

Deep Gaussian Process Autoencoders for Novelty Detection

amadeus

Rémi Domingues¹, Pietro Michiardi¹, Jihane Zouaoui², Maurizio Filippone¹ 1 - EURECOM, Sophia Antipolis, France 2 - Amadeus, Sophia Antipolis, France

Deep Gaussian Process Autoencoders

- Unsupervised deep probabilistic model
- Suitable for any type of data, e.g. continuous, discrete, categorical
- Training only requires tensor products, no matrix factorization
- Inference through mini-batch based stochastic variational inference
- Composition of functions: $\mathbf{f}(\mathbf{x}) = (\mathbf{h}^{(N_{\rm h}-1)} (\boldsymbol{\theta}^{(N_{\rm h}-1)}) \circ \ldots \circ \mathbf{h}^{(0)} (\boldsymbol{\theta}^{(0)})) (\mathbf{x})$

Experimental setup and results

- ► Novelty detection performance: DGP-AE shows the best novelty detection abilities.
- Combined likelihoods increase the performance on mixed-type features.

	DGP-AE	DGP-AE	DGP-AE	DGP-AE	VAE-DGP-2	AE-1	AE-5	VAE-1	VAE-2	NADE-2	RKDE	IFOREST
	G - 1	G - 2	GS - 1	GS - 2								
MAMMOGRAPHY	0.222	0.183	0.222	0.183	0.221	0.118	0.075	0.119	0.148	0.193	0.231	0.244
MAGIC-GAMMA-SUB	0.260	0.340	0.260	0.340	0.235	0.253	0.125	0.230	0.305	0.398	0.402	0.290
WINE-QUALITY	0.224	0.203	0.224	0.203	0.075	0.106	0.042	0.064	0.124	0.102	0.051	0.059
MUSHROOM-SUB	0.811	0.677	0.940	0.892	0.636	0.725	0.331	0.758	0.479	0.596	0.839	0.546
CAR	0.050	0.061	0.043	0.067	0.045	0.044	0.032	0.071	0.050	0.030	0.034	0.041
GERMAN-SUB	0.066	0.077	0.106	0.098	0.113	0.065	0.103	0.104	0.062	0.118	0.109	0.079
PNR	0.190	0.172	0.190	0.172	0.201	0.059	0.107	0.100	0.106	0.006	0.146	0.124
TRANSACTIONS	0.756	0.752	0.810	0.835	0.509	0.563	0.510	0.532	0.760	0.373	0.585	0.564
SHARED-ACCESS	0.692	0.738	0.692	0.738	0.668	0.546	0.766	0.471	0.527	0.239	0.783	0.746
PAYMENT-SUB	0.173	0.173	0.168	0.168	0.137	0.157	0.129	0.175	0.143	0.101	0.180	0.142
AIRLINE	0.081	0.079	0.081	0.079	0.060	0.063	0.059	0.068	0.074	0.064	-	0.069
AVERAGE	0.344	0.338	0.366	0.370	0.284	0.264	0.222	0.262	0.270	0.216	0.336	0.284

Table 1: Mean area under the precision-recall curve (MAP) per dataset and algorithm (5 runs). AIRLINE was excluded from the average.

► Inference requires calculating the marginal likelihood:

$$p(\boldsymbol{X}|\boldsymbol{\theta}) = \int p\left(\boldsymbol{X}|F^{(N_{\mathrm{L}})}, \boldsymbol{\theta}^{(N_{\mathrm{L}})}\right) \times p\left(F^{(N_{\mathrm{L}})}|F^{(N_{\mathrm{L}}-1)}, \boldsymbol{\theta}^{(N_{\mathrm{L}}-1)}\right) \times \dots \times p\left((F^{(1)}|F^{(N_{0})}, \boldsymbol{\theta}^{(0)}\right) dF^{(N_{\mathrm{L}})} \dots dF^{(1)}$$

DGP-AEs with Random Features

- GPs are single layered Neural Nets with an infinite number of hidden units
- ► Weight-space view of a GP:

 $F = \Phi W$

► The priors over the weights are:

 $p\left(W_{\cdot i}\right) = \mathcal{N}\left(\mathbf{0}, I\right)$

► The **RBF kernel** can be approximated using **trigonometric functions**

 $\Phi_{\text{RBF}} = \sqrt{\frac{\sigma^2}{N_{\text{RF}}}} \left[\cos\left(F\Omega\right), \sin\left(F\Omega\right) \right] \quad \text{with} \quad p\left(\Omega_{.j} | \boldsymbol{\theta}\right) = \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Lambda}^{-1}\right)$

allowing for scaling factors σ^2 and $\Lambda = \text{diag}(l_1^2, \ldots, l_d^2)$ for the kernel and the features (ARD);

▶ Network convergence: DGP-AE and variational autoencoders achieve the best likelihood.

Fig. 2: Evolution of the MAP and MLL over time for the selected networks. Both metrics are computed on testing data. The higher values, the better the results.

► Depth: Moderately deep networks provide a high capacity and a fast convergence.

