
1

Low Cost Video Streaming through Mobile Edge
Caching: Modelling and Optimization
Luigi Vigneri, Student Member, IEEE, Thrasyvoulos Spyropoulos, Member, IEEE,

and Chadi Barakat, Senior Member, IEEE

Abstract—Caching content at the edge of mobile networks is
considered as a promising way to deal with the data tsunami.
In addition to caching at fixed base stations or user devices, it
has been recently proposed that an architecture with public or
private transportation acting as mobile relays and caches might
be a promising middle ground. While such mobile caches have
mostly been considered in the context of delay tolerant networks,
in this paper we argue that they could be used for low cost
video streaming without the need to impose any delay on the
user. Users can prefetch video chunks into their playout buffer
from encountered vehicle caches (at low cost) or stream from the
cellular infrastructure (at higher cost) when their playout buffer
empties while watching the content. Our main contributions are:
(i) to model the playout buffer in the user device and analyze
its idle periods which correspond to bytes downloaded from the
infrastructure; (ii) to optimize the content allocation to mobile
caches, to minimize the expected number of non-offloaded bytes.
We perform trace-based simulations to support our findings
showing that up to 60 percent of the original traffic could be
offloaded from the main infrastructure.

I. INTRODUCTION

The last decade has seen an exponential growth in the
mobile traffic demand [2]. To keep up with this demand,
increasing the number of base stations (BSs) and caching
popular content at such BSs have widely been considered.
Densification improves spectral efficiency, while edge caching
ensures that many requests can be served locally, reduc-
ing latency and offloading the backhaul/core network [32].
Nevertheless, installing many small cells (SCs) still requires
high capital and operational expenditures, making operators
reluctant due to stagnating revenues per user. Using user equip-
ments (UEs) for storage and relaying (e.g., through device-
to-device communication) largely avoids these costs, but is
stifled by device resource constraints (especially battery) and
privacy concerns. More recently, the use of private or public
transportation means (e.g., cars, buses, taxis) (in addition
to fixed SCs) as mobile SCs and storage points has been
considered [1], [34]. We refer to such a storage cloud as
vehicular cloud. Using vehicles as low cost relays and caches
offers an interesting middle ground between fixed SCs and
UEs as: (i) they are widespread; (ii) they can be equipped
with storage, communication, computational capabilities at a
lower cost than SCs; (iii) they have few resource limitations.

Nevertheless, short range nodes (i.e., SCs, UEs or vehicles)
do not provide full coverage. A request will be offloaded only
if (i) the UE is within range of a short range node and (ii)
that node stores the requested content. To offload more traffic,
researchers have suggested to introduce delay tolerance: a

request that cannot be served immediately by a low(er) cost
node will wait up to a deadline until such a low cost node (with
the content) is encountered [34]. Unfortunately, the required
access delays (up to hours) quoted in most related studies [5],
[34] is not acceptable except for specific applications (e.g.,
software updates) or for low cost data plans.

In this paper, we propose to exploit the fact that streaming
of stored video content offers some delay tolerance “for free”.
Video content is split into many chunks that are streamed
into the user’s playout buffer one by one while consumed in
parallel at the playout speed. The user does not have to wait
until the whole content is found in a local cache, but can start
streaming right away fetching chunks from the infrastructure
or local/mobile caches depending on the availability of the
latter and on the buffer status. For example, if a user is
watching a one-hour video, the chunks corresponding to the xth

minute of the video do not have to be downloaded until right
before that time. During that time, a mobile cache with that
chunk might be encountered and these bytes can be offloaded
without any impact to user experience1. In this context, two
interesting questions arise:
1) How many bytes of streamed video get offloaded through

such mobile edge caching?
2) How can we optimize the edge cache allocation to maxi-

mize the amount of bytes that get offloaded?
The goal of this paper is to provide initial answers to these
questions assuming vehicular nodes acting as mobile SCs and
local caches, and streamed video-on-demand content as the
main application2. Our main contributions are the following:
• We model the playout buffer dynamics of a user device as

a queueing system, and analyze the expected amount of
offloaded traffic (corresponding to the idle periods of this
buffer) as a function of network characteristics (e.g., vehicle
density, file characteristics) and a given cache allocation.

• Based on this model, we formulate the problem of optimal
content allocation in vehicles to minimize the total load on
the cellular infrastructure. Then, we show that the problem
is NP-hard, and propose appropriate approximations for two
interesting regimes of vehicular traffic densities.

• Next, based on this result, we propose a two-phase per-
chunk allocation policy, where the available space is allo-

1Note that while chunks are also “downloaded” in the streaming case, the
difference here is that no extra delay needs to be imposed on the user (and thus
deteriorate her quality of experience). Any chunk not available in the playout
buffer when its playout time arrives can be retrieved from main infrastructure.

2Note that this scenario does not include live content streaming, which is
not usually amenable to caching, and is often optimized using multicast.

2

cated first among different content (according to the previous
policy), then the space for a specific content is allocated
among its chunks, taking into account chunk popularity.

• We validate our theoretical results using real traces for
content popularity and vehicle mobility, and show that our
system can offload up to 60 percent of streamed data in
realistic scenarios, even with modest technology penetration.

As a final remark, while we present our analysis within the
context of vehicular relays, the main framework and a number
of results could be applied to content streaming from fixed SCs
or even UEs (we discuss such generalizations in Section VII).

The rest of the paper is organized as follows: in Section II,
we review the existing literature about mobile edge caching
focusing on video streaming. In Section III, we introduce the
system assumptions. In Section IV, we formulate and solve
the optimization problem at hand for different vehicular traffic
regimes. In Section V, we introduce the per-chunk allocation
policy. Then, we perform real trace-based simulations in
Section VI. Finally, we discuss about additional applications
in Section VII, and we conclude our paper in Section VIII
with a summary and future work.

II. RELATED WORK

The exponential growth of the mobile traffic is pushing
academic research and companies to study new solutions to de-
crease the load on the cellular network: specifically, on the one
hand, the networking research community is more interested in
the theoretical problems of, e.g., content allocation, modelling,
mobility pattern analysis; on the other hand, mobile network
operators (MNOs) see such a problem as an opportunity to fill
the market gap with new products. In this section, we present
a list of the most relevant work in edge caching.

A. Caching at SCs

SCs constitute a promising solution to deal with the mobile
data growth that is overloading the cellular network. Local
caching of popular content items at the SC BSs has been
proposed to decrease the costly transmissions from the macro-
cell BSs without requiring high capacity backhaul links for
connecting the SCs with the core network. In this context,
traditional solutions concern adding storage capacity to SC
BSs and/or to WiFi access points with a potential introduction
of delay tolerance [5], [21], [40] to further increase the
number of cache hits. The femtocaching idea is proposed as
a solution to compensate for the weak backhaul capacity by
deploying coverage-limited nodes with high storage capacity
called femtocaches. The basic idea of caching in SCs has first
been presented in Golrezaei et al. [11]. Their main challenge
is to analyse the optimum way of assigning content to the
SC BSs (called helpers) to minimize the expected download
time or maximize the number of cache hits. Such a generic
formulation has later been improved and extended by several
researchers considering different assumptions and models. For
instance, Zhang et al. [36] propose to cache content in wireless
access points based on popularity. Also, the authors propose to
separately add a prefetch buffer to capture short-term content
access patterns using aggregated network-level statistics.

While such distributed caching schemes for SCs provide
very interesting theoretical insights and algorithms, they face
some key shortcomings. A large number of SCs is required
for an extensive enough coverage by SCs, which comes at
a high cost [4]. Conversely, vehicles are widespread, mainly
in urban environments. Furthermore, the smaller size of edge
caches and smaller number of users per cell raises the question
whether enough overlap in user demand would be generated
locally to have a high enough hit ratio, when real traffic is
considered. Delayed content access is supposed to overcome
such a limitation [5], [21]. On the other hand, caching video
streaming does not require additional delays that would de-
grade the user quality of experience (QoE).

B. Video caching

A number of works have recently focused their interest
on caching of video content since multimedia files have
become popular. For instance, Poularakis et al. [25] optimize
the service cost and the delivery delay. In their work, pre-
stored video files can be encoded with two different schemes
in various qualities. Differently, Dandapat et al. [9] study
just in time video streaming. The authors propose to exploit
WiFi access points in cities to build a large distributed video
caching system for smooth streaming. Since a user is not
able to download an entire video from the same hotspot, the
authors promote replication of video chunks across access
points while aiming at minimizing this replication (efficient
content storage). Furthermore, Ahlehagh and Dey [3] improve
video capacity and user experience of mobile networks. The
authors propose video-aware backhaul and wireless channel
scheduling techniques to maximize the number of concurrent
video sessions by satisfying QoE requirements. They consider
video QoE as consisting of initial buffering delay and number
of stalls during the video session.

In this paper, we introduce a model to deal specifically
with multimedia content. This model is based on queueing
theory and handles a number of system parameters such
as heterogeneous content size, vehicle mobility and limited
content capacity. According to such a model that exploits
the intrinsic delay tolerance of later chunks, we are able to
formulate an optimization problem to allocate video content to
caches, and solve it efficiently. The main novelties are: (i) the
framework has a wide applicability since its generic formula-
tion can be easily adapted to similar offloading scenarios such
as femtocaching or caching on mobile devices; (ii) we combine
the ideas of video caching at the edge and vehicular networks
to improve the percentage of traffic offloaded; (iii) we provide
insights on the optimal allocation for the optimization problem
for different types of vehicle densities.

