
Deep Gaussian Processes

Maurizio Filippone

EURECOM, Sophia Antipolis, France

August 31st, 2018

1



1 Introduction

2 Inference for Deep Gaussian Processes

3 Convolutional Deep Gaussian Processes

4 Conclusions

2



Introduction



Gaussian Processes - Priors over Functions

• Infinite Gaussian random variables with parametric and

input-dependent covariance

Rasmussen and Williams, 2006
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Gaussian Processes as Infinitely-Wide Shallow Neural Nets

• Take W (i) ∼ N (0, αi I )

• Central Limit Theorem implies that F

is Gaussian

...

...

ΦX F

W (0) W (1)

• F has zero-mean

• cov(F ) = Ep(W (0),W (1))[Φ(XW (0))W (1)W (1)>Φ(XW (0))>]

Neal, LNS, 1996
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Gaussian Processes as Infinitely-Wide Shallow Neural Nets

• Take W (i) ∼ N (0, αi I )

• Central Limit Theorem implies that F

is Gaussian

...

...

ΦX F

W (0) W (1)

• F has zero-mean

• cov(F ) = α1Ep(W (0))[Φ(XW (0))Φ(XW (0))>]

• Some choices of Φ lead to analytic expression of known

kernels (RBF, Matérn, arc-cosine, Brownian motion, . . .)

Neal, LNS, 1996
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Gaussian Processes - Priors over Functions
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Gaussian Processes - Priors over Functions
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Gaussian Processes - Priors over Functions
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Gaussian Processes - Regression example

• Inputs = X Labels = Y

• Introduce latent variables F with covariance K = K (X ,θ)

• Introduce Gaussian likelihood p(Y |F )
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• Posterior p(F |Y ,X ,θ) ∝ p(Y |F )p(F |X ,θ)∫
p(Y |F )p(F |X ,θ)dF

Rasmussen and Williams, 2006 9



Gaussian Processes - Regression example

• Predictive distribution

p(F ∗|Y ,X ,θ) =

∫
p(F ∗|F ,θ)p(F |Y ,X ,θ)dF
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• Posterior p(F |Y ,X ,θ) ∝ p(Y |F )p(F |X ,θ)∫
p(Y |F )p(F |X ,θ)dF

Rasmussen and Williams, 2006 10



Gaussian Processes - Classification example

• Inputs = X Labels = Y

• Introduce latent variables F with covariance K = K (X ,θ)

• Introduce Bernoulli likelihood p(Y |F )
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• Posterior p(F |Y ,X ,θ) ∝ p(Y |F )p(F |X ,θ)∫
p(Y |F )p(F |X ,θ)dF

Rasmussen and Williams, 2006 11



Gaussian Processes - Classification example

• Predictive distribution - needs approximation to p(F |Y ,X ,θ)!

p(F ∗|Y ,X ,θ) =

∫
p(F ∗|F ,θ)p(F |Y ,X ,θ)dF
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• Posterior p(F |Y ,X ,θ) ∝ p(Y |F )p(F |X ,θ)∫
p(Y |F )p(F |X ,θ)dF

Rasmussen and Williams, 2006
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Challenges and Limitations

• Kernel design

• p(Y |X ,θ) might be expensive to compute (factorize K )

• p(Y |X ,θ) might not even be computable!

F 

Y 

θ X 

• Marginal likelihood

p(Y |X ,θ) =

∫
p(Y |F )p(F |X ,θ)dF

13



Deep Gaussian Processes for Large Representational Power

• Bypassing kernel design through composition of processes

(f ◦ g)(x)??

Neal, LNS, 1996 – Damianou and Lawrence, AISTATS, 2013
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Deep Gaussian Processes for Large Representational Power

• Composition of stationary processes yields something very

complex

F(1) 

Y 

θ(1) X 

F(2) 

θ(2) 

Neal, LNS, 1996 – Damianou and Lawrence, AISTATS, 2013 – Duvenaud et al., AISTATS, 2014 15



Pathologies of Deep Gaussian Processes

• Deep is not necessarily good!

