

Bayesian Calibration of Computer Models with Modern Gaussian Process Emulators

Sébastien Marmin

Maurizio Filippone

1. Context

- Uncertainty analysis of a phenomenon f
- Approximation by an expensive code η
- Infer non-observable parameters heta
- Data: real observations $Y: p(\boldsymbol{y}_i | \boldsymbol{f}(\boldsymbol{x}_i))$
 - computer runs $Z:p(\pmb{z}_{_i}\mid \pmb{\eta}(\pmb{x}_{_i},\; \pmb{t}_{_i}))$

2. Framework

3. Random features approximation

 $\boldsymbol{\eta}(\boldsymbol{x},\boldsymbol{\theta}) = \boldsymbol{\Phi}_{\boldsymbol{\eta}}(\Omega_{\boldsymbol{\eta}}^{\;(1)}\boldsymbol{x} + \Omega_{\boldsymbol{\eta}}^{\;(2)}\boldsymbol{\theta})^{\mathsf{T}}W_{\boldsymbol{\eta}}$ where $\boldsymbol{\Phi}_{\boldsymbol{\eta}}$ is an element-wise activation function and W and Ω 's are random matrices.

4. Variational inference

A tractable lower bound of the log-likelihood can be derived:

$$\mathcal{L} > \mathcal{E} - \mathrm{KL}$$

- $\mathcal{E} = \mathbb{E}_{q(W,\theta)}(\ln(p(Y,Z|X,X^*,T,\psi,\Omega,W_n,W_\delta,\theta)))$
- KL = $D_{KL}(q(W_n, W_{\delta}, \boldsymbol{\theta})||p(W_n)p(W_{\delta})p(\boldsymbol{\theta}))$
- $q(W, \theta)$ approximate the posterior $p(W_n, W_\delta, \theta|Y, Z, X, X^*, T, \Omega, \psi)$
- ψ GP hyperparameters of η and δ

5. Numerical experiments

1. Simulated test case

- One variable inputs
- One calibration input
- 15 computer runs
- 8 observations
- Data is sampled form the prior distribution

2. Test case in life science

- One variable inputs
- 3 calibration input
- 200 computer runs
- 19 observations
- Data from measures of current through ion channels of cells

x 10 ³	L ²	Projected	Variational	KOH	Robust
CPU time, s	0.02	3.79	0.32	3.25	0.36
L ² residuals	1.31	_	_	_	-
MSE	_	3.19	2.05	5.21	2.06

6. Conclusion

Low-rank GP approximation

Stochastic variational inference

Infer GPs and calibration input with sound quantification of uncertainty

→ Experiment shows a flexible framework for calibration.