C. Caching at vehicles

Recent technology advances allow car manufacturers to
build vehicles smarter and more sophisticated. New vehicles
are able to communicate with each other to exchange infor-
mation about security and traffic, and provide infotainment
systems to passengers. While large setup delays might be an
obstacle, recent protocols (e.g., DSRC) have been considerably

3

boosting vehicular networks over the last ten years. For this
reason, MNOs see vehicles as (i) new potential customers
to connect to their network, and dedicated data plans have
been proposed. What is more, WiFi offloading for moving
vehicles poses unique challenges due to high mobility, and
researchers have been interested to model and analyze such an
environment [7]. For instance, Mahmood et al. [22] introduce a
probabilistic model to cache content at the edge nodes in order
to serve content requests from vehicles (or moving users). As
an alternative, vehicles can be used as (ii) nodes to boost
the current cellular infrastructure. First works in this direction
have appeared in the late 2000s [37], [38]. Zhang et al. [37]
propose a peer-to-peer scheme to improve the performance of
content sharing in intermittently connected vehicular networks.
Zhao and Cao [38] adopt the idea of carry and forward content
where a moving vehicle carries information until a new vehicle
moves into its vicinity: the authors make use of the predictable
vehicle mobility to reduce the content delivery delay. A more
recent work [29] proposes erasure coding to reduce latency in
vehicular networks which, however, requires large caches to
be efficient. The hype around vehicular networks as part of
the cellular infrastructure has been confirmed by the interest
of car manufacturers and by the launch of new companies [1].

III. SYSTEM MODEL

In this section, we introduce the system model with the
related assumptions that will be used to formulate an optimiza-
tion problem for content allocation to vehicles minimizing the
traffic downloaded from the cellular infrastructure.

A. Video Streaming Model

We consider a network with three types of nodes:
• Infrastructure nodes (I). Base stations or macro-cells. They

provide full coverage, and can serve any content request.
• Helper nodes (H). Vehicles such as cars, buses, taxis, trucks,

etc., where |H | = h. These are used to store popular content
and to serve user requests at low cost through a direct vehicle
to mobile node link.

• End user nodes (U). Mobile devices such as smartphones,
tablets or netbooks. These nodes request (non-live) video
content for streaming to H and I nodes.
Each video consists of a number of small chunks that are

downloaded into a U node’s playout buffer in order, and
consumed for playout as follows:
Helper download. When a U node is in range of (at least) an
H node that stores the requested content, the next immediate
chunks not yet in the playout buffer are downloaded at low
cost in order at mean rate E[rH]. This mean rate can be easily
inferred from mobility statistics (distribution of number of
caches during a contact) and download rate distribution, and it
depends on the cell association policy used. E.g., assume that
a node is currently viewing chunk n, and its playout buffer
already contains chunks n+ 1, . . . , n+ k; then, chunks starting
from chunk n+ k + 1 will be downloaded until the connection
with that H node is lost. This opportunistic connection is
represented by the green region in Figure 1 (e.g., between
t1 and t2 the node will download from cache 1). What is

Fig. 1: Sequence of contacts with three caches (above), and
amount of data in end user buffer over time (below, in green).
The red region indicates when data is downloaded from I.

more, we do not allow for simultaneous connections, i.e., a
U node can download from at most one H node at a time
(we defer considering multi-connectivity to future work). For
this reason, in Figure 1 the user will switch to cache 3 only
at t4, i.e., after it has finished downloading from cache 2. If
multiple caches are available, the user chooses what the helper
to connect depending on a predefined policy (e.g., max SINR).
Infrastructure download. When a U node is not in range
of an H node that stores the requested content and its
playout buffer is (almost) empty, new chunks are downloaded
from the infrastructure at a mean rate E[rI] until another H
node storing the content is encountered. The communication
between U and I nodes has a high cost in terms of energy
consumption [28] and bandwidth of the backhaul links [32].
The download from the infrastructure corresponds to the red
region of Figure 1. However, if the playout buffer is not empty,
no chunks are downloaded from I until the buffer empties.
Playout. Chunks in the playout buffer are consumed at a mean
viewing playout rate E[rP]. We only require the buffer to be
large enough to fit the requested file which is a reasonable
assumption in modern devices.

B. Main Assumptions

A.1 - Catalogue. Let K be the set of all possible contents
that users might request (also defined as “catalogue”) where
|K | = k. Let further c be the size of the cache in each vehicle.
We make the natural assumption that c � k. A content i ∈ K
is of size si , and is characterized by a popularity value φi
measured as the expected request rate within a seeding time
window from all users and all cells. Similar to a number of
works on edge caching [10], [25], we assume this time window
to be a system parameter chosen by the MNO. Every time
window, the MNO refreshes its caches installed in vehicles
according to the new estimated popularity. However, while it
is reasonable to assume the content size is known, predicting
the popularity of a content is more challenging. Nevertheless,
several studies have confirmed that simple statistical models
(e.g., ARMA) along with content characteristics can help to
have good estimation of the request rate, at least in the imme-
diate future [33]. Without loss of generality, we assume content
is sorted by decreasing popularity as φ1 ≥ φ2 ≥ . . . ≥ φk .
A.2 - Mobility model. We assume that the inter-meeting
times T (w)

i between a user requesting content i ∈ K and a
vehicle w ∈ H are IID random variables characterized by a
known generic distribution fC (t) with mean rate λ. Although

4

previous work shows that urban settings can reveal different
mobility classes (i.e., different λ), such differences are less
evident at a finer granularity (sub-areas of a city). Since during
the video playout there is little chance for a U node to
move from an area to another, we believe that considering a
single mobility class is a good approximation for the scenario
considered. Contact durations are drawn from another generic
distribution fD (t) with mean E[D]. The mean contact duration
is calculated by considering the association time due to the
switching between nodes. We assume fC and fD to have
bounded first and second moments. Finally, we denote with
Ti the inter-meeting times between a user requesting content
i ∈ K and any vehicle storing such a content.
A.3 - Cache model. Let x (w)

i ∈ {0, 1}, i ∈ K ,w ∈ H be an
indicator variable denoting if helper node w stores content i.
We assume H nodes to store the whole content, i.e., fractional
storage is not allowed (we will relax this assumption later
in the paper). Let further xi denote the number of H nodes
storing content i, i.e., xi ,

∑
w∈H x (w)

i . The vector x will be
the control variable for our optimal cache allocation problem.
A.4 - Content download rate. We assume that the mean
download rate from the infrstructure E[rI] is larger than the
mean playout rate of videos3 E[rP]. When this assumption
is not true, there might be stalls during the playout which
would have occurred independently of our vehicular cloud.
We further assume E[rH] to be larger than E[rP] which
is reasonable due to the reduced distance between users
and helper nodes. Scenarios where E[rI] (and/or E[rH]) are
lower than the playout rate require initial buffering which
significantly degrades QoE [14]. Nevertheless, our framework
could be easily extended to include such an initial buffering. In
this paper, we set E[rI] = E[rP]+ ε (ε > 0 small) to limit the
access to the cellular infrastructure to the minimum required
rate to ensure smooth playout as in most modern media players
(e.g., YouTube). For simplicity, we assume ε equal to 0.
A.5 - Data offloading. A request for content i will download
a number of bytes from I nodes. This number is a random
variable Wi that depends on xi as well as the sample path of the
contact variables. We denote as E[Wi |xi] the expected value
of this quantity per content where the expectation depends on
fC (t) and fD (t). Our goal is to minimize it, since si−E[Wi |xi]
is the traffic offloaded on average for requests of content i. To
keep notation simple, we will refer to this quantity as E[Wi].

Table I shows the main notation used in the paper.

IV. OPTIMAL PER-CONTENT ALLOCATION

In Section IV-A, we first formulate an optimization problem
to minimize the traffic downloaded from the cellular infrastruc-
ture. Then, we approximate analytically the mean number of
bytes downloaded from H nodes for two regimes of mobile
vehicle density, and we solve the related problem to find the
optimal content allocation. Specifically, in Section IV-B we
consider first a low vehicle density scenario which provides
insights on how to solve the generic vehicle density scenario of
Section IV-C. Finally, in Section IV-D we provide an analytical
bound on the approximation error introduced.

3We are only interested in the mean data rates since our model performs
stationary regime analysis as we will show in the next sections.

TABLE I: Main notation used in the paper.