• Example

1 Layer 2 Layers

5 Layers 10 Layers

F(1) 

Y 

θ(1) X 

F(2) 

θ(2) 

Neal, LNS, 1996 – Duvenaud et al., AISTATS, 2014 – Matthews et al., arXiv, 2018 16



Pathologies of Deep Gaussian Processes

• Deep is not necessarily good!

• Feeding input to each layer helps...

1 Layer 2 Layers

5 Layers 10 Layers

F(1) 

Y 

θ(1) X 

F(2) 

θ(2) 

Neal, LNS, 1996 – Duvenaud et al., AISTATS, 2014 – Matthews et al., arXiv, 2018 17



Learning Deep Gaussian Processes

• Inference requires calculating integrals of this kind:

p(Y |X ,θ) =

∫
p
(
Y |F (Nh),θ(Nh)

)
×

p
(
F (Nh)|F (Nh−1),θ(Nh−1)

)
× . . .×

p
(
F (1)|X ,θ(0)

)
dF (Nh) . . . dF (1)

• Extremely challenging!
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The Deep Learning Revolution

• Large representational power

• Mini-batch-based learning

• Exploit GPU and distributed computing

• Automatic differentiation

• Mature development of regularization (e.g., dropout)

• Application-specific representations (e.g., convolutional)

19



Stochastic Gradient Optimization

E
{
∇̃parLowerBound

}
= ∇parLowerBound
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Stochastic Variational Inference - Illustration

vpar′ = vpar +
αt

2
∇̃vpar(LowerBound) αt → 0

21



Is There Any Hope for GPs and DGPs?

• Mini-batch training is straightforward when objective

factorizes over training points

objective =
∑

i

f (yi , xi ,par)

• In GPs latent variables are fully correlated

p(F |X ,θ) = N (F |0,K (X ,θ)) ∝ exp

(
−1

2
F>K−1F

)

• Näıve mini-batch approaches would totally break this!

Can we exploit what made Deep Learning successful for

practical and scalable learning of (Deep) Gaussian processes?

22
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Inference for Deep Gaussian

Processes



Inference for DGPs

• Inducing points-based approximations

• VI+Titsias AISTATS 2009 Sparse GP

• Damianou and Lawrence, AISTATS, 2013

• Hensman and Lawrence, arXiv, 2014

• Salimbeni and Deisenroth, NIPS, 2017

• EP+FITC - Bui et al. ICML, 2016

• MCMC+Titsias AISTATS 2009 Sparse GP

• Havasi et al., arXiv, 2018

• Random feature-based approximations

• Gal and Ghahramani, ICML 2016

• Cutajar et al., ICML 2017
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Inference for DGPs

• Low-Rank Approximation options - O(nm2)

• Call P as a low rank approximation to Ky

• Woodbury identity exploits low rank structure of P

Preconditioning Kernel Matrices
K. Cutajar1, M. A. Osborne2, J. P. Cunningham3, M. Filippone1

1 - EURECOM, Sophia Antipolis, France
2 - University of Oxford, Oxford, UK 3 - Columbia University, New York City, USA

Kernel Machines and Solving Linear Systems
! Operate in a high-dimensional, implicit feature space;

! Rely on the construction of an n × n Gram matrix K;

! Popular kernels:

– RBF : k (xi,xj) = σ2 exp
(
− 1

2d2
)
;

– Matérn : kv= 3
2

(xi,xj) = σ2
(
1 +

√
3d

)
exp

(
−

√
3d

)
;

where d2 = (xi − xj)
⊤

Λ (xi − xj).

! Involve the solution of linear systems Kz = v;

! Cholesky Decomposition:

– O(n2) space and O(n3) time - unfeasible for large n.

Fig. 1: Kernel machines enable
non-linear separation of data.

