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Abstract
Artificial bandwidth extension (ABE) algorithms have been

developed to improve quality when wideband devices receive
speech signals from narrowband devices or infrastructure. The
utilisation of contextual information in the form of dynamic fea-
tures or explicit memory captured from neighbouring frames is
common to ABE research, however the use of additional cues
augments complexity and can introduce latency. Previous work
shows that unsupervised, linear dimensionality reduction tech-
niques help to reduce complexity. This paper reports a semi-
supervised, non-linear approach to dimensionality reduction us-
ing a stacked auto-encoder. In further contrast to previous
work, it operates on raw spectra from which a low dimensional
narrowband representation is learned in a data-driven manner.
Three different objective speech quality measures show that the
new features can be used with a standard regression model to
improve ABE performance. Improvements in the mutual infor-
mation between learned features and missing higher frequency
components are also observed whereas improvements in speech
quality are corroborated by informal listening tests.
Index Terms: artificial bandwidth extension, auto-encoder, di-
mensionality reduction, mutual information

1. Introduction
While legacy narrowband (NB) telephony infrastructure is lim-
ited to a bandwidth of 0.3-3.4kHz, today’s wideband (WB)
technology supports improved speech quality using a band-
width extending from 50Hz-7kHz. Artificial bandwidth exten-
sion (ABE) algorithms have been developed to improve speech
quality when WB devices are used with NB devices or infras-
tructure. Using the correlation between the two [1], ABE is
used to estimate missing highband (HB) frequency components
above 3.4kHz from available NB components, typically using a
regression model learned from WB training data.

ABE approaches based on source-filter modelling esti-
mate separate spectral envelope and excitation components [2,
3]. Other approaches operate directly on complex short-term
spectral estimates derived, e.g., using the Fourier transform
(STFT) [4, 5] or constant-Q transform [6]. Complementary to
short-term spectral estimates, is some form of contextual infor-
mation, or memory which can be harnessed to improve the re-
liability of HB component estimation. Some specific back-end
regression models, e.g., Hidden Markov models (HMMs) [7, 8]
and deep neural networks (DNNs) [9–11], capture memory
in the form of temporal information. Some DNN solutions,
e.g. [4, 12, 13], capture memory in the front-end instead, e.g.,
via delta features or static features from neighbouring frames.
Following an investigation of front-end feature extraction for
ABE [14], the work in [15–17] investigates the merit of mem-
ory inclusion through information theoretic analysis. This
body of work demonstrates the benefit of memory inclusion

through delta features under the constraint of fixed dimension-
ality. However, the inclusion of memory necessitates the loss of
informative higher-order static HB features in order to accom-
modate dynamic delta features. Our own work [18] analyses
quantitatively the benefit of explicit memory inclusion in a fixed
ABE solution. The work also addresses the latency and com-
plexity problem. Complexity is managed using principal com-
ponent analysis (PCA) in order to incorporate memory without
increasing feature dimensionality; regression complexity is un-
affected. An unsupervised, linear approach to dimensionality
reduction, PCA aims only to produce a low dimensional rep-
resentation which retains as much as possible the variation in
the input representation. The hypothesis of the research pre-
sented in this paper is that supervised or semi-supervised and
non-linear dimensionality reduction techniques offer potential
to learn lower dimensional representations tailored specifically
to ABE, thereby giving better performance.

Auto-encoders (AEs) are an increasingly popular approach
to non-linear dimensionality reduction and have been applied
widely to many speech processing tasks, e.g., phoneme/speech
recognition [19–21] and speech synthesis [22]. Common to
these examples is the use of AEs to learn so-called bottle-
neck features, namely compact feature representations tailored
to pattern recognition and classification. This paper reports the
use of AEs for non-linear dimensionality reduction in ABE and
specifically the use of stacked (deep) AEs trained in a semi-
supervised manner. The objectives are to (i) harness memory
in a compact, low dimensional representation in order to im-
prove the reliability of estimated HB components and (ii) to
learn NB features directly from raw spectral coefficients instead
of hand-crafted features. The merit of both contributions is as-
sessed through objective assessment, an information theoretic
approach and informal listening tests.

