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Abstract—In this paper, we analyze the secrecy performance
of the decode-and-forward (DF) relay system in generalized-K
fading channels. In a typical four-node communications model,
a source (S) sends confidential information to a destination (D)
via a relay (R) using DF strategy in two time slots, while an
eavesdropper (E) wants to overhear the information from S to
D over generalized-K fading channels. To be more realistic,
we assume that E can receive the signals of two time slots,
and there is no direct link between S and D because of
heavy fading. Based on those assumptions, we derive closed-form
expressions for the secrecy outage probability (SOP) and ergodic
secrecy capacity (ESC) by using a tight approximate probability
density function of the generalized-K model. Then, asymptotic
expressions for the SOP and ESC are also derived in the high
signal-to-noise ratio region, not only because we can get some
insights about SOP and ESC, but also because expressions for
SOP and ESC can be simplified significantly. The single relay
system is subsequently extended into a multi-relay system, where
the asymptotic SOP analysis of three proposed relay selection
strategies is investigated. Further, the security-reliability tradeoff
analysis in the multi-relay system is also presented given that S
adopts a constant code rate. Finally, the Monte-Carlo simulation
is used to demonstrate the accuracy of the derived closed-form
expressions.

Index Terms—Decode-and-forward, ergodic secrecy capacity,
generalized-K fading channel, secrecy outage probability, and
security-reliability tradeoff.

I. INTRODUCTION

Due to the open access property in wireless communication-
s, it is difficult to protect information from interception. This
explains the reason that physical layer security has recently
received an increasing attention [1]-[3]. In this context, [4]-
[7] have investigated the secrecy performance over small-scale
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fading channels based on the foundation of [1], including
Rayleigh, Nakagami-m, and two-wave with diffuse power
fading channels.

In the real communication scenarios, the large-scale fading
should not be neglected, especially when the communications
nodes move fast [8]. To capture both the small-scale and
large-scale fading properties, some composite fading models
have been proposed, where the generalized-K (GK) model
has the high matching performance to the real fading in some
communication scenarios [9]. In the GK model, the small-scale
fading is modeled by the Nakagami-m distribution and the K
distribution is used to approximate the Lognormal shadowing.
Sequentially, [10], [11] investigated the outage probability
(OP) and ergodic capacity (EC) under different power adaptive
methods based on the work [9]. The cooperative multi-hop
relay system over GK fading channels was studied in [12],
and the corresponding closed-form expression for the asymp-
totic OP (AOP) was derived in the high signal-to-noise ratio
(SNR) region, which shows the diversity order and array gain.
However, in the GK model parameter setting of k = m case,
there was no asymptotic expression for the OP in [12], limiting
the application range of the AOP.

An issue of performance analysis in physical layer security
over GK fading channels is that the exact probability density
function (PDF) of GK fading is very complex, and typically
leads to a Meijer’s G-function in the final closed-form expres-
sion [13], [14], and there is a strong debate about whether the
Meijer’s G-function can be seen as a closed-form or not [15].
Therefore, a tight and tractably approximate PDF of GK fading
was proposed in [16], called the mixture Gamma distribution
method, which is composed by only elementary functions. The
corresponding gap between the approximate and exact PDF
expressions converges with the number of summation terms
in the approximate PDF increasing. This mixture Gamma
distribution method for the GK fading approximation has been
adopted in many secure analysis works, such as [17]-[20].

The source-relay-destination is a common communication
modality, especially when the destination is far away from
the source. If eavesdroppers exist in this cooperative scenario,
secure relay analysis is needed [21]-[23]. However, there
are few works on the physical layer security by using relay
strategy over GK fading channels. Although [24] investigated
the secrecy outage probability (SOP) and ergodic secrecy
capacity (ESC) in the typical relay scenario, the authors in
[24] only considered a single relay operating in the amplify-
and-forward (AF) strategy and derived approximate closed-
form expressions for SOP and ESC in the high SNR region.
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Therefore, the analytical results derived from those approxi-
mate expressions will deviate significantly from the simulation
results in the low SNR region, which can be obviously shown
in Fig. 3 of [24]. As known to all, the relay operated in
the decode-and-forward (DF) scheme, another common relay
strategy, decodes the signals from the source before forwarding
to the destination, rather than just amplifying the received
signals in the AF case, leading to a better performance. To
best of authors’ knowledge, the secure analysis of DF strategy
over GK fading channels has not been investigated.

Moreover, the approximate expressions in [24] did not show
the secrecy diversity order (SDO) and secrecy array gain
(SAG) of the asymptotic SOP (ASOP), as well as the slope
and power offset of the asymptotic ESC (AESC) in high SNRs,
which are proposed by [5]-[7]. Actually, even for the typical
three-node Wyner’s model presented in [1], there are very few
works on asymptotic analysis for the SOP and ESC proposed
by [5]-[7] in physical layer security over GK fading channels,
which shows the SDO and SAG of SOP, and the slope and
power offset of ESC in high SNRs. Although the ASOP in
the typical three-node Wyner’s model was investigated in [25]
over GK fading channels, the expression for ASOP in [25]
was not valid for m = k in the GK parameter setting, and the
SDO proposed by [25] was not m for k < m, which will be
proved in this paper.

In this paper, we investigate the secrecy performance of DF
relays over GK fading channels. The main contributions of
this paper are summarized as follows:

1) In the single DF relay case, closed-form expressions for
SOP and ESC are derived with very high accuracy by
using an approximate PDF of the GK model proposed by
[16], [17], where the Meijer’s G-function is not involved,
and the corresponding error between the approximate
and exact results decreases with the number of summa-
tion terms in the approximate PDF increasing;

2) Due to the high complexity of the derived expressions
for SOP and ESC in the single relay case, an asymptotic
analysis is investigated in high SNRs to get some
insights, where we derive ASOP and AESC, as well
as AOP and asymptotic EC (AEC) of the source-relay-
destination link. The asymptotic expressions for AOP
and ASOP show that the diversity order is min{m, k},
rather than m proposed by [25];

3) Compared with [12] and [25], the expressions for AOP
and ASOP in the investigated single DF relay system
are also derived when m = k in the GK parameter
setting. From the expressions for AOP and ASOP, we
find that the diversity order is m (or k) in the m = k
case, although AOP and ASOP are not linear functions
with respect to the average SNR in the log-scale;

4) By referring to [21], the ASOP in the secure multi-
relay system is analyzed, where three relay selection
schemes are proposed. In the derived ASOP expression,
the SDO and SAG are also presented, governing the SOP
behaviour in high SNRs;

5) The security-reliability tradeoff (SRT) proposed by [22]
in the multi-relay system is also investigated when a
constant code rate is adopted. Specifically, a fast calcu-

lation method for the code rate is provided based on the
derived AOP expression, when the OP is given. We can
use this derived code rate to calculate the corresponding
intercept probability (IP), which is useful and important
for the secure system design.

II. SINGLE DF RELAY MODEL

There is a source (S) transmitting confidential information
to a destination (D) via a relay (R) forwarding the signal from
S to D by using DF strategy in two time slots. Meanwhile, an
eavesdropper (E) is trying to overhear the information from S
to D. hij (i, j ∈ {S,R,D,E}) is the channel gain of the i−j
link. We assume that S–R, R–D, S–E and R–E links undergo
independent GK fading, and E can receive signals of two time
slots, while D has no direct link with S due to deep fading. E
combines those two signals, and then selects the signal with
higher instantaneous SNR, i.e., selection combining1, to cut
down the signal processing complexity. Let PS , PR, and N0

be the transmit power at S, transmit power at R, and power
of Gaussian noise, respectively. The equivalent SNR at D is
γD = min {γr, γd}, where γr = PS |hSR|2

N0
is the SNR of R

in the first slot, and γd = PR|hRD|2
N0

is the SNR of D in the
second slot, while the equivalent SNR of E over two time
slots is γE = max {γe1, γe2}, where γe1 = PS |hSE |2

N0
and

γe2 = PR|hRE |2
N0

are SNRs of the first and second time slot,
respectively.