! Conjugate Gradient (CG):

– Numerical solution of linear systems constructed
using matrix-vector multiplications;

– O(tn2) for t CG iterations - in theory t = n
(possibly worse).

z

z0

Fig. 2: CG

! Preconditioned Conjugate Gradient (PCG):

– Transforms linear system to be better conditioned,
improving convergence;

– Yields a new linear system of the form
P−1Kz = P−1v;

– O(tn2) for t PCG iterations - in practice t ≪ n.

z

z0

Fig. 3: Preconditioned CG

Preconditioning Approaches
! Suppose we want to precondition Ky = K + λI ;

! Our choice of preconditioner should:

– Approximate Ky as closely as possible;

– Be easy to invert.

! For low-rank preconditioners we employ the Woodbury inversion lemma:

Ky = P =

P−1 =

! For other preconditioners we solve inner linear systems once again using CG!

Formulation Strategy

Nyström P = KXUK−1
UUKUX + λI where U ⊂ X Woodbury

FITC P = KXUK−1
UUKUX + diag

(
K − KXUK−1

UUKUX

)
+ λI Woodbury

PITC P = KXUK−1
UUKUX + bldiag

(
K − KXUK−1

UUKUX

)
+ λI Woodbury

Spectral Pij = σ2

m

∑m
r=1 cos

[
2πs⊤

r (xi − xj)
]
+ λIij Woodbury

Partial SVD K = AΛA⊤ ⇒ P = A[·,1:m]Λ[1:m,1:m]A
⊤
[1:m,·] + λI Woodbury

Block Jacobi P = bldiag (K) + λI Block Inverse

SKI P = WKUUW⊤ + λI where KUU is Kronecker Inner CG

Regularization P = K + δI + λI Inner CG

Preconditioning Kernel Matrices

Concrete Dataset Power plant Dataset Protein Dataset
(n = 1030, d = 8) (n = 9568, d = 4) (n = 45730, d = 9)
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Figure 1. Comparison of preconditioners for different settings of kernel parameters. The lengthscale l and the noise variance λ are shown
on the x and y axes respectively. The top figure indicates the number of iterations required to solve the corresponding linear system using
CG, whilst the bottom part of the figure shows the rate of improvement (negative - blue) or degradation (positive - red) achieved by using
PCG to solve the same linear system. Parameters and results are reported in log10. Symbols added to facilitate reading in B/W print.

tioner requires one matrix-vector product, and we add this
to the overall count of such computations. For this precon-
ditioner, we add a diagonal offset δ to the original matrix,
equivalent to two orders of magnitude greater than the noise
of the process. In general, although the complexity of PCG
is indeed no different from that of CG, we emphasize that
experiencing a 2-fold or 5-fold (in some cases even an order
of magnitude) improvement can be very substantial when
plain CG takes very long to converge or when the dataset is
large.

We focus on an isotropic RBF variant of the kernel in eq. 1,
fixing the marginal variance σ2 to one. We vary the length-
scale parameter l and the noise variance λ in log10 scale.
The top part of fig. 1 shows the number of iterations that
the standard CG algorithm takes, where we have capped
the number of iterations to 100,000.

The bottom part of the figure reports the improvement of-
fered by various preconditioners measured as

log10

(
# PCG iterations

# CG iterations

)
.

It is worth noting that when both CG and PCG fail to con-
verge within the upper bound, the improvement will be
marked as 0, i.e. neither a gain or a loss within the given
bound. The results plotted in fig. 1 indicate that the low-
rank preconditioners (PITC, FITC and Nyström) achieve

significant reductions in the number of iterations for each
dataset, and all approaches work best when the lengthscale
is longer, characterising smoother processes. In contrast,
preconditioning seems to be less effective when the length-
scale is shorter, corresponding to a kernel matrix that is
more sparse. However, for cases yielding positive results,
the improvement is often in the range of an order of mag-
nitude, which can be substantial when a large number of
iterations is required by the CG algorithm.

