrix of rank 600 was estimated [5] using
68706 utterances from the 4802 speakers. i-vectors were
computed for each of the background, NIST SRE 2016 de-
velopment and evaluation set using the estimated T-matrix.
LDA was then applied to further reduce the dimension to
400 following which the i-vectors were radial Gaussianised
and length normalised [35]. A denoising autoencoder [36]
of 1000 neurons was trained on i-vectors from short du-
ration utterances (10, 20, 30, 40, 50 seconds) obtained by
truncating full length utterances to map the i-vector space
of noisy short duration utterances to the i-vector space of
clean full length utterances. This denoising autoencoder was
used to transform i-vectors from the background, NIST SRE
2016 development, and evaluation sets. A G-PLDA was then
trained on top i-vectors from the background set and unla-
belled data from development set. Weighted likelihood based
domain adaptation [37] was applied during G-PLDA training
by assuming each utterances of unlabelled data came from
different speakers. Finally, in the evaluation stage, the mean
of G-PLDA was replaced by a mean that was calculated from
the unlabelled data.

4.12. Hong Kong Polytechnic University (HK Poly U)

4.12.1. Acoustic Features

Speech regions in the speech files were extracted by using a
two-channel VAD [38]. For each speech frame, 19 MFCCs
together with energy plus their 1st and 2nd derivatives were
computed, followed by cepstral mean normalization and fea-
ture warping [33] with a window size of 3 seconds. A 60-dim
acoustic vector was extracted every 10ms, using a Hamming
window of 25ms.

4.12.2. I-vector Extraction and PLDA Model Training

The i-vector/PLDA system is based on a gender-independent
UBM with 512 mixtures and a gender-independent total vari-
ability matrix with 300 total factors. Unlabelled utterances
from CallMyNet development data were used for training
the UBM and total variability (TV) matrix. The TV matrix
and UBM were used for extracting i-vectors from the speech
files (both gender) in Switchboard-2 Phase I to Phase III,
Switchboard Cellular Part 1 and Part II, and NIST 2004–
2010 SREs. Utterances with bad recordings (e.g., without
speech or contain tone only) as detected by the VAD and
utterances with speech frames less than 10s were excluded.
Speaker-to-utterance mappings were determined from the key
files of these corpora, with the identical speaker IDs across
multiple speech corpora considered to be the same speakers.



Speakers with less than 4 speech segments were excluded.
This amounts to 66,505 speech segments (i-vectors) spoken
by 4,959 speakers.

Following [39], within-class covariance normalization
(WCCN) [40] and i-vector length normalization [35] were
applied to the 300-dimensional i-vectors. Then, linear dis-
criminant analysis (LDA) [41] and WCCN were applied to
reduce the dimension to 200 before training an unadapted
gender-independent PLDA model with 200 latent variables.

4.12.3. Domain Adapation

To make the PLDA model amenable to CallMyNet data,
the following domain adaptation procedures were applied.
First, pairwise PLDA scores of unlabelled utterances in the
CallMyNet development set were computed. Then, spectral
clustering [42] was applied to the resulting pairwise scoring
matrix to cluster the i-vectors in CallMyNet into 300 clus-
ters.3 The i-vectors of these 300 hypothesized speakers were
than added to the pool of training i-vectors to retrain the
PLDA model.

The following whitening step was also applied to make
the i-vectors of target-speakers and test utterances better
reflecting the acoustic characteristics of CallMyNet data.
Specifically, the mean of the unlabelled CallMyNet i-vectors
was subtracted from each of the target-speakers’ and test
i-vectors before applying i-vector pre-processing (WCCN
whitening, length-normalization, and LDA-WCCN projec-
tion).

4.12.4. PLDA Scoring and Score Normalization

According to the evaluation protocol, for each evaluation
trial, a test utterance was tested against the target-speaker’s
i-vectors representing the Model ID of that trial, which pro-
duces one or multiple PLDA scores. The average of these
scores is considered as the trial score.

To reduce the actual DCF, the PLDA scores were normal-
ized by T-norm and S-norm [11]. 400 utterances (i-vectors)
from the unlabelled segments in CallMyNet were used for T-
norm, and another 400 were used as impostor utterances for
Z-norm.

4.12.5. Performance and Computation Time

Table 5 shows the performance (in terms of EER, minDCF
and actual DCF) of three systems in the development set of
SRE16. In the table, Sys A, Sys B, and Sys C represent the
system without score normalization, with T-norm and with S-
norm, respectively.