The remainder of this paper is organised as follows. Sec-
tion 2 describes a baseline ABE algorithm. Section 3 shows
how semi-supervised stacked AEs can be applied to improve
its performance. Experimental work is described in Section 4,
whereas results are presented in Section 5. Conclusions are pre-
sented in Section 6.

2. Baseline ABE system
Fig. 1 illustrates the baseline ABE system. It is identical to
the source-filter model based approach presented in [18]. Since
full details are available there, only a brief overview is provided
here. The algorithm comprises three blocks: training, estima-
tion and resynthesis.

Training operates using both NB and WB frame-blocked
signals xt and yt respectively, where t is the time index. The
NB component is parametrised with 10 log-Mel filter energy
(logMFE) coefficients (XNB

t – top line in training block). The
HB component is instead parametrised via selective linear pre-
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Figure 1: A block diagram of the baseline ABE system with memory inclusion.

diction (SLP) [23] giving 9 linear prediction (LP) coefficients
and a gain parameter (Y HBt – bottom line in training block).
Both NB and HB features are mean and variance normalised
(mvnx and mvny) giving XNB

t,mvn and Y HBt,mvn. NB features at
time t are concatenated with features extracted from δ neigh-
bouring frames thus giving:

Xt,conc δ =
[
XNB
t−δ,mvn, ..., X

NB
t,mvn, ..., X

NB
t+δ,mvn

]T
In order to limit complexity, PCA is then applied to reduce
Xt,conc δ to 10-dimensional features XNB

t,pca δ . The PCA ma-
trix WPCA is learned from training data and used unchanged in
the estimation step. Finally, a 128-component, full-covariance
Gaussian Mixture model (GMM) is learned from the training
data using the concatenation Z = [XNB

t,pca δ, Y
HB
t,mvn]

T .
Estimation is applied to upsampled NB signals x̂. They are

treated according to the same NB processing and memory in-
clusion as in training to give 10-dimensional features X̂NB

t,pca δ .
A conventional regression model [2] defined by GMM parame-
ters learned during training is then applied to estimate HB fea-
tures Ŷ HBt,mvn. Using means and variances obtained from train-
ing, inverse mean and variance normalisation (mvn−1

y ) is then
applied to estimate HB LP coefficients âHB and gain ĝHB .

Resynthesis is performed according to the three distinct
steps illustrated by the numbered blocks in Fig. 1. First (box 1),
the missing WB power spectrum is estimated from the concate-
nation of NB and estimated HB power spectra for x̂t, defined
by NB LP parameters ĝNB , âNB and estimated HB parame-
ters ĝHB , âHB . Estimated WB parameters ĝWB and âWB are
then obtained from the WB power spectrum using the inverse
fast Fourier transform (IFFT) followed by Levinson-Durbin re-
cursion. Second (box 2), NB excitation ûNBt is obtained using
a LP analysis filter defined by ĝNB and âNB . Spectral trans-
lation [3] followed by a high pass filter (HPF) is then applied
to give HB excitation component ûHBt which is then added to
ûNBt after appropriate delay D to give extended WB excitation
ûWB
t . Finally (box 3), ûWB

t is filtered using a synthesis fil-
ter defined by ĝWB and âWB in order to resynthesise speech
frame ŷt. Overlap and add (OLA) then gives the extended WB
speech ŷ.

3. ABE using semi-supervised
stacked auto-encoders

The baseline ABE algorithm uses unsupervised, linear dimen-
sionality reduction so that the complexity of the standard regres-
sion model learned in training and used in estimation, remains
unchanged as a result of memory inclusion. The work presented
in this paper seeks to improve ABE performance using a semi-
supervised, non-linear dimensionality reduction technique us-
ing a stacked auto-encoder.