The results also confirm that, as alluded to in the previous
section, Block Jacobi preconditioning is generally a poor
preconditioner, particularly when the corresponding kernel
matrix is dense. The only minor improvements were ob-
served when CG itself converges quickly, in which case
preconditioning serves very little purpose either way.

The regularization approach with flexible conjugate gradi-
ent does not appear to be effective in any case either, partic-
ularly due to the substantial amount of iterations required
for solving an inner system at every iteration of the PCG
algorithm. This implies that introducing additional small
jitter to the diagonal does not necessarily make the sys-
tem much easier to solve, whilst adding an overly large
offset would negatively impact convergence of the outer al-
gorithm. One could assume that tuning the value of this
parameter could result in slightly better results; however,
preliminary experiments in this regard yielded only minor

Fig. 4: Comparison of preconditioners for different settings of kernel parameters across multiple datasets. Top: Number of
iterations required to solve the corresponding linear system using CG. Bottom: Rate of improvement (blue) or degradation
(red) achieved by using PCG to solve the same linear system.

Motivating Example - Gaussian Processes
! Marginal likelihood:

log[p(y|par)] = −1

2
log |Ky| − 1

2
y⊤K−1

y y + const.

! Derivatives wrt par:

∂ log[p(y|par)]

∂pari

= −1

2
Tr

(
K−1

y

∂Ky

∂pari

)
+

1

2
y⊤K−1

y

∂Ky

∂pari

K−1
y y

! Stochastic estimate of the trace - assuming E[rr⊤] = I , then:

Tr

(
K−1

y

∂Ky

∂pari

)
= Tr

(
K−1

y

∂Ky

∂pari

E[rr⊤]

)
= E

[
r⊤K−1

y

∂Ky

∂pari

r

]
≈ 1

Nr

Nr∑

i=1

r(i)⊤
K−1

y

∂Ky

∂pari
r(i)

! Linear systems only!

! Laplace approximation for non-Gaussian likelihoods may be formulated in a similar way!

Experimental Setup and Results
! Exact gradient-based optimization using Cholesky decomposition (CHOL);

! Stochastic gradient-based optimization using ADAGRAD - using CG and PCG;

! GP Approximations:

– Variational learning of inducing variables (VAR);

– Fully Independent Training Conditional (FITC);

– Partially Independent Training Conditional (PITC).

Classification
Spam Dataset (n = 4061, d=57)
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EEG Dataset (n = 14979, d=14)
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Regression
Power plant Dataset (n = 9568, d=4)
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Protein Dataset (n = 45730, d=9)
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Fig. 5: Error and negative log likelihood on
√

n held out test data over time. Curves are averaged over multiple repetitions.

Conclusions
! Our solution:

✓ Exact in the limit of iterations;

✓ Straightforward to construct and easy to tune;

✓ Scalable to large datasets - no need to store K;

✓ Competitive with exact Cholesky decomposition;

✓ Superior to approximate methods.

! Ongoing work:

– Extending this work to other kernel functions and models;

– Implementation on a distributed framework;

– Exploiting PCG in the solution of f(K) z = v.

1

DGPs: Low-rank approximation of covariance at each layer

24



Inference for DGPs

• Low-Rank Approximation options - O(nm2)

• Call P as a low rank approximation to Ky

• Woodbury identity exploits low rank structure of P

Preconditioning Kernel Matrices
K. Cutajar1, M. A. Osborne2, J. P. Cunningham3, M. Filippone1

1 - EURECOM, Sophia Antipolis, France
2 - University of Oxford, Oxford, UK 3 - Columbia University, New York City, USA

Kernel Machines and Solving Linear Systems
! Operate in a high-dimensional, implicit feature space;

! Rely on the construction of an n × n Gram matrix K;

! Popular kernels:

– RBF : k (xi,xj) = σ2 exp
(
− 1

2d2
)
;

– Matérn : kv= 3
2

(xi,xj) = σ2
(
1 +

√
3d

)
exp

(
−

√
3d

)
;

where d2 = (xi − xj)
⊤

Λ (xi − xj).