Table 6 shows the CPU time and memory requirements
for computing the score of one verification trial. Tasks 1–3

3While the number of speakers in the development data of CallMyNet is
much smaller than this value, we found that performance is better if we set
this value higher than the actual number of speakers.

were implemented in C and Tasks 4–6 were implemented in
Matlab. The memory consumption in the Matlab tasks in-
cludes the memory of the Matlab shell without the GUI.

4.13. Aalborg University (AAU)

PNCC IV-PLDA, GMM-UBM: This system is based on the
Power-normalized Cepstral coefficients (PNCC) [43] feature.
The frontend processing applies spectral subtraction [44] be-
fore the PNCC features (13 Static with ∆+∆∆) are extracted,
VAD labels from the VQVAD [32] algorithm are used for
both frame dropping and the enhancement. Average scores of
GMM-UBM [45] with t-norm (having 512 mixtures, trained
using data from SRE 04, 05, 06, Switchboard and unlabeled
SRE 16 development) and i-vector [5] PLDA [46] based sys-
tems are utilized. Total variability space is built using data
from SRE 04, 05, 06, 08 and Switchboard corpora. AL-
IZE [47] and BOB [48] toolkits are used to implement the re-
spective systems. I-vectors (400 dimensions) are conditioned
by 1-iteration of eigen factor radial (EFR) [26] algorithm be-
fore PLDA. Un-label (major, minor) development data is used
for implementation of t-norm, EFR and mean (µ) parameter
in PLDA. In the i-vector system, PLDA is trained using i-
vector for various duration of speech segments (from SRE
04-08 database) to reduce the effect of data mismatch dura-
tion between the training and testing phases of speaker verifi-
cation. Target models are represented by number of i-vectors
which are derived by segmentation of their respective train-
ing utterances independently (number of segment depends on
the length of respective speech utterance). The inclusion of
data segmentation yields a performance increase on the dev
system. In test, average score is computed over target spe-
cific i-vectors for a given i-vector of the particular test utter-
ance. In the case of the GMM-UBM system, target models are
derived from the GMM-UBM using their respective training
data with three iterations of MAP adaptation. Only Gaussian
mean vectors of the GMM-UBM are adapted during MAP.
The experiments run on a Intel(R) Xeon(R) CPU E5-2670 v3
@ 2.30GH, with a CPU time of 5.36s per utterance for fron-
tend processing and feature extraction. The CPU time for the
training and testing with the GMM-UBM is 4.55s, while the
I-vector-PLDA system takes 20.78s.

4.14. EURECOM

EURECOM ICMC-iVector, PLDA: a system which uses in-
finite impulse response - constant Q, Mel-scaled cepstral co-
efficients (ICMC) [49]. ICMC feature extraction draws upon
the constant Q transform (CQT) which has a variable spectro-
temporal resolution with a greater frequency resolution at low
frequencies and a greater time resolution at high frequencies.
ICMC is applied with a frame shift of 10ms, a Q factor of 96
and RASTA filtering to extract 19 static + log-energy, delta
and delta-delta features giving vectors of dimension 60. Non-
speech frames are then removed with an energy-based VAD



Table 5. Performance of three ivector-PLDA systems in the development set of SRE16. Sys A: No score normalization; Sys B:
T-norm; Sys C: S-norm. mDCF: Minimum DCF; aDCF: Actual DCF

Sys
Mandarin (CMN) Cebuano (CEB) CMN+CEB

Male Female Male Female Male+Female
EER(%) mDCF aDCF EER(%) mDCF aDCF EER(%) mDCF aDCF EER(%) mDCF aDCF EER(%) mDCF aDCF

A 5.36 0.458 0.714 17.34 0.819 4.905 22.68 0.866 1.806 23.29 0.956 4.734 17.49 0.775 3.040
B 7.39 0.442 0.674 19.01 0.797 0.842 25.30 0.811 0.955 24.15 0.935 0.975 20.89 0.746 0.862
C 6.03 0.461 0.748 17.00 0.781 0.875 23.36 0.823 0.975 23.61 0.945 0.980 18.93 0.752 0.895

Table 6. Computation time and memory consumption of various part of the system to produce the score of one verification
trial. All tasks were performed on a 64-bit Linux server with 8G RAM and an Intel Q9550 running at 2.83GHz. All CPU times
are based on one core of the processor.