3.1. Stacked auto-encoders

An auto-encoder (AE) is an artificial neural network that is used
widely for the learning of higher-level data representations. An
AE consists of an encoder and a decoder. The encoder fθ()
maps an input vector x to a hidden representation y according
to:

y = fθ(x) = s(Wx+ b) (1)
where θ = {W, b} is the parameter set of weight matrix W
and bias vector b. The function s is a non-linear transforma-
tion. The encoder is followed by a decoder gθ′ () which aims to
reconstruct the original input from the learned representation y
according to:

z = gθ′(y) = s′(W ′y + b′) (2)

where θ′ = {W ′, b′} and s′ is either a linear or a non-linear
transformation depending on the nature of input x. For real-
valued inputs, parameters {θ, θ′} are optimised according to a
mean squared error (MSE) objective loss function which re-
flects the difference between the input and the reconstructed
output.

Deeper networks have inherently greater capacity to learn
highly non-linear and complex functions [24]. The depth of an
AE can be increased by stacking multiple layers of encoders and
decoders, thereby forming a stacked auto-encoder (SAE). How-
ever, as the network increases, it becomes increasingly difficult
for the network to find global minima [25].

In order to mitigate such problems, some form of pre-
training is usually employed to initialise network weights. Pop-
ular solutions include pre-training using restricted boltzman



encoder

in
pu

t l
ay

er

decoder

A
E 

ou
tp

ut
re

gr
es

sio
n 

ou
tp

ut

encoded representation

Figure 2: A semi-supervised stacked auto-encoder.

machines (RBMs) [25] and denoising AEs [26]. Layers are
stacked after pre-training and subsequently fine-tuned. Other
works have studied alternative means of network initialisation
e.g. [27, 28].

3.2. Application to ABE

With a reconstruction-based objective loss function, SAEs can
learn a simple mapping between the input and the reconstructed
output, rather than a meaningful, high-level representation [26].
Additionally, being unsupervised, features extracted from the
bottleneck layer of a conventional SAE are not expressly de-
signed for classification or regression; they will likely be sub-
optimal in this respect. The partially-supervised pre-training of
AEs was shown in [24] to be beneficial, especially for regres-
sion tasks.

Drawing upon this work, we have explored the semi-
supervised training of SAEs in order to learn compact repre-
sentations designed specifically for regression modelling and
ABE. The resulting semi-supervised SAE (SSAE) architecture
with 2 output layers is illustrted in Fig. 2. While one output
layer is learned to reconstruct the input (AE output) as with a
conventional SAE, the other output layer is learned to estimate
the missing HB features (regression output). This is achieved
though a joint objective loss function given by:

Ltotal = c ∗ Lreg + (1− c) ∗ Lae

where Lreg and Lae are the objective loss functions for regres-
sion and AE outputs respectively and where c ∈ [0, 1] weights
the contribution of individual losses.

The SSAE architecture can also be used to estimate the
HB components directly from the regression layer. A similar
CNN based architecture designed to regularise the mapping of
short i-vectors to long i-vectors for a speaker diarization task
is reported in [29]. The focus here is different, i.e., to regu-
larise/supervise dimensionality reduction so that it preserves in-
formation critical to ABE. This information is exploited by an
otherwise standard regression model. In order to investigate the
merit of the SSAE-based approach to dimensionality reduction,
the weight matrix WPCA in Fig. 1 (red boxes) is replaced by the
SSAE encoder (red box in Fig. 2). Extracted low dimensional
features are then mean and variance normalised. GMM train-
ing and estimation are performed in the same manner described
in Section 2. Also reported in this paper is a variation on this
approach whereby the low dimensional NB representation is de-
rived directly from NB log power spectrum (LPS) coefficients

instead of logMFE features. This is achieved quite simply by
replacing logMFE features with LPS coefficients.

4. Experiments
Experiments are designed to compare the performance of the
baseline ABE system using PCA dimensionality reduction
MPCA 2 to that of the same system using SSAE dimensionality
reduction MAE 2. Systems MPCA 2 and MAE 2 use X̂NB

t,pca 2

and X̂NB
t,ae 2,mvn features respectively. This section describes

the databases used for ABE experiments, SSAE configuration
details and metrics.