! Involve the solution of linear systems Kz = v;

! Cholesky Decomposition:

– O(n2) space and O(n3) time - unfeasible for large n.

Fig. 1: Kernel machines enable
non-linear separation of data.

! Conjugate Gradient (CG):

– Numerical solution of linear systems constructed
using matrix-vector multiplications;

– O(tn2) for t CG iterations - in theory t = n
(possibly worse).

z

z0

Fig. 2: CG

! Preconditioned Conjugate Gradient (PCG):

– Transforms linear system to be better conditioned,
improving convergence;

– Yields a new linear system of the form
P−1Kz = P−1v;

– O(tn2) for t PCG iterations - in practice t ≪ n.

z

z0

Fig. 3: Preconditioned CG

Preconditioning Approaches
! Suppose we want to precondition Ky = K + λI ;

! Our choice of preconditioner should:

– Approximate Ky as closely as possible;

– Be easy to invert.

! For low-rank preconditioners we employ the Woodbury inversion lemma:

Ky = P =

P−1 =

! For other preconditioners we solve inner linear systems once again using CG!

Formulation Strategy

Nyström P = KXUK−1
UUKUX + λI where U ⊂ X Woodbury

FITC P = KXUK−1
UUKUX + diag

(
K − KXUK−1

UUKUX

)
+ λI Woodbury

PITC P = KXUK−1
UUKUX + bldiag

(
K − KXUK−1

UUKUX

)
+ λI Woodbury

Spectral Pij = σ2

m

∑m
r=1 cos

[
2πs⊤

r (xi − xj)
]
+ λIij Woodbury

Partial SVD K = AΛA⊤ ⇒ P = A[·,1:m]Λ[1:m,1:m]A
⊤
[1:m,·] + λI Woodbury

Block Jacobi P = bldiag (K) + λI Block Inverse

SKI P = WKUUW⊤ + λI where KUU is Kronecker Inner CG

Regularization P = K + δI + λI Inner CG

Preconditioning Kernel Matrices

Concrete Dataset Power plant Dataset Protein Dataset
(n = 1030, d = 8) (n = 9568, d = 4) (n = 45730, d = 9)
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Figure 1. Comparison of preconditioners for different settings of kernel parameters. The lengthscale l and the noise variance λ are shown
on the x and y axes respectively. The top figure indicates the number of iterations required to solve the corresponding linear system using
CG, whilst the bottom part of the figure shows the rate of improvement (negative - blue) or degradation (positive - red) achieved by using
PCG to solve the same linear system. Parameters and results are reported in log10. Symbols added to facilitate reading in B/W print.

tioner requires one matrix-vector product, and we add this
to the overall count of such computations. For this precon-
ditioner, we add a diagonal offset δ to the original matrix,
equivalent to two orders of magnitude greater than the noise
of the process. In general, although the complexity of PCG
is indeed no different from that of CG, we emphasize that
experiencing a 2-fold or 5-fold (in some cases even an order
of magnitude) improvement can be very substantial when
plain CG takes very long to converge or when the dataset is
large.

We focus on an isotropic RBF variant of the kernel in eq. 1,
fixing the marginal variance σ2 to one. We vary the length-
scale parameter l and the noise variance λ in log10 scale.
The top part of fig. 1 shows the number of iterations that
the standard CG algorithm takes, where we have capped
the number of iterations to 100,000.

The bottom part of the figure reports the improvement of-
fered by various preconditioners measured as

log10

(
# PCG iterations

# CG iterations

)
.

It is worth noting that when both CG and PCG fail to con-
verge within the upper bound, the improvement will be
marked as 0, i.e. neither a gain or a loss within the given
bound. The results plotted in fig. 1 indicate that the low-
rank preconditioners (PITC, FITC and Nyström) achieve

significant reductions in the number of iterations for each
dataset, and all approaches work best when the lengthscale
is longer, characterising smoother processes. In contrast,
preconditioning seems to be less effective when the length-
scale is shorter, corresponding to a kernel matrix that is
more sparse. However, for cases yielding positive results,
the improvement is often in the range of an order of mag-
nitude, which can be substantial when a large number of
iterations is required by the CG algorithm.

