
A Survey of Tools for
Analyzing Ethereum Smart Contracts

Monika di Angelo
Eurecom, Sophia Antipolis, France

Technische Universität Wien, Vienna, Austria

monika.diangelo@tuwien.ac.at

Gernot Salzer
Eurecom, Sophia Antipolis, France

Technische Universität Wien, Vienna, Austria

gernot.salzer@tuwien.ac.at

Abstract—Smart contracts are at the heart of many decen-
tralized applications, encapsulating core parts of the business
logic. They handle the exchange of valuable assets like
crypto-currencies or tokens in a transparent, decentralized
manner. Being computer programs, they are also prone to
programming errors, which have already lead to spectacular
losses. Therefore, methods and tools have emerged to support
the development of secure smart contracts and to aid the
analysis of deployed ones.

Assessing the quality of such tools turns out to be difficult.
There are academic tools, tools developed by companies, and
community tools in open repositories, but no comprehensive
survey that may serve as a guide. Most discussions of
related work in research papers are not helpful either, as
they concentrate on methods rather than tools, base their
review on publications about the tools rather than the tools
themselves, or disregard tools outside of academia.

Our survey aims at filling this gap by considering tools
regardless of their provenance and by installing and testing
them. It is meant as a guide for those who intend to
analyze already deployed code, want to develop secure smart
contracts, or plan to teach a related subject. We investigate
27 tools for analyzing Ethereum smart contracts regarding
availability, maturity level, methods employed, and detection
of security issues.

Index Terms—analysis, comparison, Ethereum, smart con-
tracts, survey, tools

I. INTRODUCTION

A decentralized application (dApp) typically consists of
a front-end that interacts with the environment and a back-
end that stores critical data via distributed ledger technol-
ogy, e.g. on a blockchain. It may even outsource parts
of the business logic to a so-called smart contract. Our
survey concentrates on Ethereum as the most prominent
platform for smart contracts.

It is imperative for smart contracts to function properly
since bugs may lead, and indeed have lead, to tremendous
losses and disruptions. Bugs even occur in contracts by
experienced programmers, which underlines the fact that
smart contract programming is tricky. Therefore, numerous
methods and tools have emerged to support the develop-
ment of secure smart contacts and to aid the analysis of
already deployed ones.

Suppose you want to assess the state of the art in order
to identify tools that you can actually employ, say, in a
dApp project. A natural place to start is research papers

with their discussions of related work. As it turns out,
however, these comparisons have several shortcomings.

a) Academic papers concentrate on methods rather than
tools. Tools of varying maturity, size, availability, and util-
ity are presented on equal footing. Largely undocumented
proof-of-concept implementations receive the same atten-
tion as well documented, highly functional tools.

b) Reviews often rely on publications by the authors of a
tool, instead of basing them on the tool itself. As an anec-
dote, at least two conference papers, three master theses,
some blogs and online paper collections report the tool
DappGuard. Checking the source [1] and the repository
on Github, it turns out to be the seminar assignment of
three students who had the task of envisioning a security
tool without implementing it, and indeed, it does not exist.

c) Academic surveys tend to disregard tools outside
academia. As an example, one otherwise fine paper dis-
misses five tools by stating that “Other static analysis tools
are available online (e.g. [. . . ]), but they are not accom-
panied by any academic paper”, even though information
on the tools is available in other forms.

The present paper fills the gap by considering tools for
smart contract analysis regardless of their provenance and
by concentrating on the tools themselves. It is meant as a
guide for those who intend to analyze already deployed
code, want to develop secure smart contracts, or plan
to teach a related subject. We investigate the availability
of the tools as well as their functionality. Moreover, we
compare their characteristics in a compact and structured
manner.

Methodology. We compiled a comprehensive list of tools
for analyzing smart contracts by checking the publications
of the main conferences in the field and by following
the references therein. Moreover, we searched the inter-
net for additional tools and scanned Github for relevant
projects. We installed all publicly available tools locally
and checked their functionality by running them on some
examples. We also looked at the source code for more
information, such as code reuse and dependencies. We
compared the tools with respect to several criteria, includ-
ing methods, project size, and development dynamics.



Limitations. At the time of writing (October 2018) the
compilation of tools is comprehensive. However, as this is
a lively field, updates and new tools will keep turning up.
Moreover, we do not evaluate how well the tools achieve
their goals.

Roadmap. Section II briefly explains the methods em-
ployed by the tools. Section III presents each tool indi-
vidually with its defining characteristics. Section IV com-
pares the tools with respect to various criteria. Section V
summarizes our conclusions.

II. METHODS EMPLOYED BY THE TOOLS

We briefly explain the fundamental methods and notions
mentioned in this survey, within the context of Ethereum
smart contracts.

Bytecode refers to the list of byte-size integers that serve
as instructions for the Ethereum Virtual Machine (EVM).

Source code refers to a program in a high-level program-
ming language, here Solidity.

Static analysis refers to a class of methods that examine
the source code or bytecode of a contract without execut-
ing it. Most methods listed below are static.

Dynamic analysis means to observe a contract while
executing (parts of) it in the original context.

Disassembling means to translate EVM bytecode into bet-
ter readable assembly language, where machine operations
and storage addresses are represented symbolically.

Decompilation is the process of transforming EVM byte-
code to a more compact representation on a higher abstrac-
tion level (like intermediate or Solidity code) to enhance
the readability of the code or to ease data flow analysis.

Basic block is a sequence of statements without branches.

Control flow graph (CFG) is a directed graph, where the
basic blocks of a program serve as the nodes. An arc
connects node A with node B if it is possible that block B
gets executed immediately after block A. The arc may be
labeled by the condition under which this path is chosen.

Dynamic CFG is similar to a CFG with the difference that
arcs indicate the actual control flow encountered during a
particular execution of the code.

Call graph is a directed graph, where the nodes are
functions. There is an arc from node A to node B if
function A calls function B.

Abstract Syntax Tree (AST) represents the syntactic struc-
ture of Solidity code as a tree. It occurs as an intermediate
product when compiling Solidity to bytecode. Often, it is
better suited for analyzing Solidity code.

Contextualization means the feedback about where in the
Solidity or bytecode an issue occurred, either by indicating
the line in the code or by identifying the affected function.

Execution trace is the sequence of instructions (possibly
including additional information) executed during a par-
ticular run of the code.

Code instrumentation means to add instructions to the
contract under analysis to monitor performance and to
check assertions.

Transformation from a stack- to a register-oriented view is
a particular decompilation technique that replaces stack-
oriented instructions of the EVM by instructions operating
on registers. Register-oriented view is not only easier to
understand but also helps in the analysis of the data flow.