4.1. Database

The TIMIT dataset [30] was used for training and validation.
ABE solutions were trained with the 3696 utterances from the
training set and 1152 utterance from the test set (excluding core
test subset) using parallel WB and NB speech signals processed
according to the steps described in [6]. The TIMIT core test
subset (192 utterances) was used for validation and for optimi-
sation of network parameters. Motivated by the approach to
analysis presented in [31], the acoustically different TSP data-
base [32] comprising 1378 utterances was used for testing. TSP
data was downsampled to 16kHz and similarly pre-processed to
obtain parallel WB and NB data.

4.2. SSAE training and configuration

The SSAE was implemented with the Keras toolkit [33]. Con-
sistent with prior work [18], features Xt,conc 2 at time t (ob-
tained from the concatenation of 2 preceding and 2 proceed-
ing frames) are fed to the input of the SSAE. Whereas the AE
output is the same as the input, the regression output is set to
HB features Y HBt,mvn. So as to improve the rate of convergence
to global minima, the SSAE is initialised according to the ap-
proach described in [28]. Optimisation is performed according
to the procedure described in [34] with a standard learning rate
of 0.001, a momentum of 0.9 and with a MSE criterion.

We investigated two 6-layer symmetric SSAE structures
with different numbers of units in hidden layers: 1) 512, 256,
10, 256, 512 (Arch-1); 2) 1024, 512, 10, 512, 1024 (Arch-2).
Output layers consists of 50 (AE) and 10 (regression) units.
Hidden layers have tanh or ReLU activation units whereas out-
put layers have linear activation units. Dropout (dr) [35] and
batch-normalisation [36] techniques are investigated as means
of discouraging over-fitting. The learning rate is reduced by
half in the case that the validation loss increases between 2 con-
secutive epochs. Regression and AE loss weights were both set
to c=0.5. Networks are trained for 30 epochs.

4.3. Metrics

Performance is reported in terms of objective assessments. Ob-
jective spectral distortion measures include: the root mean
square log-spectral distortion (RMS-LSD); the so-called COSH
measure (symmetric version of the Ikatura-Saito distortion) [37]
calculated for a frequency range 3.4-8kHz, and a WB exten-
sion to the perceptual analysis of speech quality algorithm [38].
The latter gives objective estimates of mean opinion scores
(MOS-LQOWB). The correlation of the SSAE and PCA rep-
resentations with the HB features is measured via mutual infor-
mation (MI) [14].



5. Results
Validation performance in terms of MSE for the two different
architectures and four different combinations of dropout (dr)
and batch-normalisation performed either after (bn-a) or before
(bn-b) activation is shown in Tab.1. Dropout layer is used before
all hidden layers. Relatively low values of MSE are achieved
without dropout or batch normalisation (configuration A), al-
though performance is poor for Arch-2 with ReLU activation.
The use of dropout without batch-normalisation (configuration
D) results in poorly regularized networks, especially for ReLU
activation. Similar observations are reported in [31]. The use of
either form of batch-normalisation without dropout gives con-
sistently low values of MSE, with the best results being obtained
with a bn-b configuration (C). All results reported in the remain-
der of this paper relate to this configuration.

Table 1: Average MSE for different SSAE configurations includ-
ing architecture 1 and 2 with either ReLU or tanh activation
functions, with and without dropout (dr) and batch normalisa-
tion (bn) either after (a) or before (b) activation. dr value rep-
resents fraction of random hidden units being set to 0. Results
are illustrated for assessments using the validation dataset.

dr bn Arch-1 Arch-2
ReLU tanh ReLU tanh

A - - 0.474 0.461 1.012 0.467
B - a 0.460 0.461 0.461 0.467
C - b 0.459 0.459 0.460 0.460
D 0.2 - 1.012 0.504 1.012 0.509

Objective performance measures obtained from the testing
set and for both the baseline MPCA 2 and SSAE-based ap-
proach MAE 2 to ABE are illustrated Table 2. With only one
exception, spectral distortion metrics results show lower values
for SSAE than for the baseline. MOS-LQOWB scores for SSAE
systems are consistently higher. The Arch-2 SSAE system with
a tanh activation performs best. Unfortunately, despite convinc-
ing improvements in objective performance metrics, informal
listening tests showed little discernible differences between the
quality of speech signal produced by the baseline and SSAE
systems.