The results also confirm that, as alluded to in the previous
section, Block Jacobi preconditioning is generally a poor
preconditioner, particularly when the corresponding kernel
matrix is dense. The only minor improvements were ob-
served when CG itself converges quickly, in which case
preconditioning serves very little purpose either way.

The regularization approach with flexible conjugate gradi-
ent does not appear to be effective in any case either, partic-
ularly due to the substantial amount of iterations required
for solving an inner system at every iteration of the PCG
algorithm. This implies that introducing additional small
jitter to the diagonal does not necessarily make the sys-
tem much easier to solve, whilst adding an overly large
offset would negatively impact convergence of the outer al-
gorithm. One could assume that tuning the value of this
parameter could result in slightly better results; however,
preliminary experiments in this regard yielded only minor

Fig. 4: Comparison of preconditioners for different settings of kernel parameters across multiple datasets. Top: Number of
iterations required to solve the corresponding linear system using CG. Bottom: Rate of improvement (blue) or degradation
(red) achieved by using PCG to solve the same linear system.

Motivating Example - Gaussian Processes
! Marginal likelihood:

log[p(y|par)] = −1

2
log |Ky| − 1

2
y⊤K−1

y y + const.

! Derivatives wrt par:

∂ log[p(y|par)]

∂pari

= −1

2
Tr

(
K−1

y

∂Ky

∂pari

)
+

1

2
y⊤K−1

y

∂Ky

∂pari

K−1
y y

! Stochastic estimate of the trace - assuming E[rr⊤] = I , then:

Tr

(
K−1

y

∂Ky

∂pari

)
= Tr

(
K−1

y

∂Ky

∂pari

E[rr⊤]

)
= E

[
r⊤K−1

y

∂Ky

∂pari

r

]
≈ 1

Nr

Nr∑

i=1

r(i)⊤
K−1

y

∂Ky

∂pari
r(i)

! Linear systems only!

! Laplace approximation for non-Gaussian likelihoods may be formulated in a similar way!

Experimental Setup and Results
! Exact gradient-based optimization using Cholesky decomposition (CHOL);

! Stochastic gradient-based optimization using ADAGRAD - using CG and PCG;

! GP Approximations:

– Variational learning of inducing variables (VAR);

– Fully Independent Training Conditional (FITC);

– Partially Independent Training Conditional (PITC).

Classification
Spam Dataset (n = 4061, d=57)
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EEG Dataset (n = 14979, d=14)
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Regression
Power plant Dataset (n = 9568, d=4)
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Protein Dataset (n = 45730, d=9)

1.5 2.0 2.5 3.0 3.5 4.0
0.
60

0.
64

0.
68

0.
72

log10(seconds)

R
M
SE

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

20
0

30
0

40
0

log10(seconds)

N
eg

at
ive

 T
es

t L
og
−L

ik

PCG CG CHOL FITC PITC VAR

Fig. 5: Error and negative log likelihood on
√

n held out test data over time. Curves are averaged over multiple repetitions.

Conclusions
! Our solution:

✓ Exact in the limit of iterations;

✓ Straightforward to construct and easy to tune;

✓ Scalable to large datasets - no need to store K;

✓ Competitive with exact Cholesky decomposition;

✓ Superior to approximate methods.

! Ongoing work:

– Extending this work to other kernel functions and models;

– Implementation on a distributed framework;

– Exploiting PCG in the solution of f(K) z = v.