The exact PDF and cumulative distribution function (CDF)
of γt (t ∈ {r, d, e1, e2}) over GK fading channels can be
written in the Meijer’s G-function form as [13],

fγt (γt) =
1

Γ (kt) Γ (mt) γt
G2,0

0,2

[
ktmtγt
γt

∣∣∣−kt,mt

]
, (1)

Fγt (γt) =
1

Γ (kt) Γ (mt)
G2,1

1,3

[
ktmtγt
γt

∣∣1
kt,mt,0

]
, (2)

where kt,mt are distribution shaping parameters, γt and Γ(·)
denote the mean value of γt and Gamma function [27],
respectively.

To avoid the Meijer’s G-function in final expressions for
SOP and ESC2, we can adopt the tight and tractably approx-
imate PDF and CDF of γt (t ∈ {r, d, e1, e2}) proposed by
[16], [17]3

fγt (x) =
L∑

jt=1

at,jtx
mt−1 exp (−ςt,jtx) , (3)

Fγt (x) =
L∑

jt=1

At,jt

(
1−

mt−1∑
pt=0

ςptt,jt
pt!

xpt exp (−ςt,jtx)

)
,

(4)

1The DF relay can use an independent codeword from that of the source
such that the eavesdropper (even powerful eavesdropper) cannot employ
maximal ratio combining [23].

2There is a strong debate about whether the Meijer’s G-function can be
considered as the closed-form or not [15].

3In this approximate PDF and CDF, mt and kt are only allowed to take
positive integers.
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respectively, where ςt,jt = ktmt

tjγt
, at,jt =

θt,jt∑L
v=1 θt,vΓ(mt)ς

−mt
t,v

,

θt,jt =
ktmtωjt t

kt−mt−1
jt

tjγtΓ(mt)Γ(kt)
, L, ωjt and tjt are the number of sum-

mation terms, weight factor, and abscissas for the Gaussian-
Laguerre integration, respectively. Further, from Fγt(∞) = 1,
we have

lim
x→∞

L∑
jt=1

At,jt

(
1−

mt−1∑
pt=0

ςptt,jt
pt!

xpt exp (−ςt,jtx)

)
= 1

⇒
∑L

jt=1
At,jt = 1. (5)

Thus, the CDF of γt can be simplified as

Fγt (x) = 1−
L∑

jt=1

Ar,jt

mt−1∑
pt=0

ςptt,jt
pt!

xpt exp (−ςt,jtx)

= 1− F γt (x) , (6)

where F γt (·) is the complementary CDF (CCDF) of γt. By
using the simplified CDF of γt, the CDFs of γD and γE can
be derived as

FγD (x) =1−
L∑

jr=1

Ar,jr

mr−1∑
pr=0

ςprr,jr
pr!

L∑
jd=1

Ad,jd

md−1∑
pd=0

ςpdd,jd
pd!

xpr+pd exp (− (ςr,jr + ςd,jd)x) , (7)

FγE (x) =1−
L∑

je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!
xpe2 exp (−ςe2,je2x)

−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!
xpe1 exp (−ςe1,je1x)

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!
xpe1+pe2 exp (− (ςe1,je1 + ςe2,je2)x) , (8)

respectively.
By differentiating the CDFs, the corresponding PDF of γD

is given by

fγD (x) =
L∑

jr=1

Ar,jr

mr−1∑
pr=0

ςprr,jr
pr!

L∑
jd=1

Ad,jd

md−1∑
pd=0

ςpdd,jd
pd!(

(ςr,jr + ςd,jd)xpr+pd − (pr + pd)x
pr+pd−1

)
exp (− (ςr,jr + ςd,jd)x) , (9)

and the PDF of γE is shown in (10).

III. SOP ANALYSIS OF SINGLE DF RELAY MODEL

A. Exact Secrecy Outage Probability

In view of the Lemma 1 in [1], the instan-
taneous secrecy capacity is defined as CS =
max

{
1
2 log (1 + γD)− 1

2 log (1 + γE) , 0
}
, where the

source always adopts the maximum code rate according to the
instantaneous channel states of the main channel, i.e., channel
capacity. In this section, we assume that S does not know
the channel state between S and E, i.e., silent eavesdropping

scenario. In this case, S has no choice but to transmit signal
at a constant rate of confidential information (RS). When
RS > CS , secure transmission cannot be guaranteed, and the
corresponding occurrence probability is called SOP, i.e.,

SOP = Pr {CS ≤ RS}

= Pr

{
1

2
log (1 + γD)− 1

2
log (1 + γE) ≤ RS

}
= Pr {γD ≤ λ+ λγE − 1}

=

∫ ∞
0

FγD (λ− 1 + λx)fγE (x) dx, (11)

where λ = 22RS .
Lemma 1: The closed-form expression for SOP in a single

DF relay system over GK fading channels is given by

SOP =1−
L∑

jr=1

Ar,jr

mr−1∑
pr=0

ςprr,jr
pr!

L∑
jd=1

Ad,jd

md−1∑
pd=0

ςpdd,jd
pd!

exp (− (ςr,jr + ςd,jd) (λ− 1))
pr+pd∑
f=0

(
pr + pd
f

)
(λ− 1)

pr+pd−fλf∫ ∞
0

xf exp (− (ςr,jr + ςd,jd)λx)fγE (x) dx︸ ︷︷ ︸
I1

, (12)

where I1 is defined as (13), where 0× (−1)! = 0 is defined.
Proof: This SOP closed-form expression can be derived

by substituting the CDF of γD and PDF of γE into the integral
form of SOP, i.e., (11).

B. Asymptotic Secrecy Outage Probability

As the derivation of ASOP involves the asymptotic CDF of
γD (i.e., AOP of the S−R−D link), we first investigate the
AOP presented in Propositions 3.1 and 3.2.

Proposition 3.1: Given a message transmission of a point-
to-point system over GK fading channels with mt and kt
fading parameters, the asymptotic CDF (i.e., AOP) of the
received SNR (γt) in high SNRs is4

F∞γt (γt) =

{
Otγ

−vt
t , mt 6= kt;

∆tγ
−mt
t , mt = kt,

. (14)

where γt denotes the average of γt, Ot and ∆t are given by

Ot =
Γ (|kt −mt|) (ktmtγt)

vt

Γ (kt) Γ (mt) vt
, (15)

and

∆t =

γmt
t m−1+2mt

t

Γ2(mt)

(
ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln

γt
γtm2

t

)
,

(16)

where ψ(·) denotes the digamma function [27], respectively.

4[12] did not consider the asymptotic expression for AOP in the mt = kt
case.
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fγE (x) =
L∑

je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!

(
ςe2,je2x

pe2 − pe2xpe2−1
)

exp (−ςe2,je2x)

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

(
ςe1,je1x

pe1 − pe1xpe1−1
)

exp (−ςe1,je1x)

−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!(
(ςe1,je1 + ςe2,je2)xpe1+pe2 − (pe1 + pe2)xpe1+pe2−1

)
exp (− (ςe1,je1 + ςe2,je2)x) . (10)

I1 =
L∑

je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!

