

Experimental evaluation of reciprocity calibration for distributed massive MIMO systems

<u>Florian Kaltenberger</u>, Raymond Knopp, Theoni Magaounaki Communication Theory Workshop, 28.5.2019, Selfoss, Iceland

Distributed Massive MIMO

Benefits

- Combines the benefits of massive MIMO (beamforming gain and spatial interference suppression) with small cells (higher probability of being closer to an antenna)
- Cell-free massive MIMO is the next step where even cell boarders disappear when all distributed antennas are connected to the same base band unit

Challenges

- Need phase coherence over a large number of BS
- Building such a system is expensive

State of the art

- Classical c-RAN using CPRI: all the RRUs need to be connected to the BBU, which provides sync
- Synchronization based on PTPv2 or White Rabbit
- Artemis pCell
- Ericsson radio stripes: serially connected radios

Our approach

- Inexpensive RRUs connected to a RAU
- RAU provides frequency synchronizations
- Fronthaul over standard switched Ethernet

Ericsson Radio Stripes

What is OpenAirInterface?

Open-source software-based implementation of 3GPP systems

- Including features from LTE-Advanced (Rel 10/11/12), LTE-Advanced-Pro (Rel 13/14), going on to 5G Rel (15/16/...)
- Spanning the full protocol stack of 3GPP standard
 - ☞ E-UTRAN (eNB, UE)
 - EPC (MME, S+P-GW, HSS)
- Realtime RF using off-the-shelf SDR platforms (ExpressMIMO2, USRP, LimeSDR, ...)

Makes it feasible to put a fully-compliant 4G eNodeB and EPC in a commodity x86-based computer (or data center)

Flexible fronthaul interfaces over standard Ethernet provide inexpensive way to implement C-RAN

Objectives

- Building a community of individual developers, academics and major industrials embracing open-source for 5G -> OAI software alliance
- Become a strong voice and maybe a game-changer in the 3GPP world
- Real impact from "the little guys" on 3GPP systems

3

Next Generation Fronthaul Interface Architecture

China Mobile

RRU: remote radio unit, RCC: radio cloud center

Remote Radio Unit

- Supports SISO 20 MHz
- Total cost: ~750\$
 - UPBoard (100\$)
 - USRPB200-mini (500\$ in quantities)
 - PA/LNA/Switch (100\$)
 - PoE+ module (50\$)

Physical Infrastructure

Eurecom C-RAN Deployment

-p7

Logical functional split options in OAI

- IF1: CU/DU interface also used in 3GPP 5G
- FAPI: PHY/MAC interface specified by small cell forum,
- nFAPI: networked FAPI, implementation (open-nFAPI) by CISCO
- IF4.5/IF5: similar to IEEE P1914.1 or O-RAN 7-2x

Three levels of synchronization

Time synchronization

- > Align frames at RRUs up to within 1-2 samples
- Achieved by over-the-air trigger-based synchronization using a "master-slave" protocol (similar to eNB-UE synchronization)

Frequency synchronization

- RRUs have to stay synchronized in time and phase
- Achieved by 10MHz reference signal

Phase synchronization

- Necessary for coherent transmission and precoding
- Achieved by reciprocity calibration

Frequency Synchronization Challenges

USRP B200 mini design flaws

PLL that generates the 40MHz reference for the RF chip (AD9464) is done digitally in the FPGA (to save space) and thus has a poor phase stability

> Makes it unsuitable for phase coherent applications

Modification 1:

- bypass the digital PLL and use a clock multiplier to generate the 40MHz reference
 - Unfortunately the component we selected has a too high phase noise, rendering the RRU useless

Modification 2:

Use a signal generator & splitter to provide the 40MHz reference

RECIPROCITY CALIBRATION FOR DISTRIBUTED MASSIVE MIMO

28/052019

Florian Kaltenberger

- p 11

Reciprocity Calibration

- Compensates asymmetric TX/RX paths as well as unknown phase offsets between RRUs
- Allows to obtain DL Channel State Information based on UL channel estimates in TDD systems
- Many works on calibration for distributed massive MIMO
 - Argos [Rogalin 2014], Avalanche [Papadoupoulos 2014], [Vieira 2017]
- We recently developed a framework for reciprocity calibration generalizing all these methods [1]
 - Fast calibration with better MSE than Avalanche
 - Allows for distributed non-coherent accumulation

[1] Jiang, X.; Decunringe, A.; Gopala, K.; Kaltenberger, F.; Guillaud, M.; Slock, D. & Deneire, L., "A Framework for Over-the-air Reciprocity Calibration for TDD Massive MIMO Systems," *IEEE Trans. on Wireless Communications,* July 2018

Reciprocity Calibration Basics

$$\mathbf{H}_{A \to B} = \underbrace{\mathbf{R}_{B} \mathbf{T}_{B}^{-T}}_{\mathbf{F}_{B}^{-T}} \mathbf{H}_{B \to A}^{T} \underbrace{\mathbf{R}_{A}^{-T} \mathbf{T}_{A}}_{\mathbf{F}_{A}}.$$
 (1)

- Calibration phase:
 - Collect set of measurements
 - > Estimate F_A and F_B (can safely be assumed diagonal)

