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ABSTRACT
In this paper, we address the fundamental problem of sparse signal
recovery in a Bayesian framework. The computational complexity
associated with Sparse Bayesian Learning (SBL) renders it infea-
sible even for moderately large problem sizes. To address this is-
sue, we propose a fast version of SBL using Variational Bayesian
(VB) inference. VB allows one to obtain analytical approximations
to the posterior distributions of interest even when exact inference
of these distributions is intractable. We propose a novel fast algo-
rithm called space alternating variational estimation (SAVE), which
is a version of VB(-SBL) pushed to the scalar level. Similarly as
for SAGE (space-alternating generalized expectation maximization)
compared to EM, the component-wise approach of SAVE compared
to SBL renders it less likely to get stuck in bad local optima and its
inherent damping (more cautious progression) also leads to typically
faster convergence of the non-convex optimization process. Simula-
tion results show that the proposed algorithm has a faster conver-
gence rate and achieves lower MSE than other state of the art fast
SBL methods.

Index Terms— Sparse Bayesian Learning, Variational Bayes,
Approximate Message Passing, Alternating Optimization

1. INTRODUCTION

Sparse signal reconstruction and compressed sensing has received
significant attraction in recent years. The compressed sensing prob-
lem can be formulated as

y = Ax + w, (1)

where y is the observations or data, A is called the measurement
or the sensing matrix which is known and is of dimension N ×M
with N < M , x is the M -dimensional sparse signal and w is the
additive noise. x contains only K non-zero entries, with K << M .
w is assumed to be a white Gaussian noise, w ∼ N (0, γ−1I). To
address this problem, a variety of algorithms such as the orthogonal
matching pursuit [1], the basis pursuit method [2] and the iterative
re-weighted l1 and l2 algorithms [3] exist in the literature. Com-
pared to these algorithms, using Bayesian techniques for sparse sig-
nal recovery generally achieves the best performance. In a Bayesian
setting, the aim is to calculate the posterior distribution of the param-
eters given some observations (data) and some a priori knowledge.
The Sparse Bayesian Learning algorithm was first introduced by [4]
and then proposed for the first time for sparse signal recovery by [5].

In sparse Bayesian learning, the sparse signal x is modeled us-
ing a prior distribution p(x|α) =

∏M
i=1 p(xi|αi), where α =
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[α1 ... αM ]T and αi is the inverse of the variance of xi, also called
the precision variable. Since most of the elements of x are zero, most
of the αi should be very high, favoring solutions with few non-zero
components.

In the empirical Bayesian approach, an estimate of the hyper
parameters α, γ and sparse signal x is performed iteratively using
evidence maximization. The hyper-parameters are estimated first
using an evidence maximization, which is referred to as Type II
maximum likelihood method [6]. For a given estimate of α, γ, the
posterior of x is formulated as p(x/y, α̂, γ̂) and the mean of this
posterior distribution is used as a point estimate of x̂. In [7], the au-
thors propose a Fast Marginalized Maximum Likelihood (FMML)
by alternating maximization of the hyperparameters αi. Both previ-
ous approaches allow for a greedy initialization (OMP-like) which
improves convergence speed and handles initialization issues. Re-
cently approximate message passing (AMP) [8], generalized AMP
and vector AMP [9–11] were introduced to compute the posterior
distributions in a message passing framework and with less com-
plexity. It uses central limit theorem to represent all the messages in
a factor graph in belief propogation as Gaussian random variables. It
also uses taylor series approximations to reduce the number of mes-
sages exchanged between the factor nodes and the variable nodes.
But it suffers from the limitation that only for i.i.d Gaussian A, the
algorithm is guaranteed to converge.

SBL involves a matrix inversion step at each iteration, which
makes it a computationally complex algorithm even for moderately
large datasets. An alternative approach to SBL is using varia-
tional approximation for Bayesian inference [12, 13]. Variational
Bayesian (VB) inference tries to find an approximation of the pos-
terior distribution which maximizes the variational lower bound
on ln p(y). [14] introduces a Fast version of SBL by alternatingly
maximizing the variational posterior lower bound with respect to
single (hyper)parameters. They analytically show that the station-
ary points for the αi are the same as those of FMML, provide the
pruning conditions and thus accelerate the convergence. [15] intro-
duces inverse-free SBL via a Taylor series expansion. The authors
propose a variational expectation-maximization (EM) scheme to
maximize a relaxed-ELBO (evidence lower bound), which leads to
a computationally efficient SBL algorithm.