CONTROL VARIABLES AND SETS

xi Number of replicas stored for content i

X Feasible region for x
I Infrastructure nodes

H Helper nodes

U End user nodes

K Content catalogue

CONTENT

k Number of content in the catalogue

φi Request rate for content i

θi j Internal chunk popularity at chunk j for content i

si Size of content i

c Buffer size per vehicle

MOBILITY

λ Mean inter-meeting rate between U and H nodes

E[D] Mean contact duration

h Number of vehicles

CHUNK DOWNLOAD

Wi Bytes downloaded for content i from I nodes

Ψi j Probability to offload chunk j for content i before its playout

E[rP] Mean viewing playout rate

E[rI] Mean download rate from I nodes (equal to rP)

E[rH] Mean download rate from H nodes

E[Yi] Expected bulk size

A. Offloading Optimization Problem

Given the above assumptions, we can propose a policy
where: (i) the user’s video is never interrupted provided the
infrastructure can guarantee at least the playout rate; (ii) while
the video plays out at the user, future parts of it are actually
downloaded from locally encountered caches (in principle
pre-fetched) thus offloading some of it from the infrastructure.
As long as the playout buffer remains non-empty, I nodes
never need to be accessed. And when they do, we ensure that
the minimum necessary amount of bytes is downloaded from
the infrastructure (E[rI] = E[rP]+ε). The goal of the operator
is to minimize the amount of bytes downloaded per content
E[Wi], among all content i ∈ K , by appropriately choosing
the control variable x. This is captured in the following:

Problem 1. Consider the video streaming model above. The
solution to the following problem minimizes the expected
number of bytes downloaded from the cellular infrastructure:

minimize
x∈Xk

k∑
i=1

φi · E[Wi],

subject to
∑
i∈K

si · x
(w)
i ≤ c, ∀w ∈ H , (1)

where X , {a ∈ N | 0 ≤ a ≤ h} is the feasible region for the
control variable x, and E[Wi] is the expected number of bytes
downloaded from I for content i when xi H nodes store i.

The objective function counts the number of bytes down-
loaded from the infrastructure in a time window for the entire

5

...

Fig. 2: Proposed queuing model for the playout buffer.

catalogue. For each content, this is equivalent to the content
popularity times the expected number of bytes that cannot be
offloaded through helper nodes. In the limit of many content
requests during a time window, the expected value of Wi be-
comes asymptotically exact for a specific instance of requests.
Note that, given the assumption of IID mobility, it suffices to
optimize the total number of copies xi without considering
the per vehicle variables x (w)

i any more. Furthermore, the
optimization problem is subject to the following constraints:
(i) the number of replicas of content i cannot be negative; (ii)
the number of replicas of content i cannot be higher than the
number of vehicles participating in the cloud; (iii) each vehicle
has a storage constraint and cannot store more than c bytes.

B. Content Caching with Low Density Model

First, let us assume that contacts with vehicles are
sparse, i.e., the probability of overlapping contacts in time,
with different vehicles both storing the same content, is small:

Definition 4.1. We refer to Low Density Model when

λ · h · E[D] � 1 and
E[rH]
E[rP]

<
1

λ · h · E[D]
.

This is a reasonable scenario when the number of vehicles
utilized in the cloud is small, or for low popularity content
that do not have replicas in every vehicle. In this case, we
model the playout buffer as a bulk GY /D/1 queue where new
bytes arrive in bulks when a helper node with the requested
content is encountered, and are consumed at a constant
playout rate. This system is depicted inside the small square
of Figure 2 (the queue on the left can be ignored for now).
The following lemma holds:

Lemma 4.2. Consider the Low Density Model. The following
is asymptotically tight as the content size becomes large, i.e.,

lim
si→+∞

[
E[Wi] − si ·

(
1 − λ · xi · E[D] ·

E[rH]
E[rP]

)]
= 0.

Proof. Consider a content i currently stored in xi caches. The
GY /D/1 queue model for the playout buffer has:
• Service Rate. Jobs (i.e., bytes) in the buffer are served (i.e.,

viewed by the user) at the mean playout rate E[rP].

• Bulk Size. A contact between a device and a helper node
storing video i corresponds to a new (bulk) arrival in the
playout buffer of the device. A new arrival brings a random
amount of new bytes that depends on the contact duration
with that H node. We denote the expected bulk size in bytes
as E[Y] , E[D] · E[rH].

• Arrival Rate. The total arrival rate into the playout queue is
λPi , λ · xi since there are xi replicas of content i.

The long term utilization of the playout queue is

ρi = λPi ·
E[Y]
E[rP]

, λ · xi · E[D] ·
E[rH]
E[rP]

. (2)

by Little’s law. The necessary condition for this queue to be
stable and ergodic is that ρi < 1, for any i ∈ K . This condition
is satisfied since λPi ≤ λ · xi and Definition 4.1 applies.

Let B(n)
i (resp. I (n)

i) be the length of the nth busy (resp. idle)
period of the playout buffer for content i. When the queue
is stable, {(I (n)

i , B(n)
i), n ≥ 1} forms an alternating renewal

process (as the queue regenerates at the end of each busy
period). Let further I (n)

i + B(n)
i define a cycle, and PI (t) the

probability that the playout buffer is empty at time t. Since
E[I (n)

i + B(n)
i] < ∞ (by stability), it holds that

lim
t→+∞

PI (t) =
E[Ii]

E[Ii] + E[Bi]
= 1 − ρi, (3)

where the second equality holds by ergodicity [27]. Let further
associate to each cycle a reward equal to the bytes downloaded
from the cellular infrastructure during that cycle, i.e., the
reward in cycle n is equal to I (n)

i ·E[rP] (we remind the reader
that the download rate from the infrastructure is assumed to be
equal to the playout rate E[rP], see Assumption A.4). Consider
now a video of duration Ti and remember that Wi is equal to
the number of total bytes downloaded from the infrastructure
(see Assumption A.5). From the renewal-reward theorem (e.g.,
see Theorem 3.6.1 in Ross [27]) we have that

lim
Ti→+∞

E[Wi]
Ti

=
E[Ii] · E[rP]
E[Bi] + E[Ii]

.

We conclude our proof by combining Eq. (2), Eq. (3) and
the fact that the duration Ti =

si
E[rP] for large si . �

The above results states that as si becomes large, we can
easily express E[Wi] in closed form. We will use this result
as an approximation for finite size content to introduce the
optimal allocation problem for the Low Density Model. Later,
we elaborate on the error introduced for small content.

Problem 2. Consider the Low Density Model. The solution
to the following optimization problem minimizes the expected
number of bytes downloaded from the cellular infrastructure:

maximize
x∈Xk

k∑
i=1

φi · si · xi, (4)

subject to
∑
i∈K

si · xi j ≤ c, ∀ j ∈ H .

Proof. Our objective is to minimize the total number of
bytes downloaded from I nodes. Based on Lemma 4.2, and
simplifying the constant factors, we obtain Eq. (4). �

6

Proposition 4.3. Problem (2) is NP-hard.

Proof. The problem is a bounded knapsack problem (BKP)
with “profit” φi · si and “cost” si for element i with individual
capacity constraints (instead of having one single global
capacity). BKP is NP-hard [23]. �

The above proposition states that Problem (2) is hard due
to the integer nature of variables xi (by reduction to a BKP).
Similar to a number of works, we consider here the continuous
relaxation of the problem. In this case, the continuous relax-
ation brings two fundamental advantages: first, the problem
may be solved in polynomial time whereas the classic BKP
is NP-hard; second, it is possible to evaluate the quality of
a feasible set of solutions. What is more, if the number of
replicas is fractional, we can replace the individual capacity
constraint of Eq. (1) with a global capacity constraint, i.e.,∑

i∈K si · xi ≤ c · h. It is easy to see that, if x is fractional, any
allocation that fits the global capacity is also a feasible alloca-
tion4. In other words, we solve now an optimization problem
that replace Eq. (1) with the global capacity constraint and x
is real. This new problem, that is equivalent to Problem (2)
in the continuous case, is called continuous BKP. An optimal
solution for such a problem can be determined by ordering
items according to non-increasing cost per unit weight. More
precisely, we can prove the following result:

Theorem 4.4. The solution of Problem (2) under a continuous
relaxation of x is given by

x∗i =

h, if i < γ,

h ·
(
c −

∑γ−1
i=1 si

)
/sγ, if i = γ,

0, if i > γ,

where x∗ , arg maxx∈X̂k

∑k
i=1 φi · si · xi , and γ is the maximum

content index such that
∑γ−1

i=1 si ≤ c.

Proof. We convert the problem into a 0-1 knapsack problem
using a standard transformation. We remind the reader that
content is ordered in decreasing popularity (i.e., φ1 ≥ φ2 ≥
· · · ≥ φk). For each content i, we create h different “virtual”
contents with {pro f it, cost} equal to

{0, 0}, {φi · si, si }, {2 · φi · si, 2 · si }, . . . , {h · φi · si, h · si },

that gives a total of h · k total elements (instead of the
original k). We can then consider content ordered by profit
per unit weight, i.e., profit

cost =
φi ·si
si
= φi . Note that all these

elements have the same profit per bit (so, for content i we can
always pick the respective highest allocation {h · φi · si, h · si },
i.e., storing that content in all helpers). If all items can be
fully included in each cache (i.e.,

∑
i∈K si ≤ c), then any

optimal solution will fully contain all items. Otherwise, when∑
i∈K si > c, there exists only one item γ ∈ {1, . . . , k} such

that
∑γ−1

i=1 si ≤ c and
∑γ

i=1 si > c. Now consider the greedy
allocation based on profit per bit (which turns out to be the
content popularity φi in our case) proposed by the theorem.
Kellerer et al. [17] show that this greedy allocation is also an
optimal solution to the continuous BKP. �

4We define feasible an allocation that satisfies the individual capacity
constraint of Eq. (1).

TABLE II: Efficiency of Algorithm 1 for different cache sizes.