(
ςe2,je2 (f + pe2)!

(λςr,jr + λςd,jd + ςe2,je2)
f+pe2+1

− pe2 (f + pe2 − 1)!

(λςr,jr + λςd,jd + ςe2,je2)
f+pe2

)

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

(
ςe1,je1 (f + pe1)!

(λςr,jr + λςd,jd + ςe1,je1)
f+pe1+1

− pe1 (f + pe1 − 1)!

(λςr,jr + λςd,jd + ςe1,je1)
f+pe1

)

−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!(
(ςe1,je1 + ςe2,je2) (f + pe1 + pe2)!

(λςr,jr + λςd,jd + ςe1,je1 + ςe2,je2)
f+pe1+pe2+1

− (pe1 + pe2) (f + pe1 + pe2 − 1)!

(λςr,jr + λςd,jd + ςe1,je1 + ςe2,je2)
f+pe1+pe2

)
. (13)

Proof: The exact CDF of γt in (2) over GK channels is
transferred into Taylor’s series at γt = ∞. When mt 6= kt,
the Taylor’s series of G2,1

1,3

[
ktmtγt
γt

∣∣∣1kt,mt,0

]
at γt =∞ up to

the vt-th (vt = min {kt,mt}) order term is5

G2,1
1,3

[
ktmtγt
γt

∣∣1
kt,mt,0

]
=

Γ (|kt −mt|)
vt

(
ktmtγt
γt

)vt
+ o

(
γ−vt−1
t

)
, (17)

where o (·) denotes the higher order term. Thus, the asymptotic
CDF of γt for mt 6= kt in high SNRs is given by

F∞γt (γt) =
Γ (|kt −mt|)

Γ (kt) Γ (mt) vt

(
ktmtγt
γt

)vt
= Otγ

−vt
t , (18)

which shows that the diversity order in the mt 6= kt case is
vt = min{kt,mt}.

When mt = kt, the Meijer’s G-function in (2) becomes
G2,1

1,3

[
m2

tγt
γt

∣∣1
mt,mt,0

]
. This Meijer’s G-function can be trun-

cated up to the mt-th order term after Taylor’s expansion at
γt =∞,

G2,1
1,3

[
m2
tγt
γt

∣∣1
mt,mt,0

]
=

(
γt
γt

)−mt

m−1+2mt
t(

ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln
γt
γtm2

t

)
+ o

(
γ−mt−1
t

)
.

(19)

5In this AOP analysis subsection, mt and kt can take any positive value,
because this asymptotic result is derived from the exact CDF of γt.

In the mt = kt case, the asymptotic CDF of γt is

F∞γt (γt) =
1

Γ2(mt)

(
γt
γt

)−mt

m−1+2mt
t(

ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln
γt
γtm2

t

)
= ∆tγ

−mt
t . (20)

According to the definition of diversity order, the diversity
order in the mt = kt case can be derived as

− lim
γt→∞

ln
(
∆tγ

−mt
t

)
ln γt

= lim
γt→∞

− ln (ln γt)

ln γt
+
mt ln (γt)

ln γt
= mt. (21)

Note that although the asymptotic CDF of γt is not a linear
function with respect to log γt for mt = kt, the slope with
respect to γt changes very slowly in high values of γt in the
log-scale.

Proposition 3.2: If γr = γd = γ → ∞, the asymptotic
CDF of γD (i.e., SNR of the S−R−D link), or AOP of the
S −R−D link, is given by

F∞γD (x) =


F∞γr (x) + F∞γd (x) , vr = vd;

F∞γr (x) , vr < vd;

F∞γd (x) , vr > vd,

(22)

where vt = min{mt, kt}, and t ∈ {r, d}.
Proof: When γr = γd = γ → ∞, by using the

asymptotic CDF in (14), the asymptotic CDF of γD in high
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SNRs is

F∞γD (x) = F∞γr (x) + F∞γd (x)− F∞γr (x)F∞γd (x)

' F∞γr (x) + F∞γd (x) , (23)

which can be further written as (22) by using the relationship
between vd and vr.

Proposition 3.3: When E wiretaps the confidential message
of a S−R−D link by using selection combining strategy to
combine two hops’ signals over GK fading channels, the s-th
(s = 0, 1, 2, · · · ) moment function of the combined SNR at E
(γE) is

EγE{γsE} =
L∑

je2=1

Ae2,je2

me2−1∑
pe2=0

ς−se2,je2s

pe2!
Γ (pe2 + s)

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ς−se1,je1s

pe1!
Γ (pe1 + s)

−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!

sΓ (pe1 + pe2 + s)

(ςe1,je1 + ςe2,je2)
pe1+pe2+s . (24)

Proof: We first transfer the expression for the s-th mo-
ment of a non-negative random variable X in its CCDF form,
i.e.,

EX {Xs} = EX
{∫ ∞

0

I {Xs ≥ α} dα
}

=

∫ ∞
0

E
{
I
{
X ≥ α 1

s

}}
dα =

∫ ∞
0

FX

(
α

1
s

)
dα, (25)

where I{·} denotes the indicator function, i.e., I{A} = 1
for A true and I{A} = 0 otherwise. Then, by using the
relationship between the moment function and CCDF of γE ,
the s-th moment of γE can be written as

EγE{γsE} =
L∑

je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!

∫ ∞
0

x
pe2
s exp

(
−ςe2,je2x

1
s

)
dx

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

∫ ∞
0

x
pe1
s exp

(
−ςe1,je1x

1
s

)
dx

−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!∫ ∞
0

x
pe1+pe2

s exp
(
− (ςe1,je1 + ςe2,je2)x

1
s

)
dx. (26)

Finally, the integrals in (26) can be solved in closed-form as
(24) by using (3.326.2) in [27].

Lemma 2: For γr = γd = γ → ∞, the closed-form
expression for ASOP of the investigated four-node system,
i.e., S, R, D and E, is given by

SOP∞ =


SOP∞r + SOP∞d , vr = vd;

SOP∞r , vr < vd;

SOP∞d , vr > vd,

(27)

where vt = min{mt, kt}, t ∈ {r, d}, and

SOP∞t =

{
Oteγ

−vt
t , mt 6= kt;

∆teγ
−mt
t , mt = kt,

(28)

where Ote and ∆te are

Ote =
Γ (|kt −mt|) (ktmt)

vt

Γ (kt) Γ (mt) vt

vt∑
s=0

(
vt
s

)
(λ− 1)

vt−sλsEγE {γsE} ,

(29)

∆te =
m−1+2mt
r

(
ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln γ̄t

λm2
t

)
Γ2 (mt)

mt∑
s=0

(
mt

s

)
(λ− 1)

mt−sλmtEγE {γsE} , (30)

respectively. The closed-form expression for E{γsE} is shown
in Proposition 3.3.