1

DGPs: Low-rank approximation of covariance at each layer

24



Scalable Expectation Propagation for DGPs

• Pseudo-inputs Z (i)

• Inducing variables U(i)

• VI targets

q
(
U(i)

)

• Assuming

q
(
U(i)

)
∝ p

(
U(i)

)
g
(
U(i)

)N
learn

g as an average data factor

• Reduces memory and allows for

factorization of the objective

(output of each layer made

Gaussian)

F(1) 

Y 

θ(1) X 

F(2) 

θ(2) 

U(1) 

Z(1) 

U(1) 

Z(2) 

U(1) 

Z(3) θ(3) 

Bui et al., ICML, 2016
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Inducing Points for DGPs extending Titsias, AISTATS, 2009

• Pseudo-inputs Z (i)

• Inducing variables U(i)

• VI targets q
(
F (i),U(i)|F (i−1)

)

p
(
F (i)|U(i),F (i−1)

)
q
(
U(i)

)

• Lower bound factorizes across

training points. . .

• . . . and the ith marginal of the final

layer depends only on the ith

marginals of all layers

F(1) 

Y 

θ(1) X 

F(2) 

θ(2) 

U(1) 

Z(1) 

U(1) 

Z(2) 

U(1) 

Z(3) θ(3) 

Hensman and Lawrence, arXiv, 2014 – Salimbeni and Deisenroth, NIPS, 2017
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Random Feature Expansions for DGPs - Bochner’s theorem

• Continuous shift-invariant covariance function

k(xi − xj |θ) = σ2

∫
p(ω|θ) exp

(
ι(xi − xj)

>ω
)
dω

• Monte Carlo estimate

k(xi − xj |θ) ≈ σ2

NRF

NRF∑

r=1

z(xi |ω̃r )>z(xj |ω̃r )

with

ω̃r ∼ p(ω|θ)

z(x|ω) = [cos(x>ω), sin(x>ω)]>

Rahimi and Recht, NIPS, 2008 - Lázaro-Gredilla et al., JMLR, 2010

27



Random Feature Expansions for DGPs - Bochner’s theorem

• Continuous shift-invariant covariance function

k(xi − xj |θ) = σ2

∫
p(ω|θ) exp

(
ι(xi − xj)

>ω
)
dω

• Monte Carlo estimate

k(xi − xj |θ) ≈ σ2

NRF

NRF∑

r=1

z(xi |ω̃r )>z(xj |ω̃r )

with

ω̃r ∼ p(ω|θ)

z(x|ω) = [cos(x>ω), sin(x>ω)]>

Rahimi and Recht, NIPS, 2008 - Lázaro-Gredilla et al., JMLR, 2010
27



Random Feature Expansions for DGPs

• Define

Φ(l) =

√
σ2

N
(l)
RF

[
cos
(
F (l)Ω(l)

)
, sin

(
F (l)Ω(l)

)]

and

F (l+1) = Φ(l)W (l)

• We are stacking Bayesian linear models with

p
(
W

(l)
·i

)
= N (0, I )

• Expansion of arc-cosine kernel yields ReLU activations!

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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DGPs with random features become DNNs

θ(0) θ(1)

Φ(0)X F (1) Φ(1) F (2) Y

Ω(0) W (0) Ω(1) W (1)

We can learn the model using Stochastic Variational

Inference for Bayesian DNNs!

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Results - Classification

EEG dataset
(n = 14979, d = 14)
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Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Results - Multiclass Classification

MNIST dataset
(n = 60000, d = 784)
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Results - MNIST-8M

• Variant of MNIST with 8.1M images

• 99+% accuracy!

• Also, check out Krauth et al., UAI 2017

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017 – Krauth, Cutajar, Bonilla, Filippone, UAI, 2017
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Results - Model (Depth) Selection

Airline dataset

(n = 5M+, d = 8)
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Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Convolutional Deep Gaussian

Processes



Convolutional Nets

• Convolutional nets are widely used. . .

• . . .but they are known to be overconfident!