Cache size 0, 01% 0, 05% 0, 10% 0, 50%

Algorithm 1 99,947% 99,994% 99,997% 100,00%

Corollary 4.5. The continuous relaxation of Problem (2) can
be optimally solved in time O(k).

Proof. Because of the content sorting, an optimal solution
would normally take time O(k log k). However, an algorithm
to find weighted medians [19] solves it in time O(k). �

Theorem 4.4 optimally solves Problem (2) after the contin-
uous relaxation. However, this optimal allocation is feasible
only when fractional storage is allowed. We propose a greedy
algorithm (Algorithm 1) based on Theorem 4.4 to infer a
feasible integer allocation. In this algorithm, the γ − 1 most
popular contents are replicated in every vehicle. Then, the
remaining storage per vehicle is filled greedily with contents,
sorted by popularity, that fit in the cache, if any. When caches
are large compared to the average content size, the error
introduced by this greedy solution is expected to be low as
we have verified through numerical simulations: in Table II,
we compare the efficiency of Algorithm 1 for different content
size. We define as efficiency of an allocation policy the traffic
offloaded by the integer allocation (provided by Algorithm 1
in this case) over the traffic offloaded by the related continuous
relaxation (Thereom 4.4). As the latter is a lower bound
on the optimal solution of the discrete problem, the actual
performance gap is bounded by the real-valued solution.

Algorithm 1 Caching Algorithm for Low Density Model

Input: s, φ, c, h, k
1: x ← ∅
2: j← 1
3: while

∑j
i=1 si ≤c do

4: xj ← h
5: j← j + 1
6: w←

∑j−1
i=1 si

7: for i← j to k do
8: if w + sj ≤ c then
9: xi ← h

10: w + sj

11: return x

We have seen that an optimal allocation tends to replicate
the most popular content in every vehicle. This finding is
interesting because, even if contacts do not overlap, a node
still sees multiple caches during the playout of a content. One
would expect that these caches should store different content
to maximize diversity. E.g., in the femto-caching setup, storing
the most popular content in all caches is optimal only when
caches are isolated, but it is suboptimal when a node has access
to multiple caches [11]. We will see that this most popular
allocation is no longer efficient when vehicle density increases.
Beyond providing performance guarantees, this policy is in
line with the standard caching policies in single caches which
store the most popular content [11].

7

C. Content Caching with Generic Density Model

We now consider the following busy urban environment:

Definition 4.6. We refer to Generic Density Model as a
scenario where contacts with different vehicles (with the same
content) might overlap, i.e., λ · xi · E[D] is not small.

If a user is downloading video i from node A, and the
connection is lost (e.g., user or cache moves away), the user
could just keep downloading from another node B storing i,
also in range. Hence, as long as there is at least one cache
with a copy within range (we denote this time interval with
Bi), the user will keep downloading content i at rate E[rH]5.
We cannot apply the previous model directly, because when
the user above switches from cache A to cache B, the contact
with cache B might be already ongoing, and we are interested
in the residual contact duration with B, which is generally
different (unless contact durations are exponential). We can
then model these overlapping contacts with an extra G/G/∞
queue in front of the playout queue (as shown in Figure 2).
New vehicles arrive in the G/G/∞ queue with rate λ · xi , each
staying for a random service time (corresponding to a contact
duration with mean E[D]) and independently of other cars.
The number of jobs in the G/G/∞ queue is the number of
vehicles concurrently within range of the user.

Hence, it is easy to see that: (i) the beginnings of busy
periods of the queue on the left of Figure 2 correspond to
new bulk arrivals in the playout buffer (queue on the right),
and (ii) the mean duration of such busy periods, multiplied
by E[rH], corresponds to the (new) mean bulk size per arrival6.

Lemma 4.7. Consider the Generic Density Model. If xi large
and λ small, the bulk arrival statistics in the playout buffer
are

λPi = λ · xi · e−λ·E[D]·xi , (5)

E[Yi] =
E[rH]
λ · xi

·
(
eλ·E[D]·xi − 1

)
. (6)

Proof. Let Γ(w)
i (t) be a point process with rate λ. Each point

of this process is the time of a contact between a user and a
vehicle w ∈ H storing content i ∈ K . The inter-arrival time
between two points is captured by the random variable T (w)

i

(see Assumption A.2). To clarify, assume T (w)
i(1) to be a random

variable that corresponds to the time of the first jump. Then,
the event {Γ(w)

i (t) = 0} is equivalent to the event {T (w)
i(1) > t},

meaning that the first jump will occur after epoch t, i.e.,

P[T (w)
i(1) > t] = P[Γ(w)

i (t) = 0].

Since content i has xi replicas, there are xi identical pro-
cesses Γ(w)

i (t). We equivalently redefine Γ(w)
i (t) as follows:

{Γ
(w)
i (t), t > 0,w ∈ H | x (w)

i = 1} are xi identical and
independent renewal processes with holding times T (w)

i corre-
sponding to the inter-arrival times between users and vehicles

5We ignore for now interruptions from switching between nodes which
can be very small if vehicles are operating as LTE relays [31]. We consider
switching and association delays in the simulations.

6Note that the new bulk size E[Yi] depends on xi .

storing content i. Let further {Γi (t), t > 0} be the superpo-
sition of these processes. According to the Palm-Khintchine
theorem [16], {Γi (t), t > 0} approaches a Poisson process with
rate λ · xi if xi large and λ small. Note that Ti corresponds to
the inter-arrival times of the process {Γi (t), t > 0} (assumption
A.2). Thus, Ti approaches an exponential distribution7 with
mean rate λ · xi , and the G/G/∞ queue capturing overlapping
meetings (Figure 2 left) can be approximated by an M/G/∞
queue with arrival rate λ · xi and mean service time E[D].

The probability that there are 0 jobs in the system (idle
probability) is e−λ·E[D]·xi (this result is well known for M/M/∞
queue, but it also holds for generic contact durations by
the insensitivity of the M/G/∞ queue [13]). Furthermore,
by ergodicity, it holds that8 E[Ii]

E[Bi]+E[Ii] = e−λ·E[D]·xi . Since
E[Ii] = 1

λ·xi
, solving for E[Bi] gives us the expected busy

period of the M/G/∞ queue and multiplying by E[rH] gives
as the expected bulk size E[Yi] of Eq. (6).

Additionally, the beginnings of busy periods of the M/G/∞
queue correspond to (bulk) arrivals into the playout queue.
The mean time between such arrivals is simply E[Bi]+E[Ii].
Hence, the arrival rate of bulks into the playout buffer is

λPi ,
1

E[Bi] + E[Ii]
=

1
eλ·E[D]·xi−1

λ·xi
+ 1
λ·xi

= λ · xi · e−λ·E[D]·xi .

�

Lemma 4.8. Consider the Generic Density Model. The fol-
lowing expression is asymptotically tight as the content size
si becomes large, when xi < 1

λ·E[D] · ln
(E[rH]

E[rH]−E[rP]

)
:

lim
si→∞

[
E[Wi] − si ·

[
1 −

(
1 − e−λ·E[D]·xi

)
·

E[rH]
E[rP]

]]
= 0. (7)

Proof. E[Yi] corresponds now to the expected bulk size for an
arrival in the playout buffer (instead of E[D] · E[rH] in the
low density model). Similarly to Lemma 4.2, we multiply the
input rate λPi of Eq. (5) with the bulk size E[Yi] of Eq. (6),
and divide by the playout rate E[rP], to obtain the utilization
of the playout buffer in the generic case:

ρi =
(
1 − e−λ·E[D]·xi

)
·

E[rH]
E[rP]

.

From this point on, we can follow the exact steps of the proof
of Lemma 4.2, using this new ρi , to get the desired Eq. (7).
Note, however, that unlike the Low Density Model, here the
utilization of the playout buffer is lower than one when

xi ≥
1

λ · E[D]
· ln

(
E[rH]

E[rH] − E[rP]

)
, ĥ, (8)

where ĥ is an upper bound on the allocation. Otherwise the
queue is not stationary. Physically, this essentially means that
the delivery capacity of the helper system is much higher

7We invite the reader to note that inter-arrival times approaches an expo-
nential distribution if xi large and λ small which was an assumption not
needed for the Low Density Model. However, while this assumption (i.e., xi
large) might not always be true, exponential inter-meeting times have been
largely used in literature and considered as a good approximation, especially
in the tail of the distribution [8], [15].

8We slightly abuse notation for these idle and busy periods of the queue
on the left, while in the proof of Lemma 4.2 we used them for the idle and
busy period of the playout buffer (queue on the right).

8

than E[rP], and (for long enough content) the infrastructure
is not needed. In theory, this would make the playout queue
non-stationary. In practice, this implies that we have allocated
too many copies for this content, at least in our model. We
will therefore use Eq. (8) as an additional constraint in the
allocation problem. �

We can now formulate the optimal cache allocation
problem for the Generic Density Model:

Problem 3. Consider the Generic Density Model. The solution
to the following optimization problem minimizes the expected
number of bytes downloaded from the cellular infrastructure:

maximize
x∈X̂k

Φ(x) ,
k∑
i=1

φi · si · e−λ·E[D]·xi , (9)

subject to
∑
i∈K

si · xi j ≤ c, ∀ j ∈ H .

where X̂ , {a ∈ N | 0 ≤ a ≤ min{h, ĥ}} is the feasible region
for the control variable x.