Constraint solving means to determine the solvability
(a.k.a. satisfiability) of constraints and possibly to compute
a concrete solution. A constraint is a set of conditions
that variables have to satisfy. In our context, constraints
mostly arise from branching conditions in the code (which
are also used to label the arcs in CFGs). Depending on
the operations in the constraints, constraint solving can
be arbitrarily difficult. It is delegated to so-called SMT-
solvers like Z3.

Symbolic execution means to execute code using symbols
instead of concrete values for the variables. Operations
on these symbols lead to algebraic terms, and conditional
statements give rise to propositional formulas that char-
acterize the branches. A particular part of the code is
reachable if the conjunction of formulas on the path to this
part is satisfiable, which can be checked by SMT-solvers.

Finite state machines (FSMs) are abstract models of sys-
tems that can be in a finite number of states only. FSMs
are characterized by listing all states, by designating the
initial and final states, and by describing the actions that
will cause the machine to transition to another state.

Verification checks whether code meets the specification
and fulfills its intended purpose.

Formal methods are mathematical techniques for specify-
ing, developing, and verifying soft- and hardware.

Formal verification means verification by formal methods
with the aim of proving or disproving system properties
rigorously. As a prerequisite, all components referenced
by such a property as well as their behavior must have
been specified formally. E.g., to verify properties of smart
contracts on bytecode level formally, we need a formal
specification of the EVM and of the properties.

Model checking is a technique for automatically verifying
correctness properties of finite-state systems. It requires a
model of the system which is then checked against a given
specification.

Specifying the EVM means to define the behavior of the
EVM (its semantics) unambiguously. A formal specifica-
tion additionally requires that the language used to specify
the EVM is itself rigorously defined and does not admit
any ambiguities. Then, properties of programs running on
the EVM can be formally proven.

Horn logic is a restricted form of first-order logic where
all formulas (‘clauses’) are if-then rules. Though restricted,
Horn logic is still computationally universal, thus it can
perform the same computations as any computer.



DataLog is a restricted form of Horn logic that is no
longer computationally universal, but it allows for efficient
processing, e.g. with tools like Soufflé.
Abstract interpretation ignores certain instructions or cer-
tain effects of instructions while executing the bytecode
(abstracts them away). This can be done by translating
instructions to another formalism (like DataLog) and then
exploring all possible executions.

III. TOOLS FOR ANALYZING SMART CONTRACTS

In this section, we present tools for analyzing smart
contracts in two groups according to their availability:

• Publicly available under an open source license
• Not publicly available, neither as source nor as binary

A. Tools Publicly Available

The first reference after the tool name points to the
repository from where the tool can be downloaded.
ContractLarva [2], [3] performs runtime verification for
smart contracts written in Solidity. For a given smart
contract the user specifies its properties declaratively using
dynamic event automata. With the specification and the
contract as inputs, the tool generates a new Solidity
contract that acts like the original one, but additionally
contains code to check the runtime behaviour against the
specification and to take compensatory actions in case
of a violation. This command-line tool is available on
Github under an Apache-2.0 license since December 2017.
It requires Haskell and comes with a user manual.
E-EVM [4], [5] simulates the EVM visually. Starting
from the disassembled bytecode, the tool executes the
code symbolically, constructs a CFG, and displays the
latter together with stack information. The back end of
the tool consists of two almost identical Python scripts
that are available on Github under an MIT license since
January 2018. The front end (described in the paper) is
not provided.
Erays [6], [7] is a tool for reverse engineering Solid-
ity smart contracts. It disassembles the input bytecode,
transforms it from a stack- to a register-oriented view,
replaces chains of assignments by expressions, and an-
notates known function selectors (4 byte hashes) with
the original function headers. The tool generates one pdf
file per functional unit with its pseudo-code. It can be
used to reverse-engineer contracts into a representation
that is indeed easier to understand, which has also been
demonstrated by the authors with several use cases. The
Python scripts are operated from the command-line and are
available on Github under an MIT license since August
2018. The tool depends on GraphViz for generating the
pdf files. The documentation is minimal but sufficient.
EthIR [8], [9] transforms bytecode into an intermediate-
level language suited as input to general purpose static
analyzers. It is a modified version of the tool Oyente
(see below) that disassembles the given bytecode and
constructs a CFG. The basic blocks are transformed from

a stack- to a register-oriented view. The control flow itself
is represented as guarded rules. This rule-based represen-
tation can then be fed into SACO, a general purpose static
analyzer by the same group, to deduce e.g. upper bounds
for loops. This command-line tool is available on Github
under a GPL-3.0 license since March 2018. It is written
in Python and depends on particular versions of the SMT
solver Z3, the Solidity compiler, and Go-Ethereum.
EtherTrust [10], [11] translates bytecode to Horn clauses
that over-approximate its behaviour. Using the SMT solver
Z3, the tool then checks properties like ‘independence
from transaction environment’ and ‘single entrancy’. This
approach does not detect vulnerabilities, but provides
guarantees that the code is free of certain ones. EtherTrust
is a command-line tool written in Java and is available
under a GPL-3.0 license since May 2018 as version 0.0.1.
It is a proof-of-concept without documentation on how to
interpret its output.
FSolidM [12], [13], [14] allows the user to specify the
intended behaviour of a smart contract abstractly as a
finite-state machine and then to generate automatically
Solidity code implementing this behaviour. Plugins ad-
dress problems like reentrancy or provide patterns for
recurring functionality like access control. The correctness
of the finite-state machine can be verified by specifying
properties in temporal logic and proving them with the
model checker nuXmv. The generated code is assumed
to be correct by construction, but cannot be proven since
Solidity lacks a formal semantics. FSolidM is written in
JavaScript and available on Github under an MIT license
since September 2017. The graphical user interface is
realized with WebGME, a web-based generic modeling
environment (requires MongoDB). Due to its genericity,
the interface is a bit cumbersome; for a user manual see
the extended tool description on arXiv [15].
KEVM [16], [17], [18] uses the K framework to specify
the semantics of the EVM formally. The K framework,
developed since 2008 on Github, is a rewriting based
system for specifying the formal syntax and semantics of
programming languages. From this specification, the tool
is able to generate automatically a parser, an interpreter, a
model checker, and a deductive program verifier for EVM
bytecode. The interpreter passes the standard Ethereum
test suite. Moreover, the authors translate the specification
of ERC20 tokens to K and use the generated verifier
to analyze the bytecode of three implementations of this
token type. KEVM is written in literate programming style
as a mixture of markdown syntax and K specification
language. It is available on Github under a non-standard
open source license since October 2016.
MAIAN [19], [20] extends the approach of Oyente (see
below) by considering also attacks requiring multiple
transactions. It executes EVM bytecode symbolically and
checks for execution traces indicating that the contract
can be self-destructed or drained of Ether from arbitrary
addresses, or that it accepts Ether without the function-