Convolution
+ ReLU

Convolution
+ ReLUPooling Pooling Fully connected layers Output

Guo et al., ICML, 2017
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Calibration as a Measure of Quantification of Uncertainty

• Reliability diagrams

Predicted value 
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Calibration as a Measure of Quantification of Uncertainty

• Reliability diagrams - Under-confident predictions

Predicted value 
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• We can extract the Expected Calibration Error (ece) score

• The brier score is another measure of calibration
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Calibration as a Measure of Quantification of Uncertainty

• Reliability diagrams - Overconfident predictions
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Reliability diagrams of modern Deep CNNs look like this!

Post-calibration fixes it
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Combining Convolutional Nets with GPs

• There have been attempts to combine CNNs with GPs

• Most popular ones replace fully connected layers with GPs

Convolution
+ ReLU

Convolution
+ ReLUPooling Pooling Gaussian Process Output

Wilson et al., NIPS, 2016 – Bradshaw et al., arXiv, 2017 – Tran et al., arXiv, 2018
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Combining Convolutional Nets with GPs

• There have been attempts to combine CNNs with GPs

• Most popular ones replace fully connected layers with GPs

Convolution
+ ReLU

Convolution
+ ReLUPooling Pooling Deep Gaussian Process Output

• Better quantification of uncertainty??

NO!

Tran et al., arXiv, 2018
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Existing Combinations of CNNs and GPs

• Convolutional Neural Nets - CNN

• Hybrid GPs and DNNs - gpdnn

• Stochastic Variational Deep Kernel Learning - svdkl

• Convolutional GP - cgp
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Bradshaw et al., arXiv, 2017 – Wilson et al., NIPS, 2016 – van der Wilk et al., NIPS, 2017
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Bayesian CNNs are calibrated

• Inferring parameters of convolutional filter recovers calibration

• Example with Monte Carlo Dropout
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Bayesian CNNs with DGPs with Random Features

• We extended our work on Random Feature Expansions for

DGPs to replace fully connected layers
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Comparison with competitors

SHALLOW CONVOLUTIONAL STRUCTURE
err mnll ece brier

m
n
is
t

c
if
a
r
1
0

3.8 4.0 4.2 4.4 4.6 4.8
0.00

0.01

0.02

0.03

0.04

3.8 4.0 4.2 4.4 4.6 4.8
0.0

0.1

0.2

0.3

3.8 4.0 4.2 4.4 4.6 4.8
0.0

0.2

0.4

0.6

3.8 4.0 4.2 4.4 4.6 4.8
0.0

0.1

0.2

0.3

0.4

3.8 4.0 4.2 4.4 4.6 4.8
0.0

0.2

0.4

0.6

0.8

3.8 4.0 4.2 4.4 4.6 4.8
0

1

2

3

4

3.8 4.0 4.2 4.4 4.6 4.8
0.0

0.1

0.2

0.3

0.4

3.8 4.0 4.2 4.4 4.6 4.8
0.2

0.4

0.6

0.8

1.0

cnn+gp(rf)
�cnn+gp(sorf)

H cnn+mcd
N cnn+cal

× gpdnn
? cgp

+ svdkl

Tran et al., arXiv, 2018

44



Comparison with competitors

DEEP CONVOLUTIONAL STRUCTURE
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Analysis of Depth of DGP

• Increasing depth of DGP slightly improves error rate. . .

• . . . and slightly worsen calibration
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Other Interesting DGP-based models

• Autoencoders Dai et al. ICLR, 2015 – Domingues et al., Mach. Learn., 2018

• DGPs with constrained dynamics Lorenzi and Filippone, ICML, 2018
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Conclusions



Conclusions

• DGPs offer probabilistic deep learning with sensible priors

• Inference for DGPs is hard

• Model approximations

• Approximate inference

• Difficult to assess the impact of these approximations
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Conclusions

• We are borrowing ideas from GPs and deep learning

• Stochastic-based approximate inference

• Low-rank process decompositions

• Algebraic/computational tricks
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Conclusions

• Combinations of GPs with CNNs slightly disappointing

• Quantification of uncertainty not for free. . .

• . . . regularization of filters is necessary

• Performance gains are small compared to plain CNNs
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