Proof: From (11) and Proposition 3.2, the ASOP can be
written as in the integral form

SOP∞

=


∫∞

0

[
F∞γd (λ− 1 + λx) + F∞γr (λ− 1 + λx)

]
×fγE (x) dx, vr = vd;∫∞

0
F∞γr (λ− 1 + λx) fγE (x) dx, vr < vd;∫∞

0
F∞γd (λ− 1 + λx) fγE (x) dx, vr > vd.

(31)

Let SOP∞t (t ∈ {r, d}) be SOP∞t =∫∞
0
F∞γt (λ− 1 + λx) fγE (x) dx. It is obvious that SOP∞

can be written as (27).
By using the asymptotic CDF of γD derived in Proposition

3.2, SOP∞t can be rewritten as (32). For mt 6= kt, SOP∞t can
be derived by6

SOP∞t =

∫ ∞
0

Γ (|kt −mt|) (ktmt (λ− 1 + λx))
vt

γvtt Γ (kt) Γ (mt) vt
fγE (x) dx

=
Γ (|kt −mt|) (ktmt)

vt

γvtt Γ (kt) Γ (mt) vt
EγE {(λ− 1 + λγE)

vt} = Oteγ
−vt
t ,

(33)

where E{γsE} = 1 for s = 0.
When mt = kt, SOP∞t becomes (34), where (a) follows

ln
γt

(λ− 1 + λx)m2
t

= ln
γt

λ (1− 1/λ+ x)m2
t

γt→∞≈ ln
γt
λm2

t

.

(35)

The reason of adopting approximation in (35) is that the
exact term in (35) involves ln (λ− 1 + λx), resulting in the
complexity of solving the integral in SOP∞t for mt = kt much
more difficult compared to solving the exact SOP, which will
lose the simplification purpose by doing asymptotic analysis.
By using the binomial expansion, the closed-form expression

6In this ASOP analysis and the following AESC analysis, we only consider
that mt and kt are positive integers, because our derived exact SOP and ESC
are only valid for positive integers of mt and kt.
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SOP∞t =


∫∞

0
Γ(|kt−mt|)(ktmt(λ−1+λx))vt

γ̄
vt
t Γ(kt)Γ(mt)vt

fγE (x) dx, kt 6= mt;∫∞
0

(λ−1+λx)mtm−1+2mt
r

Γ2(mt)γ
mt
t

(
ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln γt

(λ−1+λx)m2
t

)
fγE (x) dx, kt = mt.

(32)

SOP∞t =

∫ ∞
0

(λ− 1 + λx)
mtm−1+2mt

r

Γ2 (mt) γ
mt
t

fγE (x)

(
ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln

γt
(λ− 1 + λx)m2

t

)
dx

(a)
≈
m−1+2mt
t

(
ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln γt

λm2
t

)
Γ2 (mt) γ

mt
t

∫ ∞
0

(λ− 1 + λx)
mtfγE (x) dx. (34)

for SOP∞t in the mt = kt case is

SOP∞t =
m−1+2mt
r

(
ψ (1 +mt)− ψ (mt) + 2ψ (1) + ln γt

λm2
t

)
Γ2 (mt) γ

mt
t

mt∑
s=0

(
mt

s

)
(λ− 1)

mt−sλmtEγE {γsE} . (36)

In view of the closed-form expressions for SOP∞t in mt 6=
kt and mt = kt cases, SOP∞t can be derived in a unified form
as (28).

Observing Lemma 2, we can conclude that the SDO depends
only on the link with lower diversity order, i.e., min{vd, vr} =
min{md, kd,mr, kr}. In the Nakagami-m fading channel (a
special case of GK model with kr = kd →∞), the impact of
kd and kr vanishes, and the SDO is min{mr,md}.

IV. ESC ANALYSIS OF SINGLE DF RELAY MODEL

A. Exact Ergodic Secrecy Capacity

In this section, we consider that S knows the channel state
between S and E, i.e., active eavesdropping scenario, where S
can adjust its instantaneous transmit rate such that the secrecy
rate is CS to achieve perfect security. In this case, we are
interested in the ESC. From [26], we can derive the ESC in
the integral form as

CS =

∫ ∞
0

∫ ∞
0

CSfγD (γD) fγE (γE)dγDdγE

=
1

2
CD −

1

2
CE , (37)

where

CD =

∫ ∞
0

ln (1 + γD)fγD (γD)FγE (γD) dγD, (38)

CE =

∫ ∞
0

ln (1 + γE) fγE (γE) [1− FγD (γE)] dγE , (39)

respectively. Note that (37) presents a general integral form
for ESC over any fading channels.

To solve integrals more efficiently over GK fading channels,
the integral identity derived in Appendix B of [28] is shown

here

Ξ (a,m, b, c)

=

∫ ∞
0

ln (1 + x)
(
axm exp (−bx)− cxm−1 exp (−bx)

)
dx

= am! exp (b)
m+1∑
k=1

Γ (−m− 1 + k, b)

bk

− c (m− 1)! exp (b)
m∑
k=1

Γ (−m+ k, b)

bk
, (40)

where Γ(·, ·) denotes the complementary upper incomplete
Gamma function.

Lemma 3: The ESC of the single DF relay system over GK
fading channels is CS = 1

2CD −
1
2CE , where CD and CE

are given by (41) and (44), respectively.
Proof: By substituting the PDF of γD and CDF of γE into

(38), CD can be derived as (41), where I2 is given by (42).
By using the integral identity (40), the closed-form expression
for I2 can be derived as (43).

Similar to the derivation of CD, by substituting the PDF of
γE and CCDF of γD into the integral form of CE and using
(40), the closed-form expression for CE is given by (44).

B. Asymptotic Ergodic Secrecy Capacity

Lemma 4: For γr = γd = γ → ∞, the ESC of this
investigated single DF relay system is given by

C
∞
S =

1

2
ln γ +

1

2
Ω∞D −

1

2
C
∞
E , (45)

where C
∞
E is given by (46), and Ω∞D is

Ω∞D =
L∑

jr=1

Ar,jr

L∑
jd=1

Ad,jd

∑
pr+pd>0

(pr + pd − 1)!

pr!pd!

(
krmr

tjr

)pr(
kdmd

tjd

)pd
(
krmr

tjr
+ kdmd

tjd

)pr+pd

+ ψ (1)−
L∑

jr=1

Ar,jr

L∑
jd=1

Ad,jd ln

(
krmr

tjr
+
kdmd

tjd

)
,

(47)

in which
∑

pr+pd>0

∆
=
mr−1∑
pr=0

md−1∑
pd=0

I {pr + pd > 0}.
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CD =
L∑

jr=1

Ar,jr

mr−1∑
pr=0

ςprr,jr
pr!

L∑
jd=1

Ad,jd

md−1∑
pd=0

ςpdd,jd
pd!∫ ∞

0

ln (1 + x)
(
(ςr,jr + ςd,jd)xpr+pd − (pr + pd)x

pr+pd−1
)

exp (− (ςr,jr + ςd,jd)x)FγE (x) dx︸ ︷︷ ︸
I2

. (41)

I2 =

∫ ∞
0

ln (1 + x)
(
(ςr,jr + ςd,jd)xpr+pd − (pr + pd)x

pr+pd−1
)

exp (− (ςr,jr + ςd,jd)x)1−
L∑

je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!
xpe2 exp (−ςe2,je2x)−

L∑
je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!
xpe1 exp (−ςe1,je1x)

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!
xpe1+pe2 exp (− (ςe1,je1 + ςe2,je2)x)

 dx. (42)

I2 =Ξ (ςr,jr + ςd,jd , pr + pd, ςr,jr + ςd,jd , pr + pd)−
L∑

je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!

Ξ (ςr,jr + ςd,jd , pr + pd + pe2, ςr,jr + ςd,jd + ςe2,je2 , pr + pd)−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

Ξ (ςr,jr + ςd,jd , pr + pd + pe1, ςr,jr + ςd,jd + ςe1,je1 , pr + pd)

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!

