Analysis of the Performance of a Distributed Simulator

Jacques Labetoulle, Didier Loisel and Alaa Dakroub

EURECOM
2229 Route des Crétes
BP 193
06904 Sophia Antipolis Cedex
France
{labetoul, loisel, dakroub} @eurecom.fr

Abstract

In a global project devoted to the realization of a
distributed network simulator, we have
investigated several ways to optimize the
performance of our tool. To allow the comparison
of different policies of management of the roll-
back process implied by the distribution of the
simulation, we have developed a specific
simulation tool (a simulator of the simulator). We
analyse here the structure of this simulator and
how we can exploit it to optimize the real
simulator.

The Network Simulator

The proposed study is part of a larger project in
which we intend to build a simulator to analyze
the behavior of a general corporate network [1].
Such a tool may be useful for many purposes :

- Besides the classical network management
process, it is of high importance that a network
operator may have the possibility to analyze the
behavior of his network under various scenarios.
As examples of these scenarios we can mention,
predicted future load, evolution of the structure
and dimensioning of the network and analysis of
abnormal situations. This kind of analysis can
only be made in a systematic way by using a
dedicated simulation tool.

- In an academic environment, teachers would
like to give their students a practical vision of
corporate networks. Classical laboratory
environments cannot provide such facilities. Only
a simulated tool can allow the observation and
demonstration of a global heterogeneous
network.

0-8186-6902-0/95 $4.00 © 1995 IEEE

13

- Network management in itself represents a new
challenge for network conceptors. The linking of
a network management technology with a
simulated tool may be of a great interest for the
conception, design help of new function
development for network management tools. In
fact, our project is larger than the realization of a
simulated tool. It is planned to interconnect the
simulation tool with a network management
environment (with an agent and a manager level)
with the aim to provide such facilities, but that is
not the objective of this paper and will be
described elsewhere.

This last aspect represents a difficult constraint
for the development of our simulation tool since it
implies that the simulator may run at a speed that
are not compatible with the network management
environment, thus near to the real time.
Everybody can imagine that it will be quite
difficult to satisfy such a constraint. So we have
decided to build the simulator in a distributed
environment to accelerate the process. Specialized
models has been studied and written, each of
which being dedicated to a given kind of network
element (voice, X25, Ethernet, token ring, ATM,
...), to provide the best possible performance.

The simulator is composed of a kernel and a set
of simulation modules. The kernel has been
designed to synchronize the different modules
while running the simulation. Before launching
the simulation, instances of the specialized
models are loaded in the modules, so that they
will represent the topology of the network to be
simulated. The affectation of models to modules
is made in such a way that the flows between
modules will be minimized. This process is very
critical for the ability of the simulator to reach its
objectives in term of simulation time. In a first

step, this process will be done manually (by
selection through a man-machine interface); an
automatic tool minimizing the flows between
modules will be studied later.

The Distributed Simulation

In parallel simulation, the processes of the model
interact by exchanging messages. When
designing a distributed simulation program there
are two main approaches for the sequencing of
these messages : a conservative and an optimistic
one [2].

- In the conservative approach, represented by
Chandy and Misra protocol [3] time progresses in
each module in a controlled way, such that an
event may never arrive out of sequence (i.e., the
current time of the module is larger than the date
of the event). This protocol suffers of dead locks
that may occur during the simulation. To resolve
this problem, null messages must be initiated in
order to advance the clock of the blocked
modules. However these null messages increase
the communication overhead.

- In the optimistic approach , represented by Time
Warp protocol [4] some risks are taken. Here, an
event may arrive out of sequence in a module. To
solve the problem it is necessary to abort the
simulation and to restart it at a given time point,
where we are sure to have a "correct" simulation.
In order to do this roll-back we must have saved
all the events, at least from this correct time point.
The CPU time necessary to "re-simulate” a
sequence of events affects the performance of the
simulator. Some other overheads are introduced
by the process of determing the correct time
points, by the transmission delays they imply and
by the fact some modules may stop running their
simulation while the other have reached the
synchrnization points. The benefits that we
acquire by calculating these times are to discard
all the data before this time in order to free the
memory space allocated and decreasing the CPU
overhead since we will have to "re-simulate”
shortest sequence. The challenge is to design
these synchronization points and the policy to
apply in an optimized manner.

The analysis of the literature in the area of
distributed simulation has shown that many
solutions has been proposed to optimize the
global performance of a distributed simulator. It's
accepted that Time Warp outperforms Chandy-
Misra in must cases [2]. Many studies have been

14

done to enhance Time Warp performance. Most
of the time, only some improvements of previous
methods are given, and the comparison of
performance is limited to the two implied
methods. For the purpose of optimizing our own
simulator, we have designed a simulation
program, in which the policy for time
management (and more explicitly the way to solve
the problem arising when a desynchronized event
occurs) can be parametrized. This tool can be
exploited to analyze different scenario, allowing
the optimization of the network simulator.

Description of the Simulation Tool

The program is composed, as the simulator itself,
of a kernel and a set of modules. The kernel is in
charge of implementing different possible policies
as mentionned in the previous section. A scheme
of the simulation model of a module is shown in
figure 1. The program is written using the
Modline [5] package, in its last version allowing
object oriented programming. Events in the
simulation are represented by objects, containing
all necessary information (date of creation,
execution times, routing, ...) to facilitate the
restart of the simulation at any predefined
synchronization point.

The main parameters used in the simulation tool
are the following:

- simulation time of an event (that may be
different for each moduie, depending on the type
of network being simulated),

- routing probabilities of events,

- network delays (time to send an event to a
module),

- delays introduced at the kernel level (time to
treat the policy procedure in case of roll-back,
time spend at the end of a simulation period, ...)