Proof. Based on Lemma 4.8, and simplifying the constant
factors, we obtain Eq. (9). What is more, we upper bound
the feasible region of the control variable x according to
Eq. (8). �

Proposition 4.9. Problem (3) is NP-hard.

Proof. The problem corresponds to the a nonlinear BKP which
is NP-hard. �

Branch-and-bound algorithms have been developed for such
problems, but they are not efficient when the size of the
problem increases. Instead, similar to the Low Density Model,
we consider here the continuous relaxation of Problem (3). In
the convex case, the continuous relaxation is itself convex, and
therefore likely to be tractable:

Theorem 4.10. The solution of Problem (3) is given by

x∗i =

0, if φi < L,
1

λ·E[D] · ln
(
λ·E[D]·φi

mC

)
, if L ≤ φi ≤ U,

min{h, ĥ}, if φi > U,

where x∗ , arg maxx∈X̂k Φ(x), L , mC

λ·E[D] and U , mC

λ·E[D] ·

emin{h,ĥ } ·λ·E[D], and mC is an appropriate Lagrange multiplier.

Proof. Problem (3) is clearly convex since the objective func-
tion is a sum of convex functions, the constraints are linear
and the domain of the feasible solutions is convex. We solve
it by Karush-Kuhn-Tucker (KKT) conditions, i.e.:

li · xi = 0
mi · (h − xi) = 0
mC ·

(
c · h −

∑k
i=1 si · xi

)
= 0

where li and mi are appropriate Lagrange multipliers related
to the bounds of x. For such a problem, this method provides

necessary and sufficient conditions for the stationary points to
be optimal solutions. The Lagrangian function L(x) is

−Φ(x) +
k∑
i=1

[li · xi + mi · (h − xi)]+mC · *
,
c · h −

k∑
i=1

si · xi+
-
.

We compute the stationary points by computing the deriva-
tive of the Lagrangian function for each content i. Since the
problem is convex, these points are global solutions. Making
explicit x, we obtain

xi =
1

λ · E[D]
· ln

(
λ · E[D] · φi
mC − li + mi

)
.

Then, the system constraints create three regimes depending
on the content popularity:

• Low popularity. The optimal allocation x must be greater
or equal to 0. According to the KKT conditions, we have
two cases that satisfy the constraint: (i) xi > 0, li = 0;
(ii) xi = 0, li > 0. The threshold between case (i) and (ii)
depends on the content popularity: specifically, a content
will get more than 0 copies when its popularity is higher
than L which can be easily computed when xi > 0:

1
λ · E[D]

· ln
(
λ · E[D] · φi

mC

)
> 0 ⇔ φi >

mC

λ · E[D]
, L.

• High popularity. The content allocation is upper bounded by
the number vehicles h participating in the cloud. However,
we also consider the potential tighter upper-bound ĥ on xi
due to the stability condition for the playout buffer according
to the discussion in the proof of Lemma 4.8. Similarly to the
previous scenario, due to the KKT conditions, the constraint
is satisfied when: (i) xi < min{h, ĥ}, mi = 0; (ii) xi =
min{h, ĥ}, mi > 0. Again, the threshold between case (i) and
(ii) depends on the content popularity: specifically, a content
will get less than min{h, ĥ} copies when its popularity is
lower than U which can be easily computed when xi <
min{h, ĥ}:

φi <
mC · emin{h,ĥ } ·λ·E[D]

λ · E[D]
, U .

• Medium popularity. In all the other cases (i.e., when U ≤
φi ≤ L), the optimal allocation is proportional to the
logarithm of the content popularity.

�

We use randomized rounding [26] on the content allocation
of Theorem 4.10 to go back to a feasible integer allocation
(and deal with the individual capacity constraint) which is
a widely used approach for designing and analyzing such
approximation algorithms. As argued earlier, the expected
error is small when caches fit several contents. To validate this,
we perform numerical simulation to calculate the efficiency9

of the integer solution compared to the continuous one of
Theorem 4.10 (Table III).

9The definition of efficiency is given at the end of Section IV-B.

9

TABLE III: Efficiency of the content allocation of Theo-
rem 4.10 after randomized rounding for different cache sizes
(in percentage of the catalogue size).

Cache size 0, 02% 0, 05% 0, 10% 0, 20%

Rounded 99,903% 99,975% 99,993% 99,998%

D. Non-stationary Playout Buffer
In order to calculate the number of bytes downloaded

from the infrastructure, we have assumed that a video sees
a stationary regime, regardless of its size. In practice, video
files have finite sizes. In the next theorem, we show that the
predicted amount of such bytes calculated with the stationary
assumption is in fact a lower bound on the actual number of
bytes, which is only asymptotically tight. We also analytically
derive the exact estimation error as a function of content size
and scenario parameters. This quantity could perhaps be used
to derive an even better estimate for the objective of our
problem, and further improve performance.

Proposition 4.11. The following statements are true:
1) The stationary estimate E[Wi] is a lower bound on the

expected amount of bytes downloaded from I nodes for
any content size si .

2) The additional expected number of bytes downloaded as a
function of x is

E[ei] =
E[rH] · E[Bi

2]
2 · (E[Bi] + E[Ii])

, (10)

where E[Bi] (resp. E[Ii]) is the mean busy (resp. idle)
period of the playout buffer for content i and E[B2

i] is
its second moment.

Proof. 1) The lower bound can be proven using a sample
path argument. Consider the stationary process S(t), counting
the number of bytes in the playout buffer, at time t, for a
very long file that has started streaming at time −∞. Consider
now a finite size file request that starts streaming at some
random time t0, and denote its playout buffer size as S

′

(t).
If the request arrives during an idle period of S(t), then
S
′

(t0) = S(t0) = 0 and the two sample paths are the same
(coupled) from that point on. However, if the request arrives
during a busy period of playout buffer S(t), then S

′

(t0) = 0 but
S(t0) > 0, by definition of a busy period. Hence, the stationary
file will download fewer bytes from the infrastructure in the
next idle period, as it already has some to consume.

2) The error in the stationary estimate thus comes if the
video request arrives during a busy period of S(t). By renewal
theory, this occurs with probability E[Bi]

E[Bi]+E[Ii] . Furthermore,
conditional on this event, the expected amount of bytes in the
stationary playout buffer (i.e., the expected value of S(t0))
is equal to the age of that busy period multiplied by E[rH].
From renewal theory and the inspection paradox, it holds that
the expected age is equal to the expected excess time E[Be],
which is equal to E[B2

i]
2E[Bi] , where E[Bi] and E[B2

i] are the
first and second moments of the busy periods of the playout
buffer GY /D/1. Putting everything together, the expected error
is given by Eq. (10). �

Corollary 4.12. Assume that bulk arrivals are exponentially
distributed. Then, we have

E[B] = −B̃′(s) |s=0 =
E[D]
1−ρi ,

E[B2] = B̃′′(s) |s=0 =
E[D]2

(1−ρi)3 ,

where B̃(s) is the Laplace transform of the busy periods.

Proof. For low traffic (i.e., when the probability to have more
than one job in the queue at the same time is low), the busy
periods of the M/G/∞ are trivially exponentially distributed.
What is more, Hall [12] shows that under conditions of heavy
traffic, busy periods are very nearly exponentially distributed
as well. With this assumption, the playout queue GY /D/1 has
arrival rate λB and mean bulk size E[Yi] which are given
by Lemma 4.7. Note that the busy periods of this queue are
statistically equivalent to those of an M/G/1 queue, with the
same arrival rate and mean service requirement E[D] = E[Yi]

E[rP] .
The utilization of this queue is

ρi =
(
1 − e−λ·E[D]·xi

)
·

E[rH]
E[rP]

.

We can thus calculate E[Bi] and E[B2
i] from that M/G/1 queue

instead. We can derive the Laplace transform of the busy
periods of an M/G/1 queue in recursive form [13] as

B̃(s) = S̃(s + λB − λB · B̃(s)),

where S̃(s) is the Laplace transform of the service time of the
M/G/1 queue. While this recursion does not allow to invert
B̃(s), we can use it to calculate the moments. �

V. PER-CHUNK ADAPTATION

In the previous section, we have made the simplifying
assumption that either all chunks or no chunks of a content
must be cached in a vehicle. Said otherwise, every chunk of
a content must have the same number of replicas. Yet, two
opposing “forces” call for a per-chunk optimization policy: (i)
it is perhaps wasteful to cache too many of the early chunks
as there might not be enough time to fetch these chunks
anyway; (ii) if early chunks have higher popularity than later
chunks, the former perhaps deserve more storage space. To this
end, we propose a heuristic which adapts the optimal solution
per-content to an internal allocation which depends on the
aforementioned tradeoff. Specifically, we design an allocation
policy which takes as input the optimal per-content allocation
(of Section IV) and provides a per-chunk allocation.

First, we relax Assumptions A.1 and A.3 as follows10:
A.1 bis - Catalogue. A content i ∈ K consists of a number of
small chunks si , and is characterized by a popularity value φi
measured as the expected request rate within a seeding time
window from all users and all cells. Further, each chunk has a
popularity φi · θi j where θi j ∈ (0, 1] is the normalized internal
popularity of chunk j for content i.
A.3 bis - Cache model. The number of replicas of chunk j
for content i is indicated by xi j ∈ [0, h].