1.1. Contributions of this paper

In this paper:

• We propose a novel Space Alternating Variational Estimation
based SBL technique called SAVE.

• We also propose an AMP-style approximation of SAVE,
which reveals links to AMP algorithms.

• Numerical results suggest that our proposed solution has a
faster convergence rate (and hence lower complexity) than



(even) the existing fast SBL and performs better than the ex-
isting fast SBL algorithms in terms of reconstruction error in
the presence of noise.

In the following, boldface lower-case and upper-case characters de-
note vectors and matrices respectively. The operators tr(·), (·)T
represents trace, and transpose respectively. A real Gaussian ran-
dom vector with mean µ and covariance matrix Θ is distributed as
x ∼ N (µ,Θ). diag(·) represents the diagonal matrix created by
elements of a row or column vector. The operator < x > or E(·)
represents the expectation of x. ‖·‖ represents the Frobenius norm.
All the variables are real here unless specified otherwise.

2. VB-SBL

In Bayesian compressive sensing, a two-layer hierarchical prior is
assumed for the x as in [4]. The hierarchical prior is chosen such
that it encourages the sparsity property of x. x is assumed to have
a Gaussian distribution parameterized by α = [α1 α2 ... αM ],
where αi represents the inverse variance or the precision parameter
of xi.

p(x/α) =

M∏
i=1

p(xi/αi) =

M∏
i=1

N (0, α−1
i ). (2)

Further a Gamma prior is considered over α,

p(α) =

M∏
i=1

p(αi/a, b) =

M∏
i=1

Γ−1(a)baαa−1
i e−bαi . (3)

The inverse of noise variance γ is also assumed to have a Gamma
prior, p(γ) = Γ−1(c)dcαc−1

i e−dγ . Now the likelihood distribution
can be written as,

p(y/x, γ) = (2π)−N/2γN/2e
−γ||y−Ax||2

2 . (4)

2.1. Variational Bayes

The computation of the posterior distribution of the parameters is
usually intractable. In order to address this issue, in variational
Bayesian framework, the posterior distribution p(x,α, γ/y) is ap-
proximated by a variational distribution q(x,α, γ) that has the fac-
torized form:

q(x,α, γ) = qγ(γ)

M∏
i=1

qxi(xi)

M∏
i=1

qαi(αi) (5)

Variational Bayes compute the factors q by minimizing the Kullback-
Leibler distance between the true posterior distribution p(x,α, γ/y)
and the q(x,α, γ). From [12],

KLDV B = KL (p(x,α, γ/y)||q(x,α, γ)) (6)

The KL divergence minimization is equivalent to maximizing the
evidence lower bound (ELBO) [13]. To elaborate on this, we can
write the marginal probability of the observed data as,
ln p(y) = L(q) +KLDV B , where,

L(q) =
∫
q(θ) ln p(y,θ)

q(θ)
dθ, KLDV B = −

∫
q(θ) ln p(θ/y)

q(θ)
dθ.

(7)
Since KLDV B ≥ 0, it implies that L(q) is a lower bound on
ln p(y). Moreover, ln p(y) is independent of q(θ) and therefore
maximizing L(q) is equivalent to minimizing KLDV B . This is
called as ELBO maximization and doing this in an alternating fash-
ion for each variable in θ leads to,

ln(qi(θi)) =< ln p(y,θ) >k 6=i +ci,

p(y,θ) = p(y/x,α, γ)p(x/α)p(α)p(γ).
(8)

where θ = {x,α, γ} and θi represents each scalar in θ. Here
<>k 6=i represents the expectation operator over the distributions qk
for all k 6= i.

3. SAVE SPARSE BAYESIAN LEARNING

In this section, we propose a Space Alternating Variational Estima-
tion (SAVE) based alternating optimization between each elements
of θ. For SAVE, not any particular structure of A is assumed, in
contrast to AMP which performs poorly when A is not i.i.d or sub-
Gaussian. The joint distribution can be written as,

ln p(y,θ) = N
2

ln γ − γ
2
||y −Ax| |2+

M∑
i=1

(
1

2
lnαi −

αi
2
x2
i

)
+

M∑
i=1

((a− 1) lnαi + a ln b− bαi)

+(c− 1) ln γ + c ln d− dγ + constants,

(9)
In the following, cxi , c

′
xi , cαi and cγ represents normalization con-

stants for the respective pdfs.
Update of qxi(xi): Using (8), ln qxi(xi) turns out to be quadratic in
xi and thus can be represented as a Gaussian distribution as follows,

ln qxi(xi) =

−<γ>
2

{
< ||y −Aīxī| |2 > − (y −Aī < xī >)TAixi−

xiA
T
i (y −Aī < xī >) + ||Ai| |2x2

i

}
− <αi>

2
x2
i + cxi

= − 1
2σ2
i

(xi − µi)
2 + c′xi .