Ξ (ςr,jr + ςd,jd , pr + pd + pe1 + pe2, ςr,jr + ςd,jd + ςe1,je1 + ςe2,je2 , pr + pd) . (43)

CE =

L∑
jr=1

mr−1∑
pr=0

L∑
jd=1

md−1∑
pd=0

Ar,jr ς
pr
r,jr

Ad,jdς
pd
d,jd

pr!pd!


L∑

je2=1

me2−1∑
pe2=0

Ae2,je2ς
pe2
e2,je2

pe2!
Ξ (ςe2,je2 , pe2 + pr + pd, ςe2,je2 + ςr,jr + ςd,jd , pe2)

+
L∑

je1=1

me1−1∑
pe1=0

Ae1,je1
ςpe1e1,je1

pe1!
Ξ (ςe1,je1 , pe1 + pr + pd, ςe1,je1 + ςr,jr + ςd,jd , pe1)−

L∑
je2=1

me2−1∑
pe2=0

Ae2,je2
ςpe2e2,je2

pe2!

L∑
je1=1

me1−1∑
pe1=0

Ae1,je1
ςpe1e1,je1

pe1!
Ξ (ςe1,je1 + ςe2,je2 , pe1 + pe2 + pr + pd, ςe1,je1 + ςe2,je2 + ςr,jr + ςd,jd , pe1 + pe2)

 . (44)

C
∞
E =

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!
exp (ςe2,je2) Γ (1 + pe2) Γ (−pe2, ςe2,je2)

+
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!
exp (ςe1,je1) Γ (1 + pe1) Γ (−pe1, ςe1,je1)

−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!
Γ (ςe1,je1 + ςe2,je2) Γ (−pe1 − pe2, ςe1,je1 + ςe2,je2) . (46)
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Proof: When γr = γd = γ → ∞, the AESC can be
written as

C
∞
S

γ→∞
≈ 1

2

∫ ∞
0

∫ ∞
0

(ln (1 + γD)− ln (1 + γE))

fγD (γD) fγE (γE) dγDdγE

=
1

2

∫ ∞
0

F γD (γD)

1 + γD
dγD︸ ︷︷ ︸

C
∞
D

−1

2

∫ ∞
0

F γE (γE)

1 + γE
dγE︸ ︷︷ ︸

C
∞
E

, (48)

where C
∞
D and C

∞
E are given by (49) and (50), respectively.

The closed-form expression for C
∞
E can be obtained as (46)

by using (3.353.5) in [27].
To simplify C

∞
D further, we adopt the following asymptotic

results for the upper incomplete Gamma function as γr =
γd = γ →∞, namely ςr,jd → 0 and ςd,jd → 0. For pr+pd >
0, the asymptotic result becomes

lim
ςr,jr→0
ςd,jd→0

Γ (−pr − pd, ςr,jr + ςd,jd) =
(ςr,jr + ςd,jd)

−(pr+pd)

pr + pd
.

(51)

Using this relationship, we have

lim
ςr,jr→0
ςd,jd→0

ςprr,jr ς
pd
d,jd

Γ (−pr − pd, ςr,jr + ςd,jd)

=

(
krmr

tjr

)pr(
kdmd

tjd

)pd(
krmr

tjr
+ kdmd

tjd

)−(pr+pd)

pr + pd
. (52)

For pr = pd = 0, the asymptotic expression for the upper
incomplete Gamma function is

lim
ςr,jr→0
ςd,jd→0

Γ (0, ςr,jr + ςd,jd) ≈ − ln (ςr,jr + ςd,jd) + ψ (1)

= ln γ − ln

(
krmr

tjr
+
kdmd

tjd

)
+ ψ (1) . (53)

Using the asymptotic results for the upper incomplete
Gamma function and lim

ςr,jd→0
ςd,jd→0

exp (−ςr,jd − ςd,jd) = 1 for C
∞
D

yields

C
∞
D ≈

L∑
jr=1

Ar,jr

L∑
jd=1

Ad,jd
∑

pr+pd>0

Γ (1 + pr + pd)

pr!pd!(
krmr

tjr

)pr(
kdmd

tjd

)pd(
krmr

tjr
+ kdmd

tjd

)−(pr+pd)

pr + pd

+
L∑

jr=1

Ar,jr

L∑
jd=1

Ad,jd

[
ln γ − ln

(
krmr

tjr
+
kdmd

tjd

)
+ ψ (1)

]
(a)
= ln γ + Ω∞D , (54)

where (a) follows
∑L
jt=1At,jt = 1 proved by (5).

Considering the closed-form expressions for C
∞
E and C

∞
D ,

we arrive at the ESC as (45).
Note that, in the Lemma 4, the derived C

∞
D is actually the

AEC of the S − R − D link under the DF scheme when
γr = γd = γ → ∞, in which −Ω∞D denotes the high SNR

power offset. It is easy to see that the slope of AESC under the
DF relay scheme with respect to ln γ is always 1

2 , regardless
of any parameter setting. The impact of all parameters from
the S −R−D link is reflected in Ω∞D , where the increase in
γr (or γd, mr, md, kr, kd) can improve Ω∞D , resulting in a
better ESC. C

∞
E is the EC of eavesdropping links, which is

improved by making γe1 (or γe2, me1, me2, ke1, ke2) larger,
and thereby causing a worse ESC.

V. SYSTEM EXTENSION TO MULTIPLE RELAYS

In this section, the single relay system is extended to a
multi-relay system, shown in Fig. 1, where each relay among
N relays (denoted by the set R) adopts the DF strategy to
forward the signal from S to D. Assume that the channel
gains of all S − Ri links (i ∈ {1, 2, · · · , N}) follow the
independent and identically distributed GK fading, and the
same assumption is also used for the channel gains of Ri−D
and Ri−E links7, denoted by the independent and identically
distributed (i.i.d.) case in this paper. Moreover, the worst
silence eavesdropping case is considered, i.e., existing a direct
link between S and E. Based on these assumptions, the secure
performance of three relay selection strategies is investigated
in terms of SOP.

Fig. 1. Secure Multi-Relay System

A. DF Based Optimal Relay Selection (DF-ORS)
As the CSI of wiretap channel is not available at S, the

optimal relay selection is based on the CSI of S − Ri − D
links, denoted by DF-ORS. In the DF-ORS scheme, the best
relay is selected according to [21]

OptimalRelay = argmax
Ri∈R

min {γsi, γid} , (55)

where γsi and γid are the SNRs of S −Ri and Ri−D links,
respectively.

Let γr, mr and kr (or γd, md and kd) be the average SNR
and GK fading parameters of all S − Ri links (or Ri − D
links), respectively. The ASOP is given by Lemma 5.

Lemma 5: For mr 6= kr and md 6= kd, if γr = γd = γ →
∞, the ASOP under DF-ORS scheme is

SOP∞

=


ONrdγ

−vrN
∫∞

0
(λ− 1 + λx)

vrNfγE (x) dx, vr = vd;

ONr1γ
−vrN

∫∞
0

(λ− 1 + λx)
vrNfγE (x) dx, vr < vd;

ONd1γ
−vdN

∫∞
0

(λ− 1 + λx)
vdNfγE (x) dx, vr > vd,

(56)

7When those N relays are uniformly distributed around S, D and E, this
assumption is valid in a statistical sense [22].
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C
∞
D =

L∑
jr=1

Ar,jr

mr−1∑
pr=0

ςprr,jr
pr!

L∑
jd=1

Ad,jd

md−1∑
pd=0

ςpdd,jd
pd!