ality of a payout. The SMT solver Z3 is used to prune
unreachable parts of the search space and to compute
transactions that exploit potential vulnerabilities. To dis-
card false positives, the contracts are dynamically analyzed
by deploying them on a private blockchain and attacking
them with the computed transactions. MAIAN is written in
Python and available on Github under an MIT license since
March 2018. It uses the Solidity compiler for compiling
source code to bytecode and Go-Ethereum for running
the private blockchain. Maian is basically a command-line
tool, but also provides a simple graphical user interface
that requires the graphics library Qt.
Manticore [21], [22] employs symbolic execution to find
unique computation paths in EVM (and ELF) binaries.
With the help of the SMT solver Z3, it finds inputs that
will trigger these computations paths. It records the corre-
sponding execution traces. Regarding the EVM, Manticore
compiles Solidity code to bytecode for its analysis, checks
the traces for vulnerabilities like reentrancy and reachable
selfdestruct operations, and reports them in the context
of the source code. Information on the methods and their
limitations is scarce. The tool is developed and maintained
by the company Trail of Bits, and available on Github
under an AGPL-3.0 license since February 2017. It can
be used from the command-line or via a Python API.
Mythril [23], [24] is a command-line tool in Python
for analyzing smart contracts interactively. It executes
EVM bytecode symbolically and visualizes the CFG, with
the nodes containing disassembled code and the edges
being labeled by path formulas. The SMT solver Z3 is
used to prune the search space and to compute concrete
values for exploiting one potential vulnerability. Checked
vulnerabilities are detailed in the online documentation.
Mythril is developed and maintained by the company
ConsenSys, and available on Github under an MIT license
since September 2017.
Osiris [25], [26] extends Oyente to detect integer bugs
in Solidity smart contracts. It works at bytecode level
and constructs a CFG. During symbolic execution, the
SMT solver Z3 is queried to determine feasible paths. The
tool uses taint analysis (tracking the propagation of data
across the control flow of code) to distinguish between
benign and malicious overflows. This command-line tool is
written in Python and available on Github without explicit
license since September 2018.
Oyente [27], [28] is a veteran in the field and has served
as starting point for several other projects. It has been
regularly used as a reference point. It executes EVM
bytecode symbolically and checks for execution traces
where transaction order can influence Ether flow, where
the result of a computation depends on the timestamp of
the block, where exceptions raised by calls are not properly
caught, or where a contract can be re-entered multiple
times. Unreachable parts of the search space are pruned
using the SMT solver Z3. Oyente needs the Solidity com-
piler for obtaining bytecode, and the disassembler from

Go-Ethereum for displaying opcodes in symbolic form.
Oyente is written in Python and available on Github under
a GPL-3.0 license since January 2016. It is essentially a
command-line tool, but offers also a web interface.
Porosity [29], [30] disassembles EVM bytecode, generates
a CFG (requires GraphViz for visualization), and de-
compiles the bytecode into better readable pseudo source
code. SSTORE instructions after a CALL are flagged as
reentrance vulnerability. This command-line tool is written
in C++ and available on Github without explicit license
since February 2017, but is no longer maintained.
Rattle [31] improves the readability of EVM bytecode. It
reuses Manticore’s disassembler, recovers the CFG, and
transforms instructions from a stack- to a register-oriented
view. The output is presented graphically using GraphViz.
This command-line tool is written in Python3, with little
documentation. It is developed and maintained by the
company Trail of Bits, and available on Github under an
AGPL-3.0 license since August 2018.
Remix-IDE [32], [33] is an IDE for developing Solidity
contracts in a web browser. During compilation it reports
security issues, indicating where in the code they occurred.
The warnings include implicit visibility, unchecked return
values, implicit typing, deprecated constructs, and address
checksum. The static analysis is only lightweight and
includes some control flow analysis. This tool is available
on Github under an MIT license since April 2016, with
ample documentation (not for the analyzer, though).
Securify [34], [35] takes EVM bytecode and security prop-
erties as inputs. The tool decompiles the stack-oriented
bytecode into an assignment-based form and represents
the code as DataLog facts. Then it derives further facts
that describe the control and data flow in an abstract
form. A Security property consists of compliance and
violation patterns over-approximating both, satisfaction
and non-satisfaction of this property. The patterns are
coded as DataLog rules that can be checked against the
facts using Soufflé. This approach guarantees that if a
pattern is detected, the code definitely possesses/violates
the corresponding security property. The tool is writ-
ten in Java and available on Github under an Apache-
2.0 license since September 2018. Additionally, a closed
source version can be accessed through the website of the
company ChainSecurity [36]. There is no indication as to
the difference between the two versions.
SmartCheck [37], [38] flags potential vulnerabilities in
Solidity contracts by searching for specific syntactic pat-
terns in the source code. To this aim, it converts the
code into an XML syntax tree. The vulnerabilities are
specified as XQuery path expressions that are used to
search the patterns in the XML tree. The tool is written in
Java and comes in two versions: A command-line version
is available on Github under a GPL-3.0 license since
May 2017, accompanying the original academic paper.
The most recent version of the tool with about twice as
many patterns is closed source, and can be accessed via



the website of the company SmartCheck [39], which also
contains a list of the security issues.

Solgraph [40] visualizes the call flow in Solidity contracts
to support users in their analysis. It reads Solidity code and
produces a graph, with the nodes representing functions
and the directed edges representing function calls. The
colors of the nodes mark properties like ‘contains send
to external address’ or ‘payable’. This command-line tool
is written in JavaScript and is available on Github under an
ISC license since July 2016. It uses the Solidity compiler
for AST generation and GraphViz for displaying the graph.
Documentation is minimal but sufficient.

SolMet [41], [42] is a metric calculator for Solidity code.
It uses a parser to generate an AST, on which it com-
putes various software metrics like number of functions,
McCabe’s style complexity, and depth of nesting levels.
This command-line tool is written in Java and is available
on Github without license indication since February 2018.
Documentation is minimal.

Vandal [43], [44] disassembles and decompiles EVM
bytecode into a register-oriented intermediate representa-
tion and constructs a CFG. The CFG can be displayed as
an interactive HTML page, where clicking on a node of the
graph makes the corresponding code appear in a separate
box. The intermediate representation can be interpreted
abstractly by translating it to Horn clauses and feeding
these, together with the specification of vulnerabilities,
into the DataLog reasoner Soufflé. Vandal is a command-
line tool written in Python and is available on Github under
a BSD 3-Clause license since August 2016.