Now, consider content i. Its optimal per-content allocation
is of xi copies which corresponds to si · xi chunks. While in

10If not explicitly stated otherwise, assumptions of Section III still hold.

10

the previous section we had xi j = xi ∀ j, the goal of this
section is to find the vector of chunk allocation {xi j } that
further improves the volume of traffic offloaded. The idea
is to reshuffle the chunks according to the internal content
popularity (i.e., chunk popularity) and to the chunk delay (i.e.,
when the chunk will start to be played out). We summarize
this idea in the following optimization problem:

Problem 4. Let xi be the number of replicas of content i. The
following optimization problem provides the optimal chunk
allocation given the internal popularity θi j:

maximize
0≤xi j ≤h

s∑
j=1

θi j · Ψi j (xi j),

subject to
∑
j

xi j = s · xi .

where Ψi j is the probability to offload a given chunk j from
helper nodes before its playout time.

The probability Ψi j depends on the number of replicas,
on the content, on the mobility statistics and on the time at
which a chunk is played out. Although calculating the correct
probability is difficult due to these several dependencies, we
will provide two approximations of Ψi j which will be used to
compute the per-chunk allocation.

1) Example 1 (proportional): assume Ψi j depends (lin-
early) only on the number of replicas. Hence,

Ψi j (xi j) =
1
h
· xi j .

When Ψi j is defined as above, Problem (4) corresponds to
a bounded knapsack problem. In this case, the most popular
chunks will have h replicas and the others 0.

2) Example 2 (infinite bandwidth): if a vehicle storing a
subset of chunks for content i comes in range to the user,
we assume that the user is able to download all the chunks of
content i stored by vehicle. Note, we do not require that this is
true in a real setup. We simply say that our policy will assume
so, for simplicity (and thus might not always be optimal). This
assumption becomes more accurate if for example there are
many vehicles and many contents to ensure each one stores
only few chunks per content, and of course depends also on
the content size and download rate between H and I nodes.
The probability Ψi j can be rewritten as follows:

Ψi j (xi j) = 1 − exp{−λ · (j − 1) · τ · xi j }, (11)

where τ is the duration of each chunk in seconds.

Proof. We have seen in Lemma 4.7 that arrival of vehicles in
the user communication range is characterized by a Poisson
process if xi j large and λ small. Ψi j (xi j) follows from the
probability that any of the vehicles having a copy of chunk
j of content i is met within the time tolerance for this chunk
which is equal to (j−1)·τ. The contacts between the user and a
vehicle are assumed to follow a Poisson process of rate λ. �

Lemma 5.1. Consider a continuous relaxation of Problem (4).
When Ψi j is described by Eq. (11), the optimal solution is
given by

xi j =
1
w j
· ln

(
w j

mchunk (xi)
· θi j

)
,

where w j , λ · (j − 1) · τ and mchunk (xi) is an appropriate
Lagrange multiplier. Furthermore, due to the box constraints,
we assign 0 replicas to low popular chunks or h replicas to
high popular chunks.

Proof. Problem (4) is clearly convex since the objective func-
tion is a sum of convex functions, the constraints are linear and
the domain of the feasible solutions is convex. We solve it by
Karush-Kuhn-Tucker (KKT) conditions. For such a problem,
this method provides necessary and sufficient conditions for
the stationary points to be optimal solutions. �

According to the above discussion, we summarize here the
proposed two-step algorithm:
• Step 1. Compute a per-content allocation x assuming all

chunks have same popularity. The replication factor is the
result of the queueing model proposed in Section IV.

• Step 2. Step 1 suggests to store si · xi chunks for content
i in the vehicular cloud. Reshuffle these chunks according
to chunk popularity and chunk delay as shown, e.g., in
Lemma 5.1.

VI. PERFORMANCE EVALUATION

In this section, we perform simulations based on real
traces for vehicle mobility and content popularity to confirm
the advantages of the vehicular cloud and to validate our
theoretical results.

A. Simulation Setup

We build a MATLAB tool to simulate the requests for
YouTube videos in the centre of San Francisco. We use the
following traces:
Vehicle mobility. We use the Cabspotting trace [24] to
simulate the vehicle behaviour; this trace records the GPS
coordinates for 531 taxis in San Francisco for more than three
weeks with granularity of one minute. To improve the accuracy
of our simulations, we increase the granularity to ten seconds
by linear interpolation. We also use this trace to extract the
necessary mobility statistics for our model (λ and E[D]) which
are summarized in Table IV.
User mobility. We use synthetic traces based on SLAW
mobility model [20] which is one of the most accurate
models for human mobility: in fact, studies of human walk
traces have discovered significant statistical patterns (e.g.,
truncated power-law distributions of flights, pause-times and
inter-contact times, fractal way-points) which are captured by
this model. SLAW is largely used in literature (e.g., in [39]).
Content. We infer the number of requests per day from a
database with statistics for 100.000 YouTube videos [35].
The database includes static (e.g., title, author, duration) and
dynamic information (e.g., daily and cumulative views, shares,
comments). In order to increase the number of simulations and
to provide sensitivity analysis for content size, buffer capacity
and cache density, we limit the number of content to 10.000
selected randomly from the initial set.

Inline with the proposed protocols (e.g., 802.11p, LTE
ProSe), we consider two maximum communication ranges
between U and H nodes: 100 m (short range) or 200 m

11

TABLE IV: Mobility statistics

Range λ E[D]

Short range 0,964 day−1 31,23 s

Long range 2,83 day−1 50,25 s

(long range). As most wireless protocols implement some
rate adaptation mechanism, our simulator also varies the
communication rate according to the distance between the
user and the mobile helper she is downloading from (while
we consider the average download rate in the model). Given
current wireless rates in the 802.* family and that near future
vehicles will probably carry high speed mobile access points,
we use a mean E[rH] = 5 Mbps. We also set E[rP] = 1 Mbps,
that approximates the streaming of a 720p video. Additionally,
we implement an association setup mechanism according to
Sesia et al. [31] that introduces a delay of two seconds to
synchronize a UE with a vehicle (i.e., the download from a
cache starts two seconds after the beginning of the contact).
Finally, we set the cache size per node c in the range 0,02-0,5
percent of the total catalogue which is an assumption that has
also been used in related work [10], [25] (we use 0,1 percent
as a default value). Unless otherwise stated, the mean video
length is one hour (i.e., mean content size equal to 450 MB).

The simulator works as follows: first, it generates a set of
content requests concentrated at day-time; inter-arrival times
between two requests are exponentially distributed according
to the IRM model that is the de facto standard in the analysis
of storage systems. Next, the simulator associates to each
request the coordinates (and the mobility according to the
SLAW model) of the user requesting the content. Then, it
allocates content in caches according to different allocation
policies. For each request, the simulator reproduces the playout
of the video: the end user buffer will be opportunistically
filled when at least one cache storing the requested video is
inside the communication range, depending on the mobility
traces. Finally, content requests are generated over a period
of five days. Because of the large number of requests in the
period considered, the confidence interval is too small to be
distinguishable and hence is ignored in the following plots.

B. Per-content Caching Strategy Evaluation

We consider and compare the following allocation policies:
• Optimal. This policy solves Problem (3) with Generic Den-

sity Model. The policy is described in Section IV-C.
• Most popular (MP). This policy solves Problem (2) with

Low Density Model. The policy is described by Algorithm 1
in Section IV-B.

• Least Recently Used (LRU). Starting from a random initial
allocation, this policy discards the least recently used item
when there is a cache miss. Unlike the above two policies,
LRU keeps updating the cache content, and thus could incur
higher traffic on the backhaul (from I to H nodes).

• Random. Content is randomly allocated in H nodes.
Cache Density. Figure 3 depicts the fraction of data offloaded
by the vehicular cloud as a function of vehicle density, buffer

capacity and video length, assuming long range communica-
tion. Specifically, in Figure 3a we vary the number of vehicles
from 100 to 500. While the number of envisioned connected
vehicles in the centre of San Francisco is expected to be
much larger, it is really interesting to verify that a subset of
them can still provide non-negligible offloading gains (more
than 30 percent), which is important to promote the start up
phase of the vehicular cloud. As proved in Section IV-B, the
MP policy provides good performance in scenarios with low
vehicle density: e.g., with 100 vehicles, the offloading gain is
almost equal to the optimal. Conversely, for a larger number
of vehicles (that introduce contact overlaps), the gap between
the two policies becomes higher than ten percent. Finally,
we observe that the LRU policy underperforms both policies,
in sparse scenarios, while it converges to the (worse) MP
policy in dense ones. This is reasonable, as LRU approximates
an LFU policy (least frequently used), i.e., storing the most
popular content when the popularity is stationary during the
considered window. While in some scenarios LRU is actually
not far from the results of our allocation strategy, it should be
highlighted that we ignore the extra backhaul cost due to the
frequent cache updates for LRU (that optimal does not have).
In fact, simulations have shown that this “additional seeding”
in LRU considerably degrades performance.
Buffer Capacity. In Figure 3b we vary the cache storage per
vehicle between 0,02 and 0,5 percent of the catalogue (where
the number of vehicles is 531 and the mean video length
is one hour). Interestingly, the smallest storage capacity still
achieves considerable performance gains. E.g., if one considers
an entire Torrent or Netflix catalogue (∼3 PB), a mobile helper
capacity of about 500 GB (0, 02 percent) already suffices to
offload 30 percent of the total traffic. Moreover, for small
caches (less than 0, 05 percent of catalogue), optimal almost
doubles the gain (from 18 to 30 percent) compared to the
other policies. Finally, the random policy ignores the skewed
Internet content popularity, and thus performs very poorly in
all scenarios.
Video Length. Stationary regime analysis can be considered
as a good approximation when there is a reasonable number of
busy plus idle buffer playout periods, such that the transitory
phase becomes negligible. In order to increase the number
of these periods, the average content size needs to be large
enough, given fixed mobility statistics. Figure 3c shows the
fraction of data offloaded by the vehicular cloud for a set of
content of the same length. As proved in Proposition 4.11,
gains become larger according to the average video length.
However, this increase is only marginal in the majority of the
scenarios: in fact, even small content (15 minutes) provides a
gain which is comparable to the asymptotic gain, validating
the stationary regime analysis.