∫ ∞
0

xpr+pd

1 + x
exp (− (ςr,jr + ςd,jd)x)dx

=
L∑

jr=1

Ar,jr

mr−1∑
pr=0

ςprr,jr
pr!

L∑
jd=1

Ad,jd

md−1∑
pd=0

ςpdd,jd
pd!

exp (ςr,jr + ςd,jd) Γ (1 + pr + pd) Γ (−pr − pd, ςr,jr + ςd,jd) , (49)

C
∞
E =

L∑
je2=1

me2−1∑
pe2=0

Ae2,je2ς
pe2
e2,je2

pe2!

∫ ∞
0

xpe2 exp (−ςe2,je2x)

1 + x
dx+

L∑
je1=1

me1−1∑
pe1=0

Ae1,je1ς
pe1
e1,je1

pe1!

∫ ∞
0

xpe1 exp (−ςe1,je1x)

1 + x
dx

−
L∑

je1=1

Ae1,je1

me1−1∑
pe1=0

ςpe1e1,je1

pe1!

L∑
je2=1

Ae2,je2

me2−1∑
pe2=0

ςpe2e2,je2

pe2!

∫ ∞
0

xpe1+pe2 exp (− (ςe1,je1 + ςe2,je2)x)

1 + x
dx. (50)

where vr = min{mr, kr}, vd = min{md, kd}, Or1 =
Γ(|kr−mr|)(krmr)vr

Γ(kr)Γ(mr)vr
, Od1 = Γ(|kd−md|)(kdmd)vd

Γ(kd)Γ(md)vd
, Ord = Or1 +

Od1, and the closed-form expression for the integral is∫ ∞
0

(λ− 1 + λx)
M
fγE (x) dx

=
M∑
s=0

(
M

s

)
(λ− 1)

M−s
λsE

{
γME
}
, (57)

where M ∈ {vrN, vdN}, and E{γME } is given by (24) in
Proposition 3.3.

Proof: Let γi be the combined SNR of the S − Ri −D
link., i.e., γi = min{γsi, γid}. The asymptotic CDF of γi is
given by Proposition 3.2

F∞γi (x) =


F∞γsi (x) + F∞γid (x) , vr = vd;

F∞γsi (x) , vr < vd;

F∞γid (x) , vr > vd,

. (58)

where F∞γsi(·) and F∞γid(·) are the asymptotic CDFs of γsi and
γid, respectively. Let γD be the combined SNR under the DF-
ORS scheme, and the asymptotic CDF of γD can be written
as

F∞γD (x) =
[
F∞γi (x)

]N
=


[
F∞γsi (x) + F∞γid (x)

]N
, vr = vd;[

F∞γsi (x)
]N
, vr < vd;[

F∞γid (x)
]N
, vr > vd.

(59)

When kr 6= mr and kd 6= md, the asymptotic CDF of γD can
be derived as

F∞γD (x) =


(Or +Od)

N
γ−vrN , vr = vd;

ONr γ
−vrN , vr < vd;

ONd γ
−vdN , vr > vd,

=


ONrdx

vrNγ−vrN , vr = vd;

ONr1x
vrNγ−vrN , vr < vd;

ONd1x
vdNγ−vdN , vr > vd,

(60)

where Od = Od1x
vdN , and Or = Or1x

vrN .
As the relay selection is according to the SNRs of S−Ri−D

links, the relay selection is random for E, and the CDF of the

combined SNR at E (γE) in this case is the same as that in
the single relay case, given by (8), if Ri − E (Ri ∈ R) links
undergo i.i.d GK fading. Substituting (8) and (60) into the
SOP definition, i.e., (11), yields (56).

B. DF Based Sub-Optimal Relay Selection I (DF-SORSI)

Although the DF-ORS scheme is the best relay selection
scheme for silent eavesdropping, the DF-ORS scheme involves
the computation of two hops’ channel capacity in the system.
To cut down the computation complexity, the first sub-optimal
relay selection scheme is proposed, denoted by DF-SORSI,
which is only based on the first hop, i.e.,

SubOptimalRelayI = argmax
Ri∈R

γsi. (61)

Lemma 6: The ASOP of the secure multi-relay system
investigated in Fig. 1 under the DF-SORSI scheme in the high
SNR region of S −Ri −D links (Ri ∈ R) is given by

SOP∞ =

(ONr1 +Od1)γ−vd
∞∫
0

(λ− 1 + λx)
vdfγE (x) dx, vrN = vd;

ONr1γ
−vrN

∞∫
0

(λ− 1 + λx)
vrNfγE (x) dx, vrN < vd;

Od1γ
−vd
∞∫
0

(λ− 1 + λx)
vdfγE (x) dx, vrN > vd,

(62)

where the closed-form expression for the integral form is given
by (57), in which M ∈ {vrN, vd}.

Proof: The asymptotic CDF of combined SNR (γr) in
the first hop is

F∞γr (x) =
[
F∞γsi (x)

]N
= ONr1x

vrNγ−vrN . (63)
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The asymptotic CDF of combined SNR (γD) in two hops at
D is given by

F∞γD (x) =


F∞γr (x) + F∞γd (x) , vrN = vd;

F∞γr (x) , vrN < vd;

F∞γd (x) , vrN > vd,

=


(
ONr1 +Od1

)
γ−vdxvd , vrN = vd;

ONr1x
vrNγ−vrN , vrN < vd;

Od1x
vdγ−vd , vrN > vd,

(64)

where γd denotes the received SNR of the second hop at D.
Substituting the derived F∞γD (x) into (11) gives the ASOP as
(62).

C. DF Based Sub-Optimal Relay Selection II (DF-SORSII)

The second sub-optimal relay selection scheme, denoted by
DF-SORSII, is based on the second hop, i.e.,

SubOptimalRelayII = argmax
Ri∈R

γid. (65)

Lemma 7: From the symmetrical property of two hops in
the DF scheme, the ASOP under the DF-SORSII scheme can
be easily derived according to Lemma 6, given by

SOP∞ =

(Or1 +ONd1)γ−vr
∞∫
0

(λ− 1 + λx)
vrfγE (x) dx, vr = vdN ;

Or1γ
−vr
∞∫
0

(λ− 1 + λx)
vrfγE (x) dx, vr < vdN ;

ONd1γ
−vdN

∞∫
0

(λ− 1 + λx)
vdNfγE (x) dx, vr > vdN,

(66)

where the integrals have been solved in (57).
From Lemmas 5-7, it is obvious that the SDOs under DF-

ORS, DF-SORSI and DF-SORSII schemes are min{vr, vd}N ,
min{vrN, vd} and min{vr, vdN}, respectively. It means that
the SDO of DF-ORS scheme is always the largest one among
the proposed three relay selection schemes. As described in
Lemma 6, if vrN < vd, the SDO grows as N increases, while
it remains constant (vd) for vrN ≥ vd in the DF-SORSI case,
which means that more relays cannot provide larger space
diversity. This situation is reversed for the DF-SORSII scheme,
shown in Lemma 7. For the DF-ORS scheme, the SDO always
increases with increasing N .

VI. SECURITY-RELIABILITY TRADEOFF ANALYSIS

In the previous sections, the transmitter adopts the maximal
code rate according to the CSI, i.e., channel capacity, for
message transmission. In this section, the constant code rate at
S is considered. In this case, there may exist an outage event
for message transmission, because the channel capacity may
not be always greater than the constant rate (Rd). By referring
to [22], the security-reliability tradeoff (SRT) is analyzed in
this section.