B. Tools Not Publicly Available

Here we present tools that have not been made available
to the pulic and therefore cannot be installed and tested.
Information is taken from publications only.

Ether?(s-gram) [45] is a tool for semantic-aware secu-
rity auditing of Solidity smart contracts by predicting
potential vulnerabilities. The authors employ “N-gram
language modeling and lightweight static semantic label-
ing, which can learn statistical regularities.” During the
learning phase, the tool Oyente was used to determine
the vulnerability status of the contracts in the corpus.
Ether? is intended to be used as a pre-filter to more
resource-consuming tools like ReGuard (see below). Only
evaluation data is publicly available [46].

Gasper [47] is a tool for automatically locating gascostly
patterns in bytecode. It relies on Oyente for constructing
the CFG and for symbolic execution, and searches for dead
code and loops containing expensive operations. The tool
has not been disclosed in any form.

ReGuard [48] is a tool by the company Chieftin Lab
for detecting reentrancy vulnerabilities. A web interface
allows the user to enter the contract either as Solidity or
as bytecode, which is translated to a C++ program via
an intermediate representation (AST for Solidity code,

CFG for bytecode). The tool runs the C++ program on
transactions randomly generated by a fuzzing engine and
checks the execution traces for reentrant function calls.
The tool has not been disclosed in any form.

SASC [49] is a tool by the company Fujitsu. It extends
Oyente by rules for additional risks. To present the vul-
nerabilities detected on bytecode level in the context of
the Solidity source code, SASC constructs a call graph
with information on events, modifiers, and variables, and
correlates it with the instructions on bytecode level. In
their publication from March 2018, the authors announce
that SASC will become available on Github ‘soon’; as of
October 2018, it is not yet available.

sCompile [50] takes the bytecode of a contract, constructs
a CFG, determines all computation paths involving any
flow of Ether, picks those that match patterns character-
sistic of certain vulnerabilities, ranks them heuristically
according to relevance, and finally applies symbolic exe-
cution (using the SMT-solver Z3), before presenting the
result to the user for manual inspection. The authors plan
to make the tool available online, but have not yet revealed
the link.

teEther [51] is a tool for automatically creating and
verifying exploits for smart contracts given as bytecode.
It concentrates on vulnerabilities that cause a payout to
arbitrary addresses. After reconstructing the CFG, teEther
generates critical paths and uses the SMT-solver Z3 to
prune the search space and to compute multi-transactional
exploits. To exclude false positives, the exploits are tested
on a private blockchain. According to the authors, the tool
will be made available on Github by April 2019.

Zeus [52] is a tool developed by IBM Research India.
It takes Solidity code and a so-called policy as inputs
and checks whether the code meets the safety property
expressed in the policy. The policy has to be specified
by the user. ZEUS makes extensive use of the LLVM
compiler infrastructure. Solidity code is translated to
LLVM bitcode, which subsequently is instrumented with
assertions corresponding to the policy. Then the LLVM
code is translated to constrained Horn clauses that are
checked with an SMT solver. Only analysis results are
publicly available [53], but not the tool itself.

C. Tools Not Considered

We did not include DappGuard and Dr. Y’s Ethereum
Contract Analyzer (github.com/pirapira/dry-analyzer). The
former does not exist (cf. section I), while the latter is
unfinished and has not been changed since July 2017.

IV. COMPARISON OF TOOLS

In this section, we compare the tools with regard to
the following aspects: First, we look at the methods that
all tools employ for their analyses. This is followed by
implementation details of the available tools. Next, we give
an overview of quantitative comparisons, either conducted
independently or by the authors of the tools. Finally, we



TABLE I
OVERVIEW OF ALL TOOLS INDICATING PURPOSE, CODE LEVEL, TYPE, PRE-PROCESSING, AND METHODS OF ANALYSIS

Purpose Level Type Code transformation Analysis method

Tool Se
cu

ri
ty

is
su

es

E
xp

lo
its

Fo
rm

al
gu

ar
an

te
es

B
ul

k
an

al
ys

is

B
yt

ec
od

e

So
lid

ity
co

de

St
at

ic
an

al
ys

is

D
yn

am
ic

an
al

ys
is

C
on

te
xt

ua
liz

at
io

n

D
is

as
se

m
bl

y

C
on

tr
ol

flo
w

gr
ap

h

C
al

l
gr

ap
h

A
ST

an
al

ys
is

D
ec

om
pi

la
tio

n

C
od

e
in

st
ru

m
en

ta
tio

n

Sy
m

bo
lic

ex
ec

ut
io

n

C
on

st
ra

in
t

so
lv

in
g

A
bs

tr
ac

t
in

te
rp

re
ta

tio
n

H
or

n
lo

gi
c

M
od

el
ch

ec
ki

ng

contractLarva 7 7 7 7 7 3 7 3 7 7 7 7 7 7 3 7 7 7 7 7
E-EVM 7 7 7 7 3 7 3 7 7 3 3 7 7 7 7 7 7 7 7 7
Erays 7 7 7 7 3 7 3 7 7 3 3 7 7 3 7 7 7 7 7 7

EthIR 7 7 7 7 3+ 7 3 7 7 3 3 7 7 3 7 3 3 7 7 7
EtherTrust 7 7 3 3 3 7 3 7 7 7 7 7 7 7 7 7 3 3 3 7
FSolidM 7 7 7 7 form.spec 3 7 7 7 7 7 7 7 7 7 7 7 7 3

KEVM 7 7 3 7 3 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7
MAIAN 3 3+ 7 3 3+ 7 3 3 7 3 3 7 7 7 7 3 3 7 7 7
Manticore 3 3 7 7 3+ 7 3 7 3 3 7 7 7 7 7 3 3 7 7 7

Mythril 3 3 7 7 3+ 7 3 7 3 3 3 7 7 7 7 3 3 7 7 7
Osiris 3 7 7 3 3+ 7 3 7 3 3 3 7 7 7 7 3 3 7 7 7
Oyente 3 7 7 3 3+ 7 3 7 3 3 3 7 7 7 7 3 3 7 7 7

Porosity 3 7 7 7 3+ 7 3 7 7 3 3 7 7 3 7 7 7 7 7 7
Rattle 7 7 7 7 3 7 3 7 7 3 3 7 7 3 7 7 7 7 7 7
Remix-IDE 3 7 7 7 7 3 3 7 3 7 7 7 7 7 7 7 7 7 7 7