Operation phase:

- Estimate UL channel
- Compute DL channel based on (1)
- Precoding/beamforming

- p 13

Framework for Reciprocity Calibration

- Partition RRUs in groups
- Exchange pilots between groups

$$\left(\begin{array}{c} \mathbf{Y}_{i \rightarrow j} = \mathbf{R}_{j} \mathbf{C}_{i \rightarrow j} \mathbf{T}_{i} \mathbf{P}_{i} + \mathbf{N}_{i \rightarrow j}; \\ \mathbf{Y}_{j \rightarrow i} = \mathbf{R}_{i} \mathbf{C}_{j \rightarrow i} \mathbf{T}_{j} \mathbf{P}_{j} + \mathbf{N}_{j \rightarrow i}. \end{array} \right.$$

$$\mathsf{P}_i^T \mathsf{F}_i^T \mathsf{Y}_{j \to i} - \mathsf{Y}_{i \to j}^T \mathsf{F}_j \mathsf{P}_j = \widetilde{\mathsf{N}}_{ij}.$$

$$(\mathbf{Y}_{j \to i}^{T} * \mathbf{P}_{i}^{T})\mathbf{f}_{i} - (\mathbf{P}_{j}^{T} * \mathbf{Y}_{i \to j}^{T})\mathbf{f}_{j} = \widetilde{\mathbf{n}}_{ij},$$

 $\mathbf{F}_i = \mathbf{R}_i^{-T} \mathbf{T}_i \text{ and } \mathbf{F}_j = \mathbf{R}_j^{-T} \mathbf{T}_j \qquad \mathbf{F}_i = \text{diag}\{\mathbf{f}_i\}$

Estimation of Calibration Matrix

• Collect all measurements in $\mathcal{Y}(P)f = \tilde{n}$,

$$\mathcal{Y}(\mathbf{P}) = \underbrace{\begin{bmatrix} (\mathbf{Y}_{2 \to 1}^{T} * \mathbf{P}_{1}^{T}) & -(\mathbf{P}_{2}^{T} * \mathbf{Y}_{1 \to 2}^{T}) & 0 & \dots \\ (\mathbf{Y}_{3 \to 1}^{T} * \mathbf{P}_{1}^{T}) & 0 & -(\mathbf{P}_{3}^{T} * \mathbf{Y}_{1 \to 3}^{T}) & \dots \\ 0 & (\mathbf{Y}_{3 \to 2}^{T} * \mathbf{P}_{2}^{T}) & -(\mathbf{P}_{3}^{T} * \mathbf{Y}_{2 \to 3}^{T}) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}}_{(\sum_{i=2}^{G} \sum_{i=1}^{j-1} L_{i}L_{j}) \times M}$$

Solve least squares problem

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} \| \boldsymbol{\mathcal{Y}}(\mathbf{P}) \, \mathbf{f} \|^2$$

Different solutions based on constraints on f (to avoid trivial solution f=0)

Existing Calibration methods

- Argos [Argos, 2012]: Bidirectional transmission between the reference antenna and the other antennas;
- Method in [Rog, 2014]: Perform bi-directional transmission between each pair of antenna elements;
- Avalanche [Avalanche, 2014]: Use calibrated antenna array to calibrate uncalibrated array.

Calibration methods	Number of channel uses				
Argos	М				
Rogalin	М				
Avalanche	$\lceil \sqrt{2M - \frac{7}{4}} + \frac{1}{2} \rceil$				
Optimal antenna grouping	$\left\lceil \sqrt{2M - \frac{7}{4}} + \frac{1}{2} \right\rceil$				

- p 16

Better Fast Calibration methods

Scheme	Antennas transmitting per channel use. $M = 64$											
Avalanche	1	1	2	3	4	5	6	7	8	9	10	8
FC-I	1	1	2	3	4	5	6	7	8	9	10	8
FC- II	5	5	5	5	5	5	5	5	6	6	6	6

Calibration for distributed MIMO

- Optimal grouping depends on scenario and antenna geometry
- Not all antennas might hear each other

> Not an issue as long as Y(P) has full rank, i.e., if

$$\sum_{\leq i < j \leq G} L_j L_i \geq M - 1$$

 Different rows in Y(P) can also be collected in non-coherent time slots

> At the cost of the number of channel uses

1

Option 1: Long Channel Coherence Time

 One node broadcasts at a time, all others listen (Argos)

Option 2: Short Channel Coherence Time

Multiple bi-directional measurements

- p 20

Integration into LTE

- Calibration can be integrated in live operation using dynamic configuration of special subframe
- Example: 3 RRUs

Some preliminary results

28/052019

Florian Kaltenberger

Conclusions

- Building a distributed MIMO system is hard
- Synchronization on 3 levels: time, frequency, phase
- New reciprocity calibration scheme
 - Flexible grouping of RRUs to account for
 Channel coherence time
 Topology (RRU connectivity)
 MSE

Future work

- Validation of reciprocity calibration using real UEs
- Play with different groupings and calibration algorithms

THANK YOU!

www.spawc2019.org

28/052019

Florian Kaltenberger