C. Mobile vs. Static Helpers

In this section, we verify the pertinence of the vehicular
cloud, that is based on mobile helpers, against the femto-
caching framework described in Golrezaei et al. [11], that is
based on static SCs equipped with storage. In this second
network, SC helpers are distributed in the considered area

12

100 200 300 400 500
0

20

40

60

80

Number of caches H

G
a

in
 (

%
)

Optimal

LRU

Most popular

Random

(a) Offloading gain vs. number of vehicles.

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

Buffer size C (%)

G
a

in
 (

%
)

Optimal

LRU

Most popular

Random

(b) Offloading gain vs. cache size.

0 20 40 60 80 100 120
0

20

40

60

80

Video length (min)

G
a

in
 (

%
)

Optimal

LRU

Most popular

Random

(c) Offloading gain vs. file size.

Fig. 3: % of data offloaded as a function of cache density (Figure 3a), buffer capacity (Figure 3b) and video length (Figure 3c).

Vehicular cloud Femtocaching Femtocaching (MP) Low cost Femto
0

10

20

30

40

50

G
a
in

 (
%

)

Long range

Short range

Fig. 4: Data offloaded for vehicular cloud and femtocaching.

proportionally to the popularity density, i.e., areas with a
higher number of requests have higher SC density (this is a
common operator policy since SCs are deployed to alleviate
traffic “hotspots”). Users move according to the previously
described SLAW trace, and they can also download video
chunks at low cost from a nearby SC if it stores the requested
video. Content is allocated using the algorithm described in
Golrezaei et al. [11]. We consider two densities of SCs:

• Femtocaching (equal number of helpers). From the analysis
of the Cabspotting trace, the average number of vehicles
simultaneously inside the area considered is lower than 200.
In order to have a fair comparison with the vehicular cloud,
we set the number of SCs to 200 where each SC has the
same cache capacity as vehicles.

• Low cost femto (equal cost). The capital expenditure of a
SC consists of base station equipment, professional services
(planning, installation and commissioning), and backhaul
transmission equipment. This cost may range from 1000
e for a femtocell to 20.000-30.000 e for a microcell [30].
In the proposed vehicular cloud, the equipment might be
pre-installed, and a large part of the OPEX could also be
avoided as explained earlier. In fact, a first implementation
of a similar vehicular cloud, where vehicles act as proxies,
has shown a ten-fold cost reduction compared to SCs [1]. We
therefore also consider a sparser deployment that equalizes
the total cost where we set to 50 the number of SCs.

Figure 4 compares vehicular cloud and femtocaching in terms
of data offloaded. We also simulate a femtocaching scenario
with the MP policy. As expected, gains provided by the
vehicular cloud are considerably higher than femtocaching
for both short and (mainly) long range communications. This
result is even more interesting considering the cost: in fact,
storing content in vehicles permits almost 2,5 times higher
gains than femtocaching with equal cost.

D. Per-Chunk Caching Strategy Evaluation

In this subsection, we evaluate the performance of the per-
chunk policy described in Section V. We use that same real-
trace based simulator introduced in Section VI-A, where a user
abandons the playout of the video with some probability: when
a user watches a chunk, she decides to watch the following
chunk with probability 1 − q or to abandon the playout with
probability q (we set q = 0, 05 as default value). Content is
split in 10 chunks. Our main goal in this preliminary evaluation
is to highlight the improvements, in terms of number of chunks
offloaded, brought by caching per-chunk (when Ψi j is given
by Eq. (11)) compared to per-content, in a realistic scenario.

In Figure 5a we perform sensitivity analysis according to
the number of vehicles h in the cloud which varies from
100 to 500. As the number of vehicles increases, the per-
chunk policy offloads much more traffic compared to the
other policies. For example, with 500 vehicles, this policy can
offload almost 60 percent of the traffic. Figure 5b compares
different buffer capacities per vehicle. Buffer size is in the
range 0,05-0,5 percent of the catalogue (where h = 531).
Considerable performance gains (i.e., more than 70 percent
of traffic offloaded) can be achieved with very reasonable
storage capacities (i.e., less than one percent of the catalogue).
In Figure 5c we perform sensitivity analysis according to the
probability of viewing the subsequent chunk. We analyse the
range 5-20 percent (i.e., a video is entirely played out from 10
to 60 percent of times). In this scenario, the per-chunk policy
provides a relative improvement between up to 25 percent
compared to the per-content policy. What is more, the relative
traffic offloaded by the per-chunk policy improves as the
abandon probability increases which confirms that reshuffling
chunks is an effective strategy to improve traffic offloading.
Finally, we believe that a finer per-chunk policy (i.e., with a
more realistic function for Ψi j) would provide larger gains.

VII. DISCUSSION

A. Architecture

Hybrid LTE - D2D system. In the simplest case, vehicular
helper nodes could act as end users (i.e., UEs) in an LTE
system. In other words, the “backhaul” link (I − H) of our
hybrid system is just a regular downlink between an eNodeB
(the standard LTE BS) and a UE, over which content is pushed
during off-peaks11. The “fronthaul” link (H −U) could then

11Note that content cannot usually be pushed at night to our mobile helpers.
Nevertheless, we believe that within 24h there are enough traffic troughs to
be able to update the caches from day to day, without congesting the network.

13

100 200 300 400 500

vehicles

30

40

50

60

70

g
a

in
 [

%
]

per-chunk

per-content

most popular

(a) Offloading gain vs. number of vehicles.

0 0.1 0.2 0.3 0.4 0.5

buffer size [%]

30

40

50

60

70

g
a

in
 [

%
]

per-chunk

per-content

most popular

(b) Offloading gain vs. cache size.

0 5 10 15 20 25

abandon probability [%]

-20

-10

0

10

20

g
a
in

 (
v
s
 p

e
r-

c
o

n
te

n
t)

per-chunk

per-content

most popular

(c) Offloading gain vs. abandon rate.

Fig. 5: Performance evaluation.

be operated as a D2D link. Previous work has confirmed
the feasibility of opportunistic connections between vehicles
and UEs [6]. IEEE 802.11p, which has been developed for
the specific context of vehicular networks, is the de facto
standard offering simplicity (uncoordinated access mechanism,
no authentication) and low delay (few hundreds ms in crowded
areas). An alternative to 802.11p is given by LTE Proximity
Services (ProSe). LTE ProSe improves overall throughput,
spectrum utilization and reliability at the cost of higher latency.
However, Kim et al. [18] show that LTE ProSe is capable of
satisfying delay requirements for most vehicular applications.
What is more, LTE ProSe optimizes the battery usage since
the user does not have to periodically probe nearby vehicles.
LTE-integrated system. A higher integration with cellular
infrastructure could also be envisioned, where theH nodes are
operated as (mobile) LTE relays [31] with local caches, and
end users devices (U) as regular UEs that can communicate
with both macrocells and relays. The I−H link is then a real
backhaul link, while the H −U a regular eNodeB-UE link.

B. Incentives

Modern cities might decide to offer Wi-Fi features in
public transportation by installing inexpensive access points
and storage into buses or trams to increase the number of
passengers and generate additional revenues [1]. In this way,
vehicular networks can produce real-time city-scale data from
cheap sensors which can be used to increase safety and effi-
ciency of municipal operations (e.g., traffic, waste collection).
Additionally, MNOs could make deals with private bus or
taxi fleets (e.g., Uber) providing the mobile relay and storage
for free (thus improving, e.g., Uber customer experience).
Regarding private transportation, it is estimated that by 2020
around 90 percent of all new cars are likely to have Internet
connectivity. As a result, cellular operators see cars as another
device to be connected to their networks, and they have started
to propose data plan dedicated to vehicles (e.g., AT&T in US).
MNOs might offer economic incentives (e.g., subscription
reductions) to users that decide to join the vehicular cloud
with their private vehicles. This increases their market share
while offloading part of the mobile traffic.