Securify* 3 7 3 3 3+ 7 3 7 3 3 7 7 7 3 7 7 7 3 3 7
SmartCheck* 3 7 7 7 7 3 3 7 3 7 7 7 3 7 7 7 7 7 7 7
Solgraph 3 7 7 7 7 3 3 7 3 7 7 3 3 7 7 7 7 7 7 7

SolMet 7 7 7 7 7 3 3 7 7 7 7 7 3 7 7 7 7 7 7 7
Vandal 3 7 7 3 3 7 3 7 7 3 3 7 7 3 7 3 7 3 3 7

Ether? 3 7 7 3 3+ 7 3 7 7 7 7 7 3 7 7 7 7 7 7 7
Gasper 3 7 7 3 3 7 3 7 7 3 3 7 7 7 7 3 3 7 7 7
ReGuard 3 7 7 3 3 3 7 3 3 7 3 7 3 7 7 7 7 7 7 7

SASC 3 7 7 3 7 3 3 7 3 3 3 3 3 7 7 3 3 7 7 7
sCompile 3 7 7 3 7 3 3 7 3 3 3 7 7 7 7 3 3 7 7 7
teEther 3 3+ 7 3 3 7 3 3 7 3 3 7 7 7 7 7 3 7 7 7

Zeus 3 7 3 3 7 3 3 7 7 7 7 7 3 7 7 7 3 7 3 7

LEGEND. Tool: * indicates that we consider the academic version instead of the enhanced company version of the tool, due to availability. Security
issues: detection of vulnerabilities and potential security problems. Exploit: generates exploits, with 3+indicating multi-transactional exploits. Formal
guarantees: proves that a contract has a certain property. Bulk analysis: suitable for the analysis of large sets of contracts. Level of code at which
analysis is performed; 3+ indicates analysis of bytecode including information from the corresponding Solidity code such as the ABI; ‘form.spec’
means formal specification, from which Solidity code is generated.

contrast the security issues that the tools address. The data
for this comparison was gathered in October 2018.

A. Purpose and Methods

Table I contrasts the tools regarding their purpose and
methods; for a brief explanation of the methods mentioned
therein see section II.

Purpose. Most tools concentrate on security issues, with
18 detecting the presence of vulnerabilities and four
(EtherTrust, KEVM, Securify, Zeus) proving their ab-
sence. Four tools (MAIAN, Manticore, Mythril, teEther)
are able to construct exploits, MAIAN and teEther even
such requiring multiple transactions.

Of the remaining tools, E-EVM, Erays, and Rattle
disassemble and decompile bytecode for human inspection
without automated analysis. ContractLarva adds code to

Solidity contracts to check their behavior at runtime, while
FSolidM generates Solidity code based on a formal spec-
ification by the user. EthIR transforms bytecode such that
it can serve as input to general static analyzers, whereas
SolMet computes code metrics of Solidity contracts.

About half of the tools are suited for bulk analysis of
contracts, e.g. for analyzing the contracts already deployed
on the chain. The other half is intended for developing or
analyzing individual contracts with human interaction.

Level of abstraction. Most tools start their analysis with the
bytecode of contracts. This is due to Solidity lacking for-
mal semantics and changing its behavior between different
compiler versions. Nine of these tools also accept Solidity
code, but only use the ABI or remember the Solidity code
for putting vulnerabilities into context.

FSolidM is exceptional as it works with an abstract



specification of the contract, which the user defines as a
finite-state machine.

Methods. Virtually all tools use static analysis, while four
tools perform dynamic analyses: ContractLarva checks
contract behavior during runtime; MAIAN und teEther try
the exploits on the deployed contracts to exclude false
positives; ReGuard uses fuzzing techniques after having
transformed the contracts.

Tools working on Solidity code typically start by parsing
the contract to obtain its AST, and continue analysis from
there.

Tools starting from bytecode disassemble the bytecode,
generate a CFG, and sometimes decompile it to obtain an
intermediate representation. When checking for vulnera-
bilities, the tools use symbolic execution and an SMT-
solver like Z3. Due to the complexity of contracts, it is
not possible to cover all computation paths, which means
that such tools can detect vulnerabilities, but cannot prove
their absence.

Tools that target such security guarantees simplify the
code in a sound manner and use abstract interpretation
to cover all computation paths. This is typically done by
translating the simplified contract to Horn clauses and
employing a tool like Souflé to show that some security
property holds. In case the tool succeeds, the contract is
free from the vulnerabilities covered by the property.

B. Implementation Details

To evaluate the continuity and complexity of the pub-
licly available tools, we collected metric data from their
Github repositories. EtherTrust is available via a static
webpage and does not offer the same data. For Securify
and SmartCheck we examine the open ‘academic’ version
on Github as there is no data available for the closed
‘company’ version.

For assessing the support and longevity of the tools
we consider the number of commits, the date of the first
commit, the active months (difference between last and
first commit), and the number of contributors. Moreover,
we mark a tool as publication tool, if the last noteworthy
commit coincides with a date relevant to the conference
where the accompanying paper was published. Regarding
the complexity of the tools, we counted the lines of code
(disregarding code copied from other projects or generated
automatically) and determined the programming languages
used. The data is compiled in table II.

The table suggests that academic tools tend to be
‘publication tools’, developed as a proof-of-concept and
published for the sake of the conference. Functionality,
usability and documentation are minimal, while the future
of the tools remains uncertain. There are some notable
exceptions, though. The most impressive one is KEVM
with by far the biggest team among the academic tools
and a continuous development history. It is followed by
the tools Vandal, Ethir, and FSolidM, which are also being
developed over an extended period of time. The more

TABLE II
IMPLEMENTATION DETAILS OF AVAILABLE TOOLS

Tool C
om

m
its

Fi
rs

t
co

m
m

it
m

m
/y

y

A
ct

iv
e

m
on

th
s

Pu
bl

ic
at

io
n

to
ol

C
on

tr
ib

ut
or

s

A
ffi

lia
tio

n

k
lo

c

L
an

gu
ag

e

contractL. 14 12/17 7 3 1 ac 2.8 hs
E-EVM 2 1/18 1 3 1 ac 2.0 py
Erays 6 8/18 3 * 3 ac 5.6 py

EthIR 394 2/18 9 1 ac 7.9 py
EtherTr. 1 5/18 na 3 na ac 13.0 java
FSolidM 183 9/17 13 4 ac 35.0 js

KEVM 1581 10/16 25 21 ac 23.0 K,py
MAIAN 14 3/18 2 3 2 ac 3.1 py
Manticore 597 2/17 21 56 co 37.0 py