- simulation period (modules are requested to
simulate until a due date, so that they will be
synchronized at that date),

- the number of modules

The selector chooses the soonest event to be
served amongst 4 sets :

- the next generated new event,

- the set of "event replay"”, filled after having
restarted the simulation,

- the set of events being arrived from other
modules (external arrivals)

- the target date (used to synchronize all
modules).

This selection takes place as far as the target date
(time of synchronization) is not reached. If it is
the case, the module stops its simulation, informs
the kernel and waits until a new target time is sent
by the kernel. The selector then send the selected
event to the "server” where it will be processed.
The time sprent in the server is determined once
for each event, at the generation of the event, and
is memorized in the event itself as an attribute.

At the end of the process in the server, the event
is systematically copied in the "event memory
queue", for eventually being re-processed if
necessary. An option in the programm allows to
define intermediate time points, so that the "event
memory queue” will be composed of a set of
queues, each one dealing with a given time sub-
interval. When using this possibility, the total
number of events to replay in case of a roll-back
procedure can be smaller (limited to the time
periods where the problem took place).

Depending upon its own routing information the
event, after update of its current date, can be sent
to one another module. When arriving in this new
module, its date is compared to the current date of
the new module. If the event arrives too late from
the point of view of the new module, a special
procedure is launched (contained in the Kernel
process), in which is defined the policy of the
roll-back process. This is the only procedure to
be rewritten for testing a new policy. In that case,
a message is sent to all the modules asking them
to stop the simulation.

The roll-back procedure will take events from the
"event memory queue" and fill the "event replay”
queue before restarting the simulation at the right
time. The event that caused the problem is
ememorized in the "External Event" queue of the
new module (in advance in that case) so that it
will be treated at the right moment the second
time.

Each module is authorized to process its
simulation until a predefined target date. When all
the modules have reached this date (eventually
after one or several roll-back processes) the
kernel calculates the statistics, empties all the
"event replay” and "event memory" queues, gives
the new target date and restarts all the modules.

Due to the fact that we are simulating a simulator,
we are obliged to deal with two time scales : that
of the real simulator (the time it takes to treat the

15

events) and that of the events themselves. That
means that each event contains two time
attributes, one for each scale. When the event is
sent to a module, the time comparison refers to
date of the event being processed in the new
module compared to its own date.

Event replay
to other
modules

Selector Server

Copy ouﬁ

External
arrivals

Event memory

Figure 1

Result Exploitation

We have intensively exploited the simulation tool
to get a better idea on the ideal way to implement
our network simulator. Numerical results will be
given during the conference, since they require a
large place. It appears that the optimization
process is quite sensible to the real parameters of
the network simulator : time to treat an event,
length of the period (determination of the target
dates), routing probabilities, ... It has been
verified that even with a very basic procedure
(just restarting all modules at the previous
synchronization point when a de-synchonized
event is detected), the advantage of distributing
the simulation is obvious. Depending on the
optimization of the time period (the sensitive

parameter for a fixed routing probability) we can
obtain an acceleration factor greater than 50 % for
3 modules in parallel. It is also shown that the
performance is improved only if the routing
probability of events is small (about 10 to 15% of
events transit in more than one module). The real
benefit obtained by distributing the simulation can
be determined by using realistic numerical values

It seems clear that the distribution of the
simulation accelerates by an interesting factor the
performance of the simulation. The results show
that the roll-back policy is very sensitive and can
improve significantly the global performance of
the simulator. A better policy implies a better
performance, but it is difficult to evaluate (at the
point we are now) the overhead introduced by the
realization of this policy that may affect this
result. So we must be careful by identifying the
parameters of the network simulator. The
direction we have chosen is the following :

- we will carefully measure the performance of
the simulation modules (all the parameters
introduced in the simulation tool) and of the
kernel,

- we will identify the characteristics of the real
simulation (the number of events in each module,
routing probabilities, ...),

- we will then use the simulation tool, with the
measured parameters to deduce the optimization
of the network simulator,

- we will then experiment the network simulator
with this optimization to verify the validity of the
approach.

This process cannot be experimented until the
network simulator is operational (not before some
months from now).

Conclusion

With the realization of a simulator of our target
network simulator, we have shown that the
performance of a distributed simulation can be
significantly improved, by a careful selection of
parameters of the roll-back policy. Some
numerical results will be given during the
presentation; further results are required to really
optimize the network simulator, after having
measuring it and exploiting the results.

16

References

[1] A. Dakroub, J. Labetoulle, D. Loisel: An
Architecture for a Network Management
Simulator, 4th Open workshop on High Speed
networks, Brest, September 1994.

[2]Yi-Bing-Li, Understanding the Limits of
Optimistic and conservative Parallel Simulation,
Technical Report 90-08-02 University of
Washington 1990.

[3] Chandy, K.M. and Misra, J. Distributed
Simulation: A Case Study in Design and
Verification of Distributed Programs. IEEE
Transactions on Software Engineering, SE-
5(5):440-452, September 1979.

[4] Jefferson, D., Beckman, B. Wieland, F.,
Blume, L., Di Loreto, M., Hontalas, P.,
Laroche, P., Strudevant, K., Tupman, J.,
Warren, V., Vedel, J., Younger, H., and
Bellenot, S. Distributed Simulation and the Time
Warp Operating System. Proc. 11th ACM
Synposium On Operating Systems Principles,
pages 77-93, November 1987.

[5] MODLINE V 1.2, User's Guide, Simulog
S.A. 19%4.

