
Safe Aspect Composition

Laurent Bussard1, Lee Carver2, Erik Ernst3, Matthias Jung4,

Martin Robillard5, and Andreas Speck6

1
I3S { CNRS UPRESA 6070 { Bât ESSI, 06190 Sophia-Antipolis, France, bussard@essi.fr
2 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA, lcarver@us.ibm.com

3 Dept. of Computer Science, University of Aalborg, Denmark, eernst@cs.auc.dk
4 Institut Eur�ecom, 06190 Sophia Antipolis, France, jung@eurecom.fr

5 Dept. of Computer Science, University of British Columbia, Canada, mrobilla@cs.ubc.ca
6 Wilhelm-Schickard-Institute for Comp. Sci., U. of T�ubingen, Germany,

specku@informatik.uni-tuebingen.de

1 Introduction

When di�erent aspects [4] are composed, one must ensure that the resulting

composition does not cause con
icts. This problem appeared to be central to

the work of the authors. The corresponding discussions that took place during

the workshop led to a categorization of con
icts relating to the composition of

aspects.

We thus present three general classes of con
icts associated with aspect com-

position, and consider possible remedies. The �rst kind of con
icts, discussed in

Sec. 2, is inherent, i.e., it is the kind of con
icts where a given combination

of aspects should be rejected by the translation system. Section 3 deals with

the situation where certain aspects should be combined but cannot|because

of accidentally con
icting characteristics of the implementation. Finally, as de-

scribed in Sec.4, aspect combinations may give rise to spurious con
icts, where

the combination is intended to work|and it would actually work at run-time|

but the type check fails. In these cases we may have to choose between loss of

reuse opportunities or loss of type-safety, or we must use a more powerful type

analysis.

Generally, name resolution plays an important role in the emergence and han-

dling of composition con
icts. The various aspect composition technologies nec-

essarily relax the conventional name resolution rules. The inclusion of an aspect

or a concern relies on a tolerant form of name matching that precludes detection

of overde�ned or underde�ned names. Current tools, such as Hyper/J [6] and

AspectJ [4], provide no mechanisms to prevent or require the inclusion of speci�c

aspects or enhancements. This issue must be addressed in order to handle the

technical details of our challenge problems.

2 Inherent Con
icts

Assume that we have a set of aspects available, such that many combinations

of them are appropriate but others should be avoided. The following example

demonstrates this. In this example, aspects are used to separate distribution

related code (CORBA code) from problem-domain related code. This reduces

the complexity and improves the reusability of the code.

Aspect Weaver

woven Server Code

import org.omg.CORBA.*;

aspect ServerComm {
 static advice void main(String args[]) & Server {
 after {
 java.lang.Object sync = new java.lang.Object();
 synchronized(sync){
 sync.wait();
 }
 }
}

Aspect
ServerComm

import App.*;

class Servant extends _Interface_NameImplBase {
 public String get() {
 return "\n A String \n";
 }
}

public class Server {
 static Servant ref;
 public static void main(String args[]) {
 ref = new Servant();
 }
}

Server
Code

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

aspect ServerName {
 static advice void main(String args[]) & Server {
 after {
 ORB orb = ORB.init(args, null);
 orb.connect(ref);
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService");
 NamingContext ncRef = NamingContextHelper.narrow(objRef);
 NameComponent nc = new NameComponent("Name", " ");
 NameComponent path[] = {nc};
 ncRef.rebind(path, ref);
 }
 }
}

Aspect
ServerName

Aspect
ServerString

import java.io.*;
import org.omg.CORBA.*;

aspect ServerString {
 static advice void main(String args[]) & Server {
 after {
 ORB orb = ORB.init(args, null);
 orb.connect(ref);
 String str = orb.object_to_string(ref);
 String filename = System.getProperty("user.home")+
 System.getProperty("file.separator")+"IOR";
 FileOutputStream fos = new FileOutputStream(filename);
 System.out.println(filename);
 PrintStream ps = new PrintStream(fos);
 ps.print(str);
 ps.close();
 }
 }
}

Fig. 1. CORBA server example: use exactly one of ServerName, ServerString

Figure 1 shows a simpli�ed version of the example. Details may be found

in [5]. In the example, clients will send requests to a server and this server will re-

spond with a string. The implementation consists of four units|the Server Code,

and the aspects ServerName, ServerString, and ServerComm. The Server Code

implements the server which manages client requests. The aspects encapsulate

all CORBA-related code.

To use a service, the client has to obtain an initial reference to the server.

This can be done either via a name server or via a disk �le, but only one of

these methods can be chosen. ServerName encapsulates the name server based

solution, while ServerString realizes the �le based solution. As a result, we

must apply exactly one of these aspects.

ServerName and ServerString could possibly both be applied in the same

server without compile-time errors, but the result would be a server with incor-

rect behavior. The con
ict is inherent, and the correct response would be for

the composition mechanism to reject the combination. To handle this, it should

be possible to write speci�cations of aspect compatibility, which would then be

checked at composition-time. Hyper/J [6] could easily be extended to express

mutual exclusion by putting the two aspects in the same dimension and specify-

ing that only one coordinate can be selected from that dimension. An automatic

detection of all semantic con
icts would of course be undecidable, so we must

support manual annotations expressing the combination constraints.

3 Accidental Con
icts

Sometimes it is intended to be possible to compose a certain set of aspects, but

the composition still fails for accidental reasons. In these cases the desired course

of action is not just to detect and reject the composition|even though detection

of the problem is still the �rst step. The con
ict should be resolved by somehow

adjusting the aspects or their composition. This will become a more and more

common and serious problem when aspects get to be reused in di�erent contexts,

and aspects written by di�erent people get to be used in the same context.