Mythril 1988 9/17 14 42 co 9.0 py
Osiris 4 9/18 1 * 1 ac 1.2 py
Oyente 799 1/16 31 22 cm 6.6 py

Porosity 94 2/17 12 10 co 4.2 cpp
Rattle 23 8/18 2 2 co 2.6 py
Remix-I 4972 11/14 48 63 cm 17.0 js

Securify* 21 9/18 2 3 4 ac 13.0 java
SmartCh.* 161 5/17 10 3 4 ac 2.1 java
Solgraph 68 7/16 26 3 co 0.1 js

SolMet 9 2/18 7 * 1 ac 0.6 java
Vandal 811 8/16 22 6 ac 7.3 py

LEGEND. Tool: * marks the academic version if there is a private
company version. Active months: number of months between first
and last commit. Publication tool: 3 means that the last noteworthy
commit coincides with some important conference date; * means that
the tool has been published only recently; see text for explanation.
Afficliation of tool authors: ac(ademic), co(mpany), cm for community.
Language: hs=Haskel, py=Python, js=JavaScript, java=Java, cpp=C++,
K=specification language of the K framework.

recent academic tools Erays, Osiris, and SolMet have yet
to prove their continuity.

The community tools Remix-IDE and Oyente show a
longstanding development and a large support team.

The big team sizes of the community tools are only
paralleled by the company tools Manticore and Mythril.
As for the other company tools, Porosity is marked un-
maintained on Github, while Solgraph looks maintained.
Rattle is too new (first commit in August 2018) to be
judged.

Regarding the implementation languages, Python is the
most popular one with 11 instances. Four tools use Java,
three JavaScript, one each use Haskell and C++. KEVM
leverages the K framework.

C. Quantitative Comparisons

Next, we look at quantitative reviews of the tools. These
are grouped into reviews by authors, who evaluate their
own tool against others, and ‘independent’ ones by authors
without a tool of their own involved in the comparison.

The three independent reviews are contrasted in ta-
ble III. In [54], the tools Oyente, Mythril, Securify, and
SmartCheck are compared with regard to their effec-
tiveness and accuracy in detecting known vulnerabilities.



TABLE III
INDEPENDENT TOOL COMPARISONS

R
em

ix

Po
ro

si
ty

Sm
ar

tC
he

ck

Se
cu

ri
fy

M
yt

hr
il

Oyente [56] [55] [54], [56] [54], [56] [54], [55]

Mythril [55] [54] [54]

Securify [56] [54], [56]

Smartcheck [56]

TABLE IV
COMPARISON OF OWN TOOLS WITH OTHERS

Tool to
to

ol

O
ye

nt
e

M
yt

hr
il

Se
cu

ri
fy

R
em

ix

Z
eu

s

M
A

IA
N

E
th

IR

R
at

tle

Vandal [44] [44] [44] [44]
SmartCh. [38] [38] [38]
Securify [35] [35]

sCompile [50] [50]
teEther [51] [51]
SASC [49]

ReGuard [48]
Zeus [52]
Osiris [26]

In [55], the tools Oyente, Mythril, and Porosity are com-
pared by contrasting claimed and successfully detected
security issues. Regarding vulnerability checking capabil-
ities, [56] compares the tools Oyente, Remix, Securify,
SmartCheck in detail.

The following nine references provide a quantitative
comparison of their own tool with at least one other
tool: [44] compares Vandal to Oyente, EthIR, Rattle, and
Mythril. [38] compares SmartCheck to Oyente, Remix,
and Securify. [35] compares Securify to Oyente and
Mythril. [50] provides a comparison of sCompile with
Oyente and MAIAN regarding execution time. [51] com-
pares teEther to Oyente and Zeus. [49] compares SASC to
Oyente. [48] compares ReGuard to Oyente. [52] compare
their tool Zeus to Oyente. [26] compares Osiris to Zeus
because the latter can also detect integer bugs.

Table IV shows that most tools are compared to Oyente.
This is not surprising as Oyente was the first symbolic
execution tool published.

As can be seen from tables III and IV:
• Six tools (Mythril, Remix, Porosity, MAIAN, EthIR,

and Rattle) do not compare themselves to any other
tool.

• Another six tools (Vandal, sCompile, teEther, SASC,
ReGuard, Osiris) have not yet been used for compar-
ison. One reason might be that four of them are not
publicly available, while Osiris and Vandal have been
published only recently.

• The tools Oyente, Mythril, Securify, and Remix ap-
pear in both tables as candidates for comparison.

D. Detection of Vulnerabilties

In this section, we examine the available tools and
compare them with regard to the security issues they
detect. The tools contractLarva, E-EVM, Erays, EthIR,
FSolidM, KEVM, Rattle, and SolMet do not claim to find
security issues. EtherTrust takes a different approach to
recognizing security issues. It proves the two properties
‘single entrancy’ and ‘independence from the transaction
environment’ for bytecode.

The remaining 11 tools analyze several known security
issues, which we contrast in table V . The columns are
based on the original categorization by [57]. To accom-
modate for the aspects that the tools actually examine,
we adjusted the original categories: ‘Immutable bugs’ and
‘Type casts’ have been omitted as this is not checked by
any tool. A few categories have been renamed, several new
ones have been added. We distilled the following security
issues that the tools analyze:

TOD (Transaction-ordering dependence, also called front
running, race condition): the ordering of transactions can-
not be relied on in a contract.

Random number (also called ‘nothing is secret’): has to
be handled with care on a blockchain.

Timestamp dependence: as the timestamp can be manipu-
lated, its usage may be unsafe.

Unpredictable state: calling a library may effect in an
unforeseen change of the state of the calling contract.

Callstack depth (until Oct 18, 2016): an external call can
fail because it exceeds the maximum call depth.

Lost Ether: Ether transferred to an orphaned address
cannot be retrieved.

Reentrancy: A contract transfers Ether to another contract
and hands control over to it, and is called back from this
contract before the transaction has been completed.

Unchecked call (incl. gasless send, bad exception han-
dling): the low level functions call, callcode, delegatecall
and send are potentially risky and should be avoided. They
do not revert on failure, but return false and continue.

tx.origin: its use for authorization is highly discouraged.

Blockhash: can be manipulated to some degree.

Send: can fail.

Selfdestruct: should be checked for proper authorization.

Visibility: the unintended visibility of functions and state
variables may cause a vulnerability (e.g. leaking secrets,
function exposure).

Unchecked math (incl. integer overflow): may incur a
vulnerability.

Costly patterns (gas): can cause a transaction to fail.