(10)
Note that we split Ax as, Ax = Aixi + Aīxī, where Ai repre-
sents the ith column of A, Aī represents the matrix with ith column
of A removed, xi is the ith element of x, and xī is the vector with-
out xi. Clearly, the mean and the variance of the resulting Gaussian
distribution becomes,

σ2
i = 1

<γ>||Ai||2 +αi
,

< xi >= µi = σ2
iA

T
i (y − Aī < xī >) < γ >,

(11)

where µi represents the point estimate of xi.
Update of qαi(αi): The variational approximation leads to the fol-
lowing Gamma distribution for the qαi(αi),

ln qαi(αi) = (a− 1 + 1
2
) lnαi − αi

(
<x2i>

2
+ b

)
+ cαi ,

qαi(αi) ∝ α
a+ 1

2
−1

i e
−αi

(
<x2i >

2
+ b

)
.

(12)
The mean of the Gamma distribution is given by,

< αi >=
a+ 1

2(
<x2

i
>

2
+ b

) , where < x2
i >= µ2

i + σ2
i . (13)

Update of qγ(γ): Similarly, the Gamma distribution from the
variational Bayesian approximation for the qγ(γ) can be written

as, qγ(γ) ∝ γc+
N
2
−1e
−γ
(
<||y−Ax||2>

2
+ d

)
. The mean of the

Gamma distribution for γ is given by,

< γ >=
c+N

2(
<||y−Ax||2>

2
+ d

) , (14)

where, < ||y − Ax| |2 >= ||y| |2 − 2yTAµ +
tr
(
ATA(µµT + Σ)

)
,Σ = diag(σ2

1 , σ
2
2 , ..., σ

2
M ), µ =

[µ1, µ2, ..., µM ]T . From (11), it can be seen that the estimate
of x = µ converges to the L-MMSE equalizer, x̂ = µ =
(ATA + 1

<γ>
Σ−1)−1ATy.



3.1. Computational Complexity

For our proposed SAVE, it is evident that we don’t need any matrix
inversions compared to [14, 16]. Our computational complexity is
similar to [15]. Update of all the variable x,α, γ involves simple
addition and multiplication operations. We introduce the following
variables, q = yTA and B = ATA. q,B and ||y| |2 can be pre-
computed, so only computed once. We also introduce the following
notations, xi− = [x1...xi−1]T ,xi+ = [xi+1...xM ]T . Also we rep-
resent γt =< γ >, αti =< αi >, xti = µi and Σt = Σ in the
following sections, where t represents the iteration stage.

Algorithm 1 SAVE SBL Algorithm
Given: y,A,M,N .
Initialization: a, b, c, d are taken to be very low, on the order of
10−10. α0

i = a/b,∀i, γ0 = c/d and σ2 ,0
i = 1

||Ai||2γ0+α0
i
,x0 = 0.

At iteration t+ 1,

1. Update σ2 ,t+1
i , xt+1

i = µi, ∀i from (11) using xt+1
i− and xti+.

2. Compute < x2 ,t+1
i > from (13) and update αti .

3. Update the noise variance, γt+1 from (14).

4. Continue steps 1− 4 till convergence of the algorithm.

4. RELATION BETWEEN SAVE AND AMP

In this section, we interpret the computation of xti = µi at iteration
t in the message passing framework. The term AT

i (y −Aīxī) can
be interpreted as a linear combination of the messages from each
variable nodes. We show that the SAVE iterations can be written as
update equations similar to the AMP.

Fig. 1. Factor Graph
In this section a ∈ A, where A = {1, 2....N} represents the

indices of the variable nodes ya and i ∈ B, where B = {1, 2....M}
represents the indices of the factor nodes xi. In the factor graph,
factor node fi represents the computation of the prior distribution of
xi. The message from factor node ya to the variable node xi will be
a Gaussian pdf distributed as Vya→xi ∼ N (Aa,ixi; z

t
a→i, c

t
a→i),

zta→i = ya −
∑
j 6=i

Aa,jx
t
j→a, c

t
a→i =

1

γt
+
∑
j 6=i

|Aa,j |2
1

αtj
. Now

using (11), consider the message passed from a variable node xi to
the factor node ya,

xt+1
i→a = F(

∑
b 6=a

Ab,iz
t
b→i) =

γt

αti + ||Ai| |2γt
∑
b 6=a

Ab,iz
t
b→i.