Table 2: Objective performance metric results. RMS-LSD and
dCOSH are mean spectral distortion measures in dB (lower val-
ues indicate better performance) whereas MOS-LQOWB values
reflect quality (higher values indicate better performance).

Arch-1C Arch-2C BaselineReLU tanh ReLU tanh

dRMS-LSD 7.28 7.12 7.38 7.11 7.34
dCOSH 1.48 1.44 1.49 1.43 1.52

MOS-LQOWB 2.99 3.06 2.99 3.07 2.96

Objective performance measures for the two best perform-
ing SSAE configurations, Arch-1C and Arch-2C both with
tanh activations, trained using LPS inputs instead of logMFE
features are illustrated in Table 3. Distortion measures are
consistently lower, whereas MOS-LQOWB scores are consis-
tently higher than results for all other SSAE-based systems. In
contrast to findings for the SSAE systems that operate using
logMFE features, informal listening test show discernible im-

provements to speech quality compared to speech produced us-
ing the baseline ABE system. Examples of bandwidth-extended
speech produced by both baseline and SSAE systems operating
on both logMFE and LPS inputs are available online1.

Table 3: Objective assessment results for SSAE using raw log
power spectrum (LPS) inputs in place of log-Mel filter energy
(logMFE).

dRMS-LSD dCOSH MOS- LQOWB

Arch-1C, tanh 6.90 1.37 3.16

Arch-2C, tanh 6.88 1.34 3.17

A final set of results aims to further validate the findings
of both objective and informal listening tests. This is achieved
by observing improvements to the mutual information (MI) be-
tween the learned NB representation and true HB representa-
tion measured using the testing set. A 128-component full-
covariance GMM trained with joint vectors formed by learned
NB and true HB features is used for the MI estimation as de-
scribed in [18]. MI results presented in Table 4 show that the
Arch-2C SSAE system with tanh activations trained using LPS
inputs gives a relative increase in MI of 23% over the baseline
system. This result corroborates the findings presented above,
namely that semi-supervised techniques which operate on raw
spectral inputs are capable of learning better representations that
can be exploited to deliver improved ABE performance.

Table 4: Mutual information assessment results. I(X;Y ) de-
notes the MI between features X and Y.

I(X̂NB
pca 2;Yt) , Baseline 1.55

I(X̂NB
ae 2;Yt), Arch-1C (logMFE) 1.69

I(X̂NB
ae 2;Yt), Arch-2C (logMFE) 1.71

I(X̂NB
ae 2;Yt), Arch-1C (LPS) 1.84

I(X̂NB
ae 2;Yt), Arch-2C (LPS) 1.90

6. Conclusions
This paper presents a non-linear, semi-supervised approach
to dimensionality reduction for artificial bandwidth extension.
The ability of stacked auto-encoders to learn higher-level rep-
resentation is exploited further to learn compact narrowband
features directly from raw spectra. The merit of the approach
is demonstrated with different objective metrics and is con-
firmed by the findings of informal listening tests. The useful-
ness of newly learned features is confirmed by information the-
oretic analysis. Features extracted from raw spectra in a data-
driven manner can be used by a standard regression model with-
out augmenting complexity. Exploiting potential spectral mod-
elling transforms and their further optimisation to learn features
for ABE should be our focus in future. Further work should also
investigate the combination of semi-supervised auto-encoders
with unsupervised or partially supervised pre-training methods.
These may offer even greater potential to improve the quality of
artificially bandwidth-extended speech.

1http://audio.eurecom.fr/content/media
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