Bad coding pattern: may incur a vulnerability.

Deprecated: disapproved Solidity elements should no
longer be used.

Other: the tool checks other issues as well.



TABLE V
SECURITY ISSUES CHECKED BY AVAILABLE TOOLS

Blockchain EVM Solidity

Tool TO
D

R
an

do
m

nu
m

be
r

Ti
m

es
ta

m
p

U
np

re
di

ct
ab

le
st

at
e

C
al

ls
ta

ck
de

pt
h

L
os

t
E

th
er

R
ee

nt
ra

nc
y

U
nc

he
ck

ed
ca

ll

tx
.o

ri
gi

n

B
lo

ck
ha

sh

se
nd

se
lf

de
st

ru
ct

V
is

ib
ili

ty

U
nc

he
ck

ed
m

at
h

C
os

tly
pa

tte
rn

B
ad

co
di

ng
pa

tte
rn

D
ep

re
ca

te
d

O
th

er

MAIAN 7 7 7 7 7 3 7 3 7 7 7 3 7 7 7 7 7 7
Manticore 7 7 3 7 7 7 3 3 3 3 7 3 7 3 7 7 7 3
Mythril 3 3 3 7 3 7 3 3 3 7 3 7 7 3 7 3 3 3

Osiris 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7 7 7
Oyente 3 7 3 7 3 7 3 7 7 7 7 7 7 7 7 7 7 7
Porosity 7 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7

Remix-IDE 7 7 3 7 7 7 3 3 3 3 3 3 3 7 3 3 3 3
Securify* 3 7 7 3 7 3 3 3 7 7 7 7 7 7 7 3 7 3
SmartCheck* 7 7 3 3 7 3 3 3 3 7 3 7 3 3 3 3 3 3

Solgraph 7 7 7 7 7 7 7 7 7 7 3 7 3 7 7 7 7 3
Vandal 7 7 7 7 7 7 3 7 3 7 3 3 7 7 7 7 7 3

The first four columns refer to blockchain issues. Three
tools (MAIAN, Solgraph, Vandal) omit them completely.
None of the tools analyzes them all. A similar situation is
encountered with regard to the two columns, which refer
to EVM issues. Five tools (Manticore, Osiris, Remix-IDE,
Solgraph, Vandal) skip them. No tool checks them all.

The picture for the Solidity issues is quite diverse. Some
tools are focused on only a few issues. Osiris is specialized
to integer bugs, while Porosity only checks reentrancy.
MAIAN analyzes three specific vulnerabilities. Oyente
targets four vulnerabilities. The remaining tools target five
or more issues. Five tools try to capture a whole range
of vulnerabilities and bad practices: Manticore, Mythril,
Remix-IDE, Securify and SmartCheck.

The most popular vulnerability recognized seems to
be ‘reentrancy’ (checked by eight tools), followed by
‘unchecked calls’ (checked by six tools).

Table V does not indicate the effectiveness of the tools
in detecting security issues.

V. CONCLUSIONS

To better assess the detection quality of tools, stan-
dardized benchmarks are desirable. On Solidity level, a
widely used test set is the collection of verified contracts
on Etherscan (mainly because it is available). Furhermore,
there are collections of contracts with ‘known vulnerabil-
ities’ like Ethernaut [58] or Not so Smart Contracts [59].
For bytecode analyses, evaluations are usually based on
the contracts deployed on the main chain. These test
sets are readily obtainable but sub-optimal. On the one
hand, the collections are unbalanced, as certain types of
contracts (and their vulnerabilities) prevail. On the other
hand, the sheer mass of contracts renders it difficult to
establish a reliable ground truth, i.e., the correct status
of each contract w.r.t. to each vulnerability. We need a
benchmark suite of carefully selected or crafted contracts

being vulnerable or immune against each of the attacks.
The common practice of using a tool (e.g. Oyente) as an
oracle is at least questionable.

We would like the scientific community to discourage
publications with undisclosed tool implementations as
the claims cannot be verified. Moreover, in the area of
untrusted computing, open source is key to build trust.
According to our findings, tools will persist when they
are openly developed on a broad basis.

When starting to develop a new tool, we suggest to reuse
components like disassembler, decompiler, or parser from
the repositories of the Ethereum Foundation (github.com/
ethereum), of Parity Technologies (github.com/paritytech),
of ConsenSys (github.com/ConsenSys), of Trail of Bits
(github.com/trailofbits), and of the more advanced tools
presented here.

We conclude our survey by highlighting five tools
that we found particularly inspiring. FSolidM pursues the
noteworthy approach of generating source code from a
state-oriented specification. Regarding formal verification,
KEVM is the clear favorite due to its maturity, with the
drawback that its use requires expertise. Securify is the
most advanced tool regarding formal guarantees. MAIAN
is founded on a precise definition of the vulnerabilities
to be detected and, compared to the other tools, goes the
extra mile to discard false positives by testing the exploits.
Finally, Mythril is a prime example of a tool for analyzing
contracts interactively, with an eye on usability.

REFERENCES

[1] T. Cook, A. Latham, and J. H. Lee, “Dappguard: Active monitoring
and defense for solidity smart contracts,” MIT, student project,
2017, https://courses.csail.mit.edu/6.857/2017/project/23.pdf.

[2] G. Pace, “contractLarva,” Oct 2018, https://github.com/gordonpace/
contractLarva.

[3] S. Azzopardi, J. Ellul, and G. J. Pace, “Monitoring smart contracts:
Contractlarva and open challenges beyond,” in 18th Int. Conf. on
Runtime Verification (RV’18), ser. LNCS, vol. 11237. Springer,
2018, pp. 113–137, https://doi.org/10.1007/978-3-030-03769-7_8.



[4] pisocrob, “E-EVM,” Oct 2018, https://github.com/pisocrob/
E-EVM.

[5] R. Norvill, B. B. F. Pontiveros, R. State, and A. J. Cullen, “Visual
emulation for Ethereum’s virtual machine,” in Network Operations
and Management Symposium (NOMS’18). IEEE, 2018, pp. 1–4,
https://doi.org/10.1109/NOMS.2018.8406332.

[6] teamnsrg, “Erays,” Oct 2018, https://github.com/teamnsrg/erays.
[7] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey,

“Erays: Reverse engineering Ethereum’s opaque smart contracts,”
in 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association, 2018, pp. 1371–1385, https://www.usenix.
org/conference/usenixsecurity18/presentation/zhou.

[8] P. Gordillo, “EthIR,” Oct 2018, https://github.com/costa-group/
EthIR.

[9] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey,
“Ethir: A framework for high-level analysis of ethereum bytecode,”
arXiv:1805.07208, 2018.