As shown in Fig. 1, S adopts a constant rate Rd for message
transmission to D via a relay selected among N relays. Let
D be the subset of R where all relays in D can decode the

signal from S successfully. There are 2N possible subsets of
R, denoted by ∅,D1,D2, · · · ,D2N−1, where ∅ represents the
empty set.

If D = Dn happens, the best relay selection is based on
[22]

OptimalRelay = arg max
Ri∈Dn

γid, (67)

where γid is the SNR of Ri −D link.
The occurrence probability of D can be easily derived as

Pr {D = ∅} =
N∏
i=1

Pr

{
1

2
log2 (1 + γsi) < Rd

}

=
N∏
i=1

Pr {γsi < δ} =
N∏
i=1

Fγsi (δ) , (68)

and

Pr {D = Dn} =
∏

Ri∈Dn

Pr

{
1

2
log2 (1 + γsi) > Rd

}
∏

Rj∈Dn

Pr

{
1

2
log2 (1 + γsj) < Rd

}
=

∏
Ri∈Dn

Pr {γsi > δ}
∏

Rj∈Dn

Pr {γsj < δ}

=
∏

Ri∈Dn

F γsi (δ)
∏

Rj∈Dn

Fγsi (δ), (69)

where δ = 22Rd−1, γsi, F·(·), F ·(·) and Dn denote the SNR
of S−Ri link, CDF, CCDF, and complementary set of Dn in
R, respectively.

A. Outage Probability

Lemma 8: If a source adopts a fixed code rate (Rd) to
communicate with a destination via N DF relays, where the
relay selection is according to (67), the corresponding OP is

Pout =

N∏
i=1

Fγsi (δ) +

2N−1∑
n=1

∏
Ri∈Dn

F γsi (δ)Fγid (δ)
∏

Ri∈Dn

Fγsi (δ),

(70)

which is valid for general fading models.
Proof: The OP is given in the probability form as [22]

Pout = Pr {D = ∅}+
2N−1∑
n=1

Pr {D = Dn}Pr {Crd < Rd} ,

(71)

where Crd is the channel capacity between the selected relay
and D, and Pr {Crd < Rd} represents the OP of the second
hop, given by

Pr {Crd < Rd} = Pr

{
max
Ri∈Dn

γid < δ

}
=

∏
Ri∈Dn

Pr {γid < δ} =
∏

Ri∈Dn

Fγid (δ) . (72)

In view of (72), (68) and (69), the closed-form expression
for OP is easily obtained as (70).
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If S−Ri links (or Ri−D links or Ri−E links) undergo i.i.d
GK fading with fading parameters mr, kr, γr (or md, kd, γd
or me2, ke2, γe2), the OP can be simplified in a concise form,
shown in Lemma 9.

Lemma 9: In the high SNR region of S−Ri−D links, the
OP of constant code rate in the secure multi-relay system can
be approximated by

P∞out '


(Od +Or)

N
γ−vrN , vd = vr;

ONd γ
−vdN , vd < vr;

ONr γ
−vrN , vd > vr,

(73)

where vt = min{kt,mt} (t ∈ {r, d}), Ot =
Γ(|kt−mt|)(ktmtδ)

vt

Γ(kt)Γ(mt)vt
, and γ = γd = γr denotes the mean SNR

of all S −Ri −D links in two hops.
Proof: When γr = γd = γ → ∞ and mt 6= kt (t ∈

{r, d}), substituting the asymptotic CDF of γt in Proposition
3.1 into the OP expression in Lemma 8 yields

P∞out = ONr γ
−vrN

+
2N−1∑
n=1

[
1−O|Dn|

r γ−vr|Dn|
]
O
|Dn|
d γ−vd|Dn|O

|Dn|
r γ−vr|Dn|

= ONr γ
−vrN +

2N−1∑
n=1

O
|Dn|
d O

|Dn|
r γ−vd|Dn|−vr|Dn|

−ONr γ−vrN
2N−1∑
n=1

O
|Dn|
d γ−vd|Dn|, (74)

where | · | denotes the cardinality of the inside set.
By using the following equations

2N−1∑
n=1

x|Dn| =
N∑
n=1

(
N

n

)
xn = (x+ 1)

N − 1, (75)

and
2N−1∑
n=1

x|Dn|y|Dn| =
2N−1∑
n=1

x|Dn|yN−|Dn|

=
N∑
n=1

(
N

n

)
xnyN−n = (x+ y)

N − yN , (76)

AOP can be further derived as

P∞out = ONr γ
−vrN +

(
Odγ

−vd +Orγ
−vr
)N −ONr γ−vrN

−ONr γ−vrN
[(
Odγ

−vd + 1
)N − 1

]
'
(
Odγ

−vd +Orγ
−vr
)N −NONr Odγ−vd−vrN . (77)

P∞out can be finally written as (73) by using the relationship
between vd and vr.

Corollary 6.1: If the OP (and γ) are sufficiently small (and
large), δ can be approximately calculated by

δ '


[
Pout

/
(Od1 +Or1)

N
] 1

vrN

γ, vr = vd;(
Pout

/
ONr1

) 1
vrN γ, vr < vd;(

Pout

/
ONd1

) 1
vdN γ, vr > vd,

(78)

where Ot1 = Γ(|kt−mt|)(ktmt)
vt

Γ(kt)Γ(mt)vt
, and t ∈ {r, d}.

Proof: This corollary can be easily obtained by using
Lemma 9.

After deriving δ by using Corollary 6.1, the corresponding
code rate is easily obtained by Rd = 1

2 log2 (1 + δ). It is very
useful and important for the secure system design, because
if the OP is given, the approximate δ can be calculated
immediately, which can be used to calculate the corresponding
intercept probability (IP) given by lemma 10. Therefore,
Corollary 6.1 bridges the OP and IP.

B. Intercept Probability

The IP, denoted by Pint, is defined as the probability that
the channel capacity of wiretap channel is greater than that of
main channel.

Lemma 10: The closed-form expression for IP in the i.i.d.
case is

Pint =
N∏
i=1

Fγsi (δ)F γe1(δ)

+

(
1−

N∏
i=1

Fγsi (δ)

)
[1− Fγe1 (δ)Fγe2 (δ)] , (79)

where Fγe1(·) and Fγe2(·) are the CDFs of the SNRs in the
first and second hops of E, respectively.

Proof: In this constant rate scenario, Pint can be written
as [22]

Pint = Pr {D = ∅}Pr {Ce1 > Rd}

+
2N−1∑
n=1

Pr {D = Dn}Pr {Ce > Rd}

= Pr {D = ∅}Pr {Ce1 > Rd}
+ [1− Pr {D = ∅}] Pr {Ce > Rd} (80)

where Ce1 and Ce are the channel capacity of the first hop
and combined channel capacity of two hops of E, respectively,
Pr{Ce1 > Rd} and Pr{Ce > Rd} are given by

Pr {Ce1 > Rd} = Pr

{
1

2
log2 (1 + γe1) > Rd

}
= Pr {γe1 > δ} = F γe1 (δ) , (81)

Pr {Ce > Rd} = Pr {max {Ce1, Ce2} > Rd}
= 1− Fγe1 (δ)Fγe2 (δ) , (82)

where Ce2 is the channel capacity of the second hop of E,
respectively.