Task Task Name CPU Time (sec.) per Utt. % of Real Time Memory Consumption (MB)
1 Voice Activity Detection 0.659 0.51 8.3
2 MFCC Extraction 0.095 0.25 4.2
3 Feature Warping 3.127 8.22 7.3
4 Computing Sufficient statistics 0.933 2.45 329
5 I-vector Estimation 0.817 2.15 543
6 PLDA Scoring + Tnorm/Snorm 0.012 0.03 286

Overall 5.643 13.61 –

before cepstral mean and variance normalisation is applied.
A UBM with 2048 components is used to extract iVectors
with a dimension of 600. LDA is applied with dimension 600
and iVectors are centered with the subtraction of the mean
obtained from the unlabelled partition of the SRE 16 devel-
opment set before PLDA scoring is applied with 400 speaker
factors. The UBM is learned using data from the Fisher, SRE
04-05-06 and Switchboard corpora. The T matrix and PLDA
hyperparameters are learned with the same data supplemented
with the SRE 08 corpus.

5. CLASSIFIER FUSION

5.1. Linear score fusion for the primary submission

Initially, 5-fold CV was performed on the dev set scores
to decide on the settings (i.e. selection of base classi-
fiers and whether to use score preprocessing or not). Pre-
calibration showed systematically better results than without
pre-calibration. In the selection setting, we experimented
with many different ideas on how to fix the final subset of
classifiers (noting that we started with 32 base classifiers).
Final ensemble was selected using heuristic rule of using the
best single systems (minCprim < 0.7) and one for each
site. This resulted in better cross-validated results than using
just the best best systems.

Using this setup we came up with the 17 base classifiers.
Scores were first pre-calibrated using logistic regression, via
minimizing the Cwlr cost, with ptar = 0.01. So scale and
bias was recorded for each base classifier and applied to eval
set scores. Then the linear fusion parameters were estimated

on the pre-calibrated scores using the same settings.

5.2. Linear score fusion with OSCAR-penalized logistic
regression weights

OSCAR-penalized logistic regression model is used to esti-
mate weights of linear fusion of subsystem scores. Weights
are obtained by fitting penalized logistic regression model in
sample taken from development data, i.e. by setting Peff =
0.0075 and minimizing a cost function Cwlr in [50] subject to
constraint of OSCAR method in [51]. Because of using the
Cwlr cost function in [50], the output scores of the fusion can
be considered as log likelihood ratios given by definition (1)
in “NIST 2016 Speaker Recognition Evaluation Plan”[52].

In the simplest cases, binomial logistic regression coef-
ficients are usually estimated by minimizing the cost func-
tion Cwlr without any constraint. However, many subsystem
scores used here are highly correlated with each other, and be-
cause of this it is expected that there is much variability in val-
ues of weights among estimates based on different samples,
and thus also accuracy of prediction is overly dependent on
the data used for weight estimation. One way to obtain more
stable estimation of weights is to constrain size of weights
during the estimation process. Here the constraint of OSCAR
method is used for this purpose.

OSCAR has a commonly used shrinkage method called
LASSO as a special case when parameter c in [51] is set to
0. In addition to shrinking size of weights, LASSO also per-
forms variable selection by shrinking some weights of scores
to exactly zero. The problem with LASSO is that if some
scores are highly correlated, LASSO often tend to reject many



of them. However, OSCAR, if c is not 0, instead of randomly
selecting one variable in the group of correlated variables,
tend to give correlated scores weights of the same size [53].

The shrinkage parameter λ and the tuning parameter c of
OSCAR are selected by fitting several models, using different
values of λ and c, to various samples of size 4000 taken from
development data, and testing their prediction performance
in set of validation samples of size 10000, which are taken
from development in such a way that the corresponding model
fitting set and the validation set are separate. The number of
model fitting sets and corresponding validation sets used is
12.

Prediction performance is measured in the terms of EER,
actual CPrimary and minimum CPrimary . The weights for
calculating log likelihood ratios of the evaluation data tri-
als are chosen randomly among those 12 weights of models
corresponding parameters λ and c, which produced lowest
value of CPrimary on average. However, also mean values
of EER and difference between minimum CPrimary and ac-
tual CPrimary and their as well as CPrimary’s variation are
observed.

5.3. Performance on DEV set

I4U team submitted three fusion systems – one primary and
two contrastives. Performance of the fusion systems on the
Dev set are shown in Table 7.

Table 7. Performance of the primary and contrastive sub-
missions on Dev set in terms of EER, Minimum and Actual
Cprimary. Each entry represents the (Equalized and Un-
equalized) performance metrics as defined in NIST Python
scoring tool.

Equalized EER (%) Cprimary (Min) Cprimary (Act)
Primary 11.55 0.5505 0.587592
Contrastive 1 10.78 0.6565 0.796003
Contrastive 2 9.35 0.5454 0.561453
Unequalized EER (%) Cprimary (Min) Cprimary (Act)
Primary 12.27 0.5280 0.558124
Contrastive 1 12.25 0.6390 0.784113
Contrastive 2 10.59 0.5053 0.524777
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