C. Additional Use Cases

We believe one of the key strengths of our framework is its
wider applicability. We present three additional use cases:
Femtocaching. In the femtocaching setup, while some of the
mobility assumptions made do not exactly hold, as for example

when the helpers are static and UEs are moving, our analytical
formulas can still serve as a good approximation.
Secondary low cost operator. A new low cost operator could
try to take up a market share by offering less expensive access
to their (static or mobile) SCs to users with dual subscriptions.
In this case, the optimization problem is rather for the low cost
operator that aims to maximize the amount of traffic that it can
serve from its own nodes.
Device-based caching. More futuristic scenarios that use
device-based caching and device-to-device communication as
the “secondary” inexpensive network of helpers [10] could
also be tackled with our framework. For example, the helper
H nodes could correspond to an initial set of UEs that the
operator pushes content to. If these UEs can further distribute
the content to other UEs (which then also become helpers) it
becomes an interesting problem to transform the statistics of
the size of this non-constant helper set, into the playout buffer
idle statistics.

VIII. CONCLUSION

In this paper, we have focused our study on caching multi-
media content. Video streaming has become dominant in the
current Internet traffic [2]. We have exploited the fact that later
chunks introduce an intrinsic delay tolerance on the content
download. Using queueing theory notions, we were able to
model the intermittent contacts with the mobile caches. We
have provided the following main contributions: (i) we have
modelled the playout buffer at the user device with a bulk
queue where arrivals correspond to the bytes opportunistically
downloaded from vehicles, and the service rate corresponds
to the playout video rate. Moreover, we have added an
additional queue to deal with overlapping meetings; (ii) we
have calculated the number of bytes to download from the
vehicular cloud based on the above queueing model. Then, we
have formulated an optimization problem to infer the optimal
per-content allocation and a subsequent per-chunk adaptation;
(iii) finally, we have implemented a trace-driven simulator to
validate the theoretical findings. We have also compared the
vehicular cloud with the femtocaching framework [11], and
performed cost analysis that has highlighted the advantages of
the vehicular cloud as a function of cost reduction.

ACKNOWLEDGMENT

This work was funded by the French Government (National
Research Agency, ANR) through the “Investments for the
Future” Program reference #ANR-11-LABX-0031-01.

14

REFERENCES

[1] Veniam. https://veniam.com/.
[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update. 2016-2021.
[3] H. Ahlehagh and S. Dey. Video-aware scheduling and caching in the

radio access network. IEEE/ACM Transactions on Networking, 2014.
[4] N. Alliance. NGMN 5G White Paper. https://www.ngmn.org/uploads/

media/NGMN_5G_White_Paper_V1_0.pdf, 2015.
[5] A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting

Mobile 3G Using WiFi. In Proceedings of MobiSys. ACM, 2010.
[6] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden.

A measurement study of vehicular internet access using in situ wi-fi
networks. In Proc. of Mobile Computing and Networking. ACM, 2006.

[7] N. Cheng, N. Lu, N. Zhang, X. S. Shen, and J. W. Mark. Vehicular
WiFi Offloading. Vehicular Communications, Jan 2014.

[8] V. Conan, J. Leguay, and T. Friedman. Characterizing Pairwise Inter-
contact Patterns in Delay Tolerant Networks. In Proceedings of Auto-
nomics. ICST, 2007.

[9] S. K. Dandapat, S. Pradhan, N. Ganguly, and R. Roy Choudhury.
Sprinkler: Distributed Content Storage for Just-in-time Streaming. In
Proceedings of CellNet. ACM, 2013.

[10] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire. Femtocaching
and device-to-device collaboration: A new architecture for wireless video
distribution. IEEE Communications Magazine, 2013.

[11] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire.
Femtocaching: Wireless video content delivery through distributed
caching helpers. In IEEE INFOCOM, 2012.

[12] P. Hall. Heavy traffic approximations for busy period in an M/G/∞
queue. Stochastic Processes and their Applications, 1985.

[13] M. Harchol-Balter. Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press, 2013.

[14] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, and C. Lorentzen. Initial
delay vs. interruptions: Between the devil and the deep blue sea. In
Workshop on Quality of Multimedia Experience, Jul 2012.

[15] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnović. Power law and
exponential decay of inter contact times between mobile devices. In
Proceedings of MobiCom. ACM, 2007.

[16] S. Karlin and H. Taylor. A First Course in Stochastic Processes. Elsevier
Science, 2012.

[17] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer,
2004.

[18] H.-Y. Kim, D.-M. Kang, J.-H. Lee, and T.-M. Chung. A Performance
Evaluation of Cellular Network Suitability for VANET. J. of Electrical,
Computer, Energetic, Electronic and Communication Engineering, 2012.

[19] B. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Publishing Company, Incorporated, 2007.

[20] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. SLAW: A New
Mobility Model for Human Walks. In IEEE INFOCOM, Apr 2009.

[21] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile Data Offloading:
How Much Can WiFi Deliver? IEEE Transactions on Networking, 2013.

[22] A. Mahmood, C. Casetti, C. F. Chiasserini, P. Giaccone, and J. Harri.
Mobility-aware edge caching for connected cars. In WONS, 2016.

[23] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[24] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser. DAD
data set epfl/mobility (v. 2009-02-24), 2009.

[25] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas. Video delivery
over heterogeneous cellular networks: Optimizing cost and performance.
In IEEE INFOCOM, Apr 2014.

[26] P. Raghavan and C. D. Tompson. Randomized rounding: A technique
for provably good algorithms and algorithmic proofs. Combinatorica,
1987.

[27] S. Ross. Stochastic Processes. Wiley series in mathematical statistics.
Probability and mathematical statistics. Wiley, 1983.

[28] N. Sapountzis, S. Sarantidis, T. Spyropoulos, N. Nikaein, and U. Salim.
Reducing the energy consumption of small cell networks subject to qoe
constraints. In IEEE Global Communications Conference, Dec 2014.

[29] M. Sathiamoorthy, A. G. Dimakis, B. Krishnamachari, and F. Bai.
Distributed storage codes reduce latency in vehicular networks. IEEE
Transactions on Mobile Computing, Sep 2014.

[30] Senza Fili Consulting. The economics of small cells and wi-fi offload.
2013.

[31] S. Sesia, I. Toufik, and M. Baker. LTE, The UMTS Long Term Evolution:
From Theory to Practice. Wiley Publishing, 2009.

[32] Small Cell Forum. Backhaul technologies for small cells: Use cases,
requirements and solutions. 2013.

[33] G. Szabo and B. A. Huberman. Predicting the Popularity of Online
Content. Communications of the ACM, Aug. 2010.

[34] L. Vigneri, T. Spyropoulos, and C. Barakat. Storage on wheels: Offload-
ing popular contents through a vehicular cloud. In IEEE WoWMoM, Jun
2016.

[35] M. Zeni, D. Miorandi, and F. De Pellegrini. YOUStatAnalyzer: a tool for
analysing the dynamics of YouTube content popularity. In Proceedings
of Valuetools, 2013.

[36] F. Zhang, C. Xu, Y. Zhang, K. K. Ramakrishnan, S. Mukherjee, R. Yates,
and T. Nguyen. EdgeBuffer: Caching and prefetching content at the edge
in the MobilityFirst future Internet architecture. In WoWMoM, Jun 2015.

[37] Y. Zhang, J. Zhao, and G. Cao. Roadcast: A Popularity Aware Content
Sharing Scheme in VANETs. In IEEE Conf. on Distributed Computing
Systems, Jun 2009.

[38] J. Zhao and G. Cao. VADD: Vehicle-Assisted Data Delivery in Vehicular
Ad Hoc Networks. IEEE Trans. on Vehicular Technology, May 2008.

[39] X. Zhuo, W. Gao, G. Cao, and S. Hua. An incentive framework for
cellular traffic offloading. IEEE Trans. on Mobile Computing, Mar 2014.

[40] X. Zhuo, Q. Li, W. Gao, G. Cao, and Y. Dai. Contact duration aware data
replication in delay tolerant networks. In IEEE Conference on Network
Protocols, Oct 2011.

Luigi Vigneri obtained his Master of Science
in Computer Engineering from the Politecnico di
Torino, Italy. During his studies, he also joined a
double degree program and obtained a Master of
Science in Computer Science from Telecom Paris-
Tech, France. He is currently PhD candidate at
EURECOM, Sophia Antipolis, France. His main
research interests concern network modelling and
optimization, and performance analysis.

Thrasyvoulos Spyropoulos received the Diploma
in Electrical and Computer Engineering from the
National Technical University of Athens, Greece,
and a Ph.D degree in Electrical Engineering from
the University of Southern California. He was a
post-doctoral researcher at INRIA and then, a senior
researcher with the Swiss Federal Institute of Tech-
nology (ETH) Zurich. He is currently an Assistant
Professor at EURECOM, Sophia-Antipolis. He is the
recipient of the best paper award in IEEE SECON
2008, and IEEE WoWMoM 2012, and runner-up for

ACM Mobihoc 2011, and IEEE WoWMoM 2015.

Chadi Barakat is permanent researcher in the Diana
group at INRIA, Sophia Antipolis. He got his master,
PhD and HDR degrees in Computer Science from
the University of Nice, Sophia Antipolis. He was
with the LCA department at EPFL-Lausanne for a
post-doctoral position, and a visiting faculty member
at Intel Research Cambridge. Chadi Barakat was
general chair for ACM CoNEXT 2012, PAM 2004
and WiOpt 2005 workshops, area editor for the ACM
CCR journal and is currently on the editorial board
of Elsevier Computer Networks. His main research

interests are in Internet measurements and traffic analysis, user quality of
experience, content-centric, software-defined and mobile wireless networking.
Chadi Barakat is senior member of the IEEE and member of the ACM.