[10] I. Grishchenko, “EtherTrust,” Oct 2018, https://www.netidee.at/
ethertrust.

[11] I. Grishchenko, M. Maffei, and C. Schneidewind, “EtherTrust:
Sound static analysis of ethereum bytecode,” Technische Universität
Wien, Tech. Rep., 2018.

[12] A. Mavridou and A. Laszka, “FSolidM,” Oct 2018, https://github.
com/anmavrid/smart-contracts.

[13] ——, “Tool demonstration: Fsolidm for designing secure ethereum
smart contracts,” in Int. Conf. on Principles of Security and Trust.
Springer, 2018, pp. 270–277.

[14] ——, “Designing secure ethereum smart contracts: A finite state
machine based approach,” in 22nd Int. Conf. on Financial Cryp-
tography and Data Security (FC’18). Springer, 2018.

[15] ——, “Tool demonstration: Fsolidm for designing secure ethereum
smart contracts,” arXiv:1802.09949, 2018.

[16] kframework.org, “KEVM,” Oct 2018, https://github.com/
kframework/evm-semantics.

[17] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian,
D. Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “Kevm:
A complete formal semantics of the ethereum virtual machine,” in
2018 IEEE 31st Computer Security Foundations Symposium (CSF).
IEEE, 2018, pp. 204–217.

[18] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Rosu, “A formal
verification tool for ethereum vm bytecode,” in Proceedings of the
2018 ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’18), 2018, pp. 18–21.

[19] MAIAN-tool, “MAIAN,” Oct 2018, https://github.com/
MAIAN-tool/MAIAN.

[20] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor,
“Finding the greedy, prodigal, and suicidal contracts at scale,”
arXiv:1802.06038, 2018.

[21] Trail of Bits, “Manticore: Symbolic Execution for Humans,” Oct
2018, https://github.com/trailofbits/manticore.

[22] F. Manzano and J. Feist, “Automatic bug finding for the
blockchain,” 2017, https://tinyurl.com/yby396gd.

[23] ConsenSys, “Mythril,” Oct 2018, https://github.com/ConsenSys/
mythril-classic.

[24] B. Mueller, “Smashing smart contracts,” in 9th HITB Security
Conference, 2018, https://tinyurl.com/y827tk72.

[25] C. Ferreira, “Osiris,” Oct 2018, https://github.com/christoftorres/
Osiris.

[26] C. Ferreira Torres, J. Schütte et al., “Osiris: Hunting for integer
bugs in ethereum smart contracts,” in 34th Annual Computer
Security Applications Conference (ACSAC’18), 2018.

[27] melon.fund, “Oyente,” Oct 2018, https://github.com/melonproject/
oyente.

[28] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
Smart Contracts Smarter,” in ACM SIGSAC Conference on Com-
puter and Communications Security - CCS’16, 2016, pp. 254–269.

[29] Comae Technologies, “Porosity,” Oct 2018, https://github.com/
comaeio/porosity.

[30] M. Suiche, “Porosity: A decompiler for blockchain-based smart
contracts bytecode,” DEF CON 25, Tech. Rep., 2017, https://tinyurl.
com/y9kb47dr.

[31] Trail of Bits, “Rattle,” Oct 2018, https://github.com/trailofbits/rattle.
[32] Ethereum Foundation, “Remix-IDE,” Oct 2018, https://github.com/

ethereum/remix-ide.

[33] ——, “Remix Documentation,” Oct 2018, https://remix.
readthedocs.io/en/latest/index.html.

[34] SRI Lab, ETH Zurich, “Securify: public version,” Oct 2018, https:
//github.com/eth-sri/securify.

[35] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart con-
tracts,” arXiv:1806.01143, 2018.

[36] ChainSecurity, “Securify,” Oct 2018, https://securify.chainsecurity.
com/.

[37] SmartDec, “SmartCheck: academic version,” Oct 2018, https://
github.com/smartdec/smartcheck.

[38] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in Proceedings of the 1st Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain, ser. WETSEB ’18. ACM, 2018, pp. 9–16.

[39] SmartDec, “SmartCheck,” Oct 2018, https://tool.smartdec.net/.
[40] R. Revere, “Solgraph,” Oct 2018, https://github.com/raineorshine/

solgraph.
[41] P. Hegedus, “SolMet,” Oct 2018, https://github.com/chicxurug/

SolMet-Solidity-parser.
[42] ——, “Towards analyzing the complexity landscape of solid-

ity based ethereum smart contracts,” in IEEE/ACM 1st Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB). IEEE, 2018, pp. 35–39.

[43] Smart Contract Research at USYD, “Vandal,” Oct 2018, https://
github.com/usyd-blockchain/vandal.

[44] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” arXiv:1809.03981, 2018.

[45] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,”
in Proc. 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 2018, pp. 814–819.

[46] H. Liu, “s-gram,” Oct 2018, https://github.com/njaliu/
sgram-artifact.

[47] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart
contracts devour your money,” in 2017 IEEE 24th Int. Conf. on
Software Analysis, Evolution and Reengineering (SANER), 2017,
pp. 442–446.

[48] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Compan-
ion Proceeedings. ACM, 2018, pp. 65–68.

[49] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in New
Technologies, Mobility and Security (NTMS), 2018 9th IFIP In-
ternational Conference on. IEEE, 2018, pp. 1–5.

[50] J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang, “scompile:
Critical path identification and analysis for smart contracts,”
arXiv:1808.00624, 2018.

[51] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automat-
ically exploit smart contracts,” in 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018, pp. 1317–
1333.

[52] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” in Network and Distributed Systems
Security (NDSS) Symposium 2018. NDSS, 2018.

[53] S. Kalra, “Zeus data,” Oct 2018, https://tinyurl.com/y7z7ha6q.
[54] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh,

“Empirical vulnerability analysis of automated smart contracts
security testing on blockchains,” pp. 103–113, 2018.

[55] R. Fontein, “Comparison of static analysis tooling for smart con-
tracts on the evm,” in 28th Twente Student conference on IT, 2018.

[56] A. Dika, “Ethereum smart contracts: Security vulnerabilities and
security tools,” Master’s thesis, NTNU, 2017.

[57] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in Principles of Security and Trust.
Springer, 2017, pp. 164–186.

[58] OpenZeppelin, “Ethernaut – Solidity security challenges,” https:
//github.com/OpenZeppelin/ethernaut, accessed 2018-08-07.

[59] Trail of Bits, “Not So Smart Contracts,” Oct 2018, https://github.
com/trailofbits/not-so-smart-contracts.