When γr = γd = γ →∞, the asymptotic IP becomes

P∞int ' F γe1(δ)ONr γ
−vrN

+
(
1−ONr γ−vrN

)
[1− Fγe1 (δ)Fγe2 (δ)]

' 1− Fγe1 (δ)Fγe2 (δ) , (83)

which shows that the impact of S − Ri − D links vanishes,
because when the SNRs of S − Ri − D links are large
sufficiently, there is always a relay selected among N relays
to forward the signal from S to D.
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VII. NUMERICAL RESULTS

A. SOP in the single relay system

In this subsection, we run Monte-Carlo simulations to
validate the correctness of the exact and asymptotic closed-
form expressions for SOP, as well as the AOP for the S−R−D
link.

As shown in Fig. 2, we can see that the SOP is improved
with γd increasing, due to the improved second hop of
the main channel. In the high γd region, SOP is roughly
unchanged because of the limit of the mean value of the
first hop fading channel, i.e., γr. It is also obvious that SOP
becomes better as γe1 and γe2 decrease, and vice versa. We
can also see that the SOP of k = 4 is much better than that
of k = 2, because of lighter shadowing.
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Fig. 2. SOP versus γd for mr = md = me1 = me2 = 2, kr = kd =
ke1 = ke2 = k, RS = 0.01, and γr = 1 dB.

Figs. 3-4 plot OP of the S − R − D link derived in
Proposition 3.2 versus γ with different md and kd, where
we can see that the OP is improved as γ increases, due to
the improved average link between S and D. In Fig. 3, the
slope (reflecting the diversity order) of AOP depends only
on the second hop for min{md, kd} ≤ min{mr, kr}, and
vice versa. Although the slope is determined by the first hop
for min{md, kd} ≥ min{mr, kr}, the intercept on horizontal
axis (reflecting the array gain) decreases with md increasing,
resulting in the improved OP. Further, from Fig. 4, we observe
that the AOP is not a linear function with respect to γ for
md = kd and mr = kr in the log-scale, despite the fact that
the slope of OP changes very slowly in high SNRs.

The asymptotic results for SOP in high SNRs are presented
in Figs. 5-6, where we set mr = md = me1 = me2 = m
for Fig. 5, and mr = md = me1 = me2 = m, kr = kd =
ke1 = ke2 = k for Fig. 6. In Figs. 5-6, there is a decreasing
trend of SOP for a larger m (or k), because of more multi-
path (or lighter shadowing). It is also obvious that the SDO
is min{m, k}, reflected in the different slopes. If m = k, the
ASOP is not a linear function with respect to log γ, despite
the slowly changing slope in the high SNR region in Fig. 6.

B. ESC in the single relay system

Fig. 7 plots ESC versus γd, where ESC grows with γd
increasing in the low γd region. When γd is large sufficiently,
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Fig. 3. OP versus γr = γd = γ for γD = 0.1,mr = 2.5 and kr = kd = 2.
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Fig. 4. OP versus γr = γd = γ for γD = 0.1, and mr = kr = 1.5.
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Fig. 5. SOP versus γ for kr = kd = ke1 = ke2 = 4, RS = 0.01, and
γe1 = γe2 = 5 dB.

the ESC will reach an upper bound with γr fixed. Besides,
when γe1 and γe2 increase, the ESC will be on decline, as the
wiretap channel becomes better. It is worthwhile to note that
in the high γd region, the ESC of k = 6 is larger than that
of k = 2 in the γe1 = γe2 = 1 dB case, while the figure for
k = 2 is greater than that of k = 6 in another γe1 = γe2 case.

There is an increasing trend of AESC with k and m
increasing in Figs. 8-9, reflecting the decrease in the intercept
on the horizontal axis (lower power offset). This is because a
larger k (or m) represents lighter shadowing (or more multi-
path in small scale fading). It is also easy to see that the slope
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Fig. 6. SOP versus γ for RS = 0.01, and γe1 = γe2 = 5 dB.
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Fig. 7. ESC versus γd for mr = md = me1 = me2 = 2, kr = kd =
ke1 = ke2 = k, and γr = 1 dB.

of AESC is fixed ( 1
2 ) with respect to ln γ, regardless of any

parameter setting.
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Fig. 8. ESC versus γ for mr = md = me1 = me2 = 2, kr = kd =
ke1 = ke2 = k, and γe1 = γe2 = 1 dB.

C. ASOP in the multi-relay system

The secrecy outage performance of secure multiple relays
under three selection strategies investigated in the V section
is simulated in Figs. 10-11. The SOP becomes larger as N
decreases in Fig. 10, which can be explained by the fact that a
smaller N means less possible relay candidates in the selection
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Fig. 9. ESC versus γ for mr = md = me1 = me2 = m, kr = kd =
ke1 = ke2 = 4, and γe1 = γe2 = 1 dB.

stage (or smaller space diversity). The impact of N is also
reflected in the slope of ASOP, where the line with a larger
N has a larger SDO.

The comparison of secrecy outage performance among
three selection strategies is shown in Fig. 11, where the
SOP under the DF-ORS scheme is best, followed by the
figures for DF-SORSII and DF-SORSI, respectively. As de-
scribed in Lemmas 5-7, the SDOs of DF-ORS, DF-SORSI
and DF-SORSII schemes are min{vd, vr}N , min{vrN, vd},
and min{vr, vdN}, respectively. This explains the reason that
the line of DF-SORSI has the smallest SDO, and the slopes of
DF-SORSI and DF-SORSII remain constant when N increases
from 2 to 3.
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Fig. 10. SOP versus γ for mr = md = 2, kr = kd = 1, me1 = me1 = 1,
ke1 = ke2 = 2, γe1 = γe2 = 5 dB, and RS = 1.

D. SRT analysis in the multi-relay system

The OP of constant code rate at the source investigated in
the VI section is presented in Fig. 12. The impact of N on
OP is based on the space diversity, i.e., more relays indicate
larger space diversity, resulting in a better OP. This is also
applied to the impact of N on IP in Fig. 13. The solid lines
in Fig. 13 are plotted by using the Corollary 6.1, i.e., the fast
calculation of Rd, when the OP is given. Fig. 13 shows a good
matching between the approximate IP and exact IP, especially
for small OP. Although the gap grows in the high OP region
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Fig. 11. SOP versus γ for mr = 2, md = 1, kr = kd = 3, me1 =
me2 = ke1 = ke2 = 2, and γe1 = γe2 = 5 dB, and RS = 1.

and a higher OP results in a better IP, a high OP (greater
than 10−3) means frequent outage in communications, which
is unacceptable in the real communication systems.
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Fig. 12. OP versus γ for mr = 2, kr = 3, md = 1, kd = 2, and Rd = 1.
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Fig. 13. IP versus OP for mr = md = 1, kr = kd = 2, me1 = me2 = 2,
ke1 = ke2 = 1, γ = 30 dB, and γe1 = γe2 = 5 dB.

VIII. CONCLUSIONS

In the single relay case, we derived exact and asymptotic
closed-form expressions for SOP and ESC. From the derived
asymptotic expressions for SOP in high SNRs, we can see that
the SDO is min{md, kd,mr, kr} in the GK parameter setting,

which is also valid for md = kd (or mr = kr) although the
ASOP is not a linear function with respect to the average SNR
in the log-scale. Our derived AESC expression shows that the
slope of AESC is fixed for the changing average SNR in the dB
scale. We have the similar conclusion for AOP and AEC in the
investigated DF relay (S−R−D link). For the secure multi-
relay system, the ASOP under DF-ORS, DF-SORSI and DF-
SORSII schemes was investigated. The expression for ASOP
shows the SDO and SAG, which governs the SOP behaviour
in high SNRs. The SRT analysis was also presented when the
source adopts a fixed code rate. Specifically, a fast calculation
method for the code rate was developed based on the derived
AOP expression.
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