(15)
Now we write the update equation for zta→i as,

zt+1
a→i = ya −

M∑
j=1

Aa,jx
t+1
j→a +Aa,ix

t+1
i→a

= zt+1
a + δt+1

a→i, where, δt+1
a→i = Aa,ix

t+1
i→a.

(16)

For xt+1
i→a, a first order Taylor series approximation around

∑
b

Ab,iz
t
b→i leads to,

xt+1
i→a = F(

∑
b

Ab,iz
t
b→i)︸ ︷︷ ︸

xt+1
i

−Aa,iztaF
′
(
∑
b

Ab,iz
t
b→i)︸ ︷︷ ︸

∆t+1
i→a

+O( 1
M

),

(17)
Similar to [8, 17], the messages can be approximated as follows,

xt+1
i→a = xt+1

i + ∆t+1
i→a + O( 1

M
). (18)

From the above expression, theupdate equation for xti is,

xt+1
i = F(

∑
b

Ab,iz
t
b→i) = F(

∑
b

Ab,iz
t
b +
∑
b

A2
b,ix

t
i). (19)

In the large system limit Ab,i ≈ N (0, 1/N) and thus
∑
b

A2
b,i =

1, leading to, xt+1
i = F(

∑
b

Ab,iz
t
b + xti). Substituting for xt+1

i→a

from (18), zt+1
a gets simplified as, zt+1

a = ya −
∑
j

Aa,jx
t+1
j +

(M/N)zta < F
′
(
∑
b

Ab,jz
t
b + xtj) >,where, < F

′
(
∑
b

Ab,jz
t
b +

xtj) >=
1

M

∑
j

F
′
(
∑
b

Ab,jz
t
b + xtj).

M
N
zta < F

′
(
∑
b

Ab,jz
t
b +

xtj) >=
1

β

1

M

M∑
j=1

γt

||Ai| |2γt + αti
is the Onsager term [18] and β

is defined as β = N
M

. Therefore the approximated SAVE algorithm
can be written as,

Algorithm 2 AMP SAVE Algorithm
Definitions:
β ≡ N

M
, rt ≡ AT zt + xt.

F operates elementwise, F(rti) = γt

αti+||Ai||
2γt

rti .
Update Equations:
xt+1 = F(rt).

zt+1 = y −Axt+1 + (1/β)zt 1
M

∑M
j=1

γt

||Ai||2γt+αti
.

Parameter tuning:

σ2,t+1
i = 1

αti+||Ai||
2γt

, αt+1
i =

a+ 1
2

(x
t+1
i

)2+σ
2 ,t+1
i

2
+b

, ∀i

γt+1 =
c+N

2(
||y−Axt+1||2 +tr(ATAΣt+1)

2
+ d

) .

It can be noted that the above SAVE AMP algorithm has more
similarity to the optimally-tuned Non Parametric Equalizer (NOPE)
proposed in [19, 20], which is an extended version of the AMP. It is
to be noted that in [19], the variances of the xi are assumed to be the
same for all i.
4.1. State Evolution

AMP based algorithms decouple the system of equations into par-
allel AWGN channels with equal noise variance. This means that
the quantity rt+1

i = xti + AT
i zt can be expressed equivalently as

xi + nti , where nti ∼ N (0, τ2
t ) and τ2

t is the decoupled noise vari-
ance. In AMP, the decoupled noise variance can be tracked exactly
by the SE framework.

Lemma 1. Considering the large system limit and a Lipschitz con-
tinuous function F , the decoupled noise variance τ2

t and γt is given



by the following SE recursion,

τ2
t+1 = 1

γt+1 + 1
β

(
ξt + ζtτ2

t

)
,

1
γt+1 = 1

N
||y| |2 + 1

β

(
ψt + τ2

t ζ
t
)
, ξt = E

(
αti

(γt+αti)
2

)
,

ζt = E
(

(γt)2

(γt+αti)
2

)
, ψt = E

(
(γt)2

αti(γ
t+αti)

2

)
.