► The first order **Arc-Cosine kernel** can be approximated using **Rectified Linear Units (ReLU)**

$$\Phi_{\text{ARC}} = \sqrt{\frac{2\sigma^2}{N_{\text{RF}}}} \max\left(\mathbf{0}, F\Omega\right) \quad \text{with} \quad p\left(\Omega_{j}|\boldsymbol{\theta}\right) = \mathcal{N}\left(\mathbf{0}, \Lambda^{-1}\right)$$

► DGP-AEs with RFs become DNNs with low-rank weight matrices

Fig. 1: Diagram of the proposed DGP autoencoder with random features (2 layers).

Stochastic Variational Inference

- Define $\Psi = (\Omega^{(0)}, \dots, \Omega^{(L)}, W^{(0)}, \dots, W^{(L)})$
- Lower bound on the marginal likelihood:

 $\log \left[p(\boldsymbol{X}|\boldsymbol{\theta}) \right] \ge \mathbb{E}_{q(\Psi)} \left(\log \left[p\left(\boldsymbol{X}|\Psi, \boldsymbol{\theta} \right) \right] \right) - \mathcal{D}_{\mathrm{KL}} \left[q(\Psi) \| p\left(\Psi\right) \right]$

where $q(\Psi)$ approximates $p(\Psi|X, \theta)$

Fig. 3: Evolution of the MAP and MLL over time on testing data for DGP-AE with an increasing number of layers. For networks with more than 2 layers, we feed forward the input to the encoding layers, and feed forward the latent variables to the decoding layers. We use 3 gps per layer and a length-scale of 1.

Dimensionality reduction: Meaningful low dimensional latent representations

Conclusions

- Contributions:
 - ✓ Novel deep probabilistic model for novelty detection
 - Competitive with state-of-the-art and DNN-based novelty detection methods
 - ✓ Good dimensionality reduction abilities

- Factorized approximate posterior: $q(\Psi) = \prod_{ijl} q\left(\Omega_{ij}^{(l)}\right) \prod_{ijl} q\left(W_{ij}^{(l)}\right)$
- with $q\left(W_{ij}^{(l)}\right) = \mathcal{N}\left(\mu_{ij}^{(l)}, (\sigma^2)_{ij}^{(l)}\right)$ and $q\left(\Omega_{ij}^{(l)}\right) = \mathcal{N}\left(m_{ij}^{(l)}, (s^2)_{ij}^{(l)}\right)$
- ► Assuming factorized likelihood, we can use **mini-batch** stochastic gradient optimization:

 $\mathbb{E}_{q(\Psi)}\left(\log\left[p(\boldsymbol{X}|\Psi,\boldsymbol{\theta})\right]\right) \approx \frac{n}{m} \sum_{\mathbf{k}\in\mathcal{I}_m} \mathbb{E}_{q(\Psi)}\left(\log\left[p(\mathbf{x}_{\mathbf{k}}|\Psi,\boldsymbol{\theta})\right]\right)$

• The expectation can be estimated using Monte Carlo sampling, with $\tilde{\Psi}_r \sim q(\Psi)$:

 $\mathbb{E}_{q(\Psi)}\left(\log\left[p(\boldsymbol{x}_{\mathsf{k}}|\Psi,\boldsymbol{\theta})\right]\right) \approx \frac{1}{N_{\mathrm{MC}}}\sum_{r=1}^{N_{\mathrm{MC}}}\log[p(\boldsymbol{x}_{\mathsf{k}}|\tilde{\Psi}_{r},\boldsymbol{\theta})]$

Predictive distribution

$$p(\mathbf{x}_*|\boldsymbol{X},\boldsymbol{\theta}) = \int p(\mathbf{x}_*|\Psi,\boldsymbol{\theta}) p(\Psi|\boldsymbol{X},\boldsymbol{\theta}) d\Psi \approx \int p(\mathbf{x}_*|\Psi,\boldsymbol{\theta}) q(\Psi) d\Psi \approx \frac{1}{N_{\mathrm{MC}}} \sum_{r=1}^{N_{\mathrm{MC}}} p(\mathbf{x}_*|\tilde{\Psi}_r,\boldsymbol{\theta})$$

- Can model mixed-types features
- ✓ Tractable, scalable and suitable for distributed and GPU computing
- ► Future work:
 - Model discrete event sequences with structured DGP-AE
 - Generative DGP-AE

References

- R. Domingues, P. Michiardi, J. Zouaoui, and M. Filippone. Deep Gaussian Process autoencoders for novelty detection. *Machine Learning*, Jun 2018.
- Cutajar, K., Bonilla, E. V., Michiardi, P., & Filippone, M. (2017). Random feature expansions for Deep Gaussian Processes. In *Proceedings of the 34th international conference on machine learning, volume 70 of proceedings of machine learning research* (ICML 2017).
- Domingues, R., Filippone, M., Michiardi, P., & Zouaoui, J. (2018). A comparative evaluation of outlier detection algorithms: Experiments and analyses. *Pattern Recognition*, 74, 406-421.
- Dai, Z., Damianou, A., Gonzàlez, J., & Lawrence, N. (2016). Variationally auto-encoded Deep Gaussian Processes. In Proceedings of the fourth international conference on learning representations (ICLR 2016).