Let us consider an example of such a con
ict, presented in detail in [2]. In

the example, the core program contains a bank Account class, and there are two

aspects Event and Transaction providing extra features to the Account class.

The Event aspect adds event handling to Account, so an Account will trans-

mit events on certain channels whenever a signi�cant transition occurs in the

state of the Account. Other objects may then listen on those channels, thus being

noti�ed about the development. The Transaction aspect makes it possible for

the Account to support transaction semantics via the operations begin, commit,

and rollback.

When both aspects are used together, a semantic con
ict arises: Imagine

that a client performs a deposit operation on an Account object, and this

operation is terminated by a rollback. Now, the Event aspect might have caused

broadcasting of events to unknown listeners during the execution of deposit.

The rollback will leave the Account itself in the correct state (as if nothing

happened), but the event listeners will have the impression that the deposit

actually took place|events during the aborted operation cannot be retracted.

In order to handle this composition of aspects, it should be possible to de-

lay the actual event broadcasting until the deposit method �nishes and either

commit or rollback is executed|the events would then be released in the for-

mer case and suppressed in the latter case. However, the problem must �rst be

detected, and the resolution is not just a syntactic composition of the aspects.

One possible solution would be to use composition �lters [1] to intercept all

the event transmissions and store the events until the end of the method|but

even then it would not be simple to make the two aspects work together seam-

lessly. Another approach, using an extended Hyper/J, would be to require that

the Event aspect must provide certain transaction related services, thus making

it possible for the Transaction aspect to integrate the Event aspect into the

transactional environment.

4 Spurious Con
icts

Until now we have discussed actual con
icts, handled by rejecting the program

or resolving the con
ict. In this section we discuss the opposite situation, where

the composition mechanism reports a con
ict even though there is really no

con
ict.

To illustrate the point we look at an analogous situation. C++ was once imple-

mented by means of a source-to-source compiler called Cfront. Cfront translated

C++ code to C code, which was then compiled by an ordinary C compiler. Cfront

performed a full static analysis of the C++ program, and it was considered a bug

in Cfront if the back-end C compiler ever reported an error.

Now consider how this would have worked if Cfront had not done any static

analysis, but instead relied on the C compiler to indirectly check the C++ pro-

gram by checking the translated C code. Consider the following simple program:

class Point f...g;
class ColorPoint: public Point f...g;
int main(...) f Point * pp = new ColorPoint(); ... g

In this example, the pointer pp has type Point and it will point to an instance

of ColorPoint. This is just ordinary subtype polymorphism, but the point is

that there is no support for polymorphism in C, so there would have to be an

unsafe type cast in the translated C code.

In other words, if C++ type checking is left to a C compiler, subtype poly-

morphic pointer assignments become indistinguishable from arbitrary, unsafe

pointer assignments. We would have only two options: prohibiting subtype poly-

morphism and thereby losing reuse opportunities (and much more than that),

or accepting loss of type safety.

The same situation arises with aspect composition mechanisms based on

textual transformations: the generated code sometimes seems to be unsafe even

though it is type safe, because the type analysis in the target language, e.g.

Java, is not su�ciently powerful to capture the concepts expressed in the aspect

language.

An example of this is given in Sec. 4 of [3]. An outline of this example

is as follows: There is a family of classes which is used to build expressions: an

abstract class Expression and concrete subclasses Number and Plus. Along with

this family comes a family of visitors: abstract Visitor and concrete Evaluate

and Show. The visitors are used as speci�ed in the visitor design pattern and

they make it possible to evaluate and print a given expression.

Now the con
ict arises if a system contains more than one instance of these

families1 and they should be used in a polymorphic manner, i.e., if there is a need

to be able to visit di�erent kinds of expressions polymorphically. The problem

is that the di�erent families of classes will either be unrelated according to the

type system, or they will be indistinguishable. This means that polymorphic

code will either be rejected|and this is the spurious con
ict that this section is

all about|or we will have to give up type safety. The solution to this problem

is to use a more expressive type analysis, such as that in [3]|i.e., the solution

is to treat the language with aspects as a language in its own right, and then

perform full static analysis at that level.

References

1. Aksit, M., and Tekinerdogan, B. Aspect-oriented Programming Using Composition

Filters. In Demeyer, S. and Bosch, J. (Eds) Object-Oriented Technology, ECOOP'98

Workshop Reader. Springer-Verlag, 1998.

1 Current aspect systems do not allow one program to contain more than one aspec-

tualization of any given class, but it would be a natural development to make this
possible.

2. Laurent Bussard. Towards a Pragmatic Composition Model of CORBA Services

Based on AspectJ Position paper accepted at the workshop on Aspects and Dimen-

sions of Concern at ECOOP'2000. Cannes, FRANCE, June 2000.

3. Erik Ernst Separation of Concerns and Then What? Position paper accepted at

the workshop on Aspects and Dimensions of Concern at ECOOP'2000. Cannes,
FRANCE, June 2000.

4. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin. Aspect-Oriented Programming. In Lecture Notes in Computer Science

LNCS 1241, ECOOP. Springer-Verlag, June 1997.

5. E. Pulverm�uller, H. Klaeren, and A. Speck. Aspects in Distributed Environments.

In Proceedings of the International Symposium on Generative and Component-Based

Software Engineering GCSE'99, Erfurt, Germany, September 1999.

6. Harold Ossher, Peri Tarr. Multi-dimensional Separation of Concerns in Hyperspace.

Position paper at ECOOP'99 Workshop on Aspect Oriented Programming. In Lec-

ture Notes in Computer Science LNCS 1743, ECOOP. Springer-Verlag, 1999.