(20)
Proof: Following [18], we write the update equation of rt as,

rt = (AT zt + xt)
= x + (I−ATA)(xt − x) + ATw + rtOnsager,

(21)

where rtOnsager = (1/β)AT zt−1 < F
′
(rt−1
j ) >. For the conve-

nience of the analysis, we define:

et ≡ xt − x and nt ≡ rt − x, et+1 = F(x + nt)− x,

nt = (I−ATA)et + ATw + rtOnsager,
(22)

where nt ∼ N (0, τ2
t I) and independent of x. The SE for approxi-

mated SAVE AMP leads to the following recursion,

τ2
t+1 = 1

β
v2
t+1 + 1

γt+1 , where

v2
t+1 = 1

M
tr
(

E
{

(et+1)2
})

= 1
M

tr
(
(I−Λt)2Ξt + (Λt)2τ2

t

)
,

(23)
where,Λt, diagonal with,(Λt)i,i = γt

||Ai||2γt+αti
,Ξt =

diag( 1
αt1
, 1

αt2
, ..., 1

αt
M

), also we made the approximation that

ATw is a vector of i.i.d normal entries with mean 0 and vari-
ance (1/N) ||w| |2 which converges by the law of large numbers to
1
γt

. Also we use the Lemma 4.2.1 in [17] which show that each
entry of I − ATA is approximately normal, with zero mean and
variance 1/N . Expanding for Λt,Ξt and ||Ai| |2 = 1, we can write
the decoupled noise variance as,

τ2
t+1 = 1

γt+1 +

(
1
βM

M∑
i=1

αti + (γt)2τ2
t

(γt + αti)
2

)
. (24)

Now in the large system limit M,N → ∞ with a fixed β,

τ2
t+1 = 1

γt+1 + 1
β

(
ξt + ζtτ2

t

)
, where 1

M

M∑
i=1

αti
(γt + αti)

2
and

1
M

M∑
i=1

(γt)2

(γt + αti)
2

will converge to deterministic limits ξt and

ζt. Now as t → ∞, the fixed point of τ2
t can be evaluated as,

τ2
∞ =

1
γ∞ + ξ∞

β

1− ζ
∞
β

.. From this, it can be concluded that τ2
t will con-

verge if ζ∞

β
< 1. Similarly for the γt, a recursion can be obtained

as follows,

1
γt+1 =

1
N||y||2 + ( 1

βM

M∑
i=1

(γt)2

αti(γ
t + αti)

2
+

τ2
t

βM

M∑
i=1

(γt)2

(γt + αti)
2

),

(25)
As N,M →∞ with fixed β, this converges to (20).

5. SIMULATION RESULTS

In this section we present the simulation results to validate the per-
formance of our SAVE SBL algorithm (Algorithm 1) compared to
state of the art solutions. We compare our algorithm with the Fast

Inverse-Free SBL (Fast IF SBL) in [15], the G-AMP based SBL
in [16] and the fast version of SBL (FV SBL) in [14]. For the sim-
ulations, we have fixed M = 200 and K = 30. All the elements
of A and x are generated i.i.d from a normal distribution, N (0, 1).
The SNR is fixed to be 20 dB in the simulation.

5.1. MSE Performance
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Fig. 2. NMSE vs the number of observations.

From Figure 2, it is evident that the proposed SAVE algorithm
performs better than the state of the art solutions in terms of
the Normalized Mean Square Error (NMSE), which is defined
as NMSE = 1

M
||x̂− x| |2, x̂ represents the estimated value,

NMSEdB = 10 log 10(NMSE).

5.2. Complexity
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Fig. 3. Execution time vs the number of observations.

Since the proposed SAVE and [15,16] have similar computational re-
quirements, we plot the execution time required for the convergence
of the algorithms. It is clear from Figure 3 that proposed SAVE
approach has a faster convergence rate than the existing fast SBL
algorithm.

6. CONCLUSION

We presented a fast SBL algorithm called SAVE, which uses the
variational inference techniques to approximate the posteriors of the
data and parameters. SAVE helps to circumvent the matrix inversion
operation required in conventional SBL using EM algorithm. We
showed that the proposed algorithm has a faster convergence rate
and better performance in terms of NMSE than even the state of
the art fast SBL solutions. Possible extensions to the current work
might include: i) the case in which A is parametric in an unknown θ,
ii) further analysis involving the mismatched CRBs for VB-SBL or
SAVE and iii) SBL in the context of multiple measurement vectors
case as in [21, 22].
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