
Multi-access coded caching:

gains beyond cache-redundancy

Berksan Serbetci, Emanuele Parrinello and Petros Elia

Communication Systems Department, EURECOM, Sophia Antipolis, France

Email: {serbetci,parrinel,elia}@eurecom.fr

Abstract— The work considers the K-user cache-aided shared-
link broadcast channel where each user has access to exactly z
caches of normalized size γ, and where each cache assists exactly
z users. For this setting, for two opposing memory regimes,
we propose novel caching and coded delivery schemes which
maximize the local caching gain, and achieve a coding gain larger
than 1+Kγ (users served at a time) despite the fact that the total
cache redundancy remains Kγ irrespective of z. Interestingly,
when z =

K−1

Kγ
, the derived optimal coding gain is Kγz + 1,

matching the performance of a hypothetical scenario where each
user has its own dedicated cache of size zγ.

I. INTRODUCTION

A significant step toward understanding the fundamental

limits of interference-limited caching networks was achieved

in the work of Maddah-Ali and Niesen in [1] where an

information theoretic study of the cache-aided broadcast chan-

nel (BC) revealed large improvements over the conventional

caching approaches, as a result of a carefully designed cache

placement phase which allowed a simultaneous delivery to

many users at a time. In particular, the work in [1] considered

a setting of a single server having access to a library of N
unit-sized files and connected via a shared-link unit-capacity

BC to K receiving users, where each user has access to its own

dedicated cache of size M ≤ N . In this setting, [1] showed

that any possible set of requests by the K users, can be served

with delay T = K(1−γ)
Kγ+1 , where γ = M/N is the normalized

cache size. This revealed an ability to serve Kγ + 1 users

at a time, where this number is commonly referred to as the

coding gain or simply the degrees-of-freedom (DoF). For this

setting, the gain was proven in [2], [3] to be optimal under

the constraint of uncoded cache placement. The coded caching

ideas sparked considerable interest, resulting in a variety of

related works that include [5], [6], [7], [8], [9], [10].

A. Coded caching with multiple-access

Most of the works on coded caching consider scenarios

where each user has its own dedicated cache. However in a

variety of settings, such as different cellular networks, users

can conceivably connect to multiple caches whose coverage

areas may overlap. This consideration motivated the work in

[11] which considered a similar K-user shared-link BC, where

This work was supported by the European Research Council under the EU
Horizon 2020 research and innovation program / ERC grant agreement no.
725929.

Users

Caches

Shared-link

1 file per channel use

Infinite capacity link

Server

1 2 3 4 5

1 2 3 4 5

Fig. 1. Setting for K = 5 and z = 2.

each user is assisted by exactly z > 1 caches, and where

each cache can serve exactly z users. In this context, the

work in [11] provided a caching and delivery strategy whose

centralized variant1 achieves a worst-case delivery time of

T =
K(1− zγ)

Kγ + 1
(1)

reflecting an ability to increase the local caching gain to zγ
(meaning that each user sees a fraction zγ of each file), as

well as an ability to preserve the coding gain to Kγ + 1, by

virtue of a scheme that served Kγ + 1 users at a time. For

this same setting, in [12] the authors provide explicit designs

for K = 4, N = 4, z = {2, 3}, M = 1 and K = 6, N = 6,

z = 3, M = 1, for which matching lower bounds are also

developed to prove optimality of the schemes under uncoded

cache placement. Finally, the authors provide a scheme for the

extreme case of z = K − 1.

For this multi-access setting, we will show that the coding

gain
K(1−zγ)

T
can exceed Kγ + 1. In particular, for two

opposing memory regimes, we propose two novel schemes

which can serve, on average, more than Kγ + 1 users at a

time. For the special case of z = K−1
Kγ

, the achieved gain is

proven to be optimal under uncoded cache placement.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a network where K users are connected via

an error-free shared link to a server storing N (N ≥ K) files

W 1,W 2, . . . ,WN . Each user has access to z out of K helper

1The work in [11] proposed a decentralized (stochastic) cache placement
scheme, whose performance is slightly reduced over the easy-to-extend-to
centralized variant whose delivery time we recorded above.

X1 =
K
∑

k=1





min{k−z−1,z−1}
∑

j=1

[

⌊K − (k + z + j)

2

⌋

+ 1

]

+

+
z−1
∑

j=max{1,k−z}

[

⌊K − 2z − 2j

2

⌋

+ 1

]

+



 ,

X2=K

[

⌊K−2−z
3

⌋ − z

2
+ 1

]

+

(

K−4z+3−3

[

⌊K−2−z
3

⌋ − z

2
+ 1

]

+

)

, S =
K(K − 2z + 2)

4
. (2)

caches2, each of size M = Nγ (units of file), where γ ∈
{ 1
K
, 2
K
, . . . , 1}. We will use Zk to denote the content in cache

k, and we will assume that each user has an unlimited capacity

link to the caches it is connected to. Reflecting the assumption

that each user has access to exactly z caches and each cache

connects to exactly z users, we will consider, without loss of

generality, the symmetric topology where each user k ∈ [K]
△
=

{1, 2, . . . ,K} is associated to caches

Ck
△
= 〈k, k + 1, . . . , k + z − 1〉 ⊆ [K]

where in the above we use the notation 〈M〉 =
{m | m for m ≤ K ; m−K for m > K, m ∈ Z

+, ∀m ∈
M}. A pictorial representation of the studied setting can be

found in Figure 1.

The system works in two phases: the cache placement phase

and the delivery phase. The first consists of filling the caches

with the content of the library without knowledge of the users’

demands. In the delivery phase, each user k requests a file

from the library. We denote the index of such file by dk and

we collect all the indices of the requested files in the demand

vector d = (d1, d2, . . . , dK). The work focuses on the worst

case where all users request different files. Upon reception of

the demand vector d, the server will transmit a message X
that spans T units of time. Each user k will use X and their

own available cache content ∪i∈Ck
Zi to decode the desired

file W dk . Our objective is to provide a caching and delivery

scheme that reduces the delivery delay T .

III. MAIN RESULTS

This section presents the main results. The proof of the

following theorem follows from the scheme described in Sec-

tion IV.

Theorem 1. In the coded caching setting where each user is

connected to z caches, when Kγ = 2, the delivery time

T =
X1 +X2

S
(3)

is achievable 3, where X1, X2 and S are given in (2).

2Notice that the assumption of having as many users as caches can be
relaxed to a more general case where the system has more users than caches,
with a potential non uniform distribution of the users among the caches. Under
these circumstances, the schemes described here can be combined with the
non-uniformity adaptive coded caching scheme presented in [7] for the single
transmitter setting.

3The above expression holds for the case where S(K− 2z)− 4X1 is non
negative and divisible by 3. This assumption can be removed at a small cost
of increased scheme subpacketization.

50 100 150 200 250 300 350 400

K

3

3.2

3.4

3.6

3.8

4

4.2

D
o

F

z=2

z=4

z=6

z=8

z=10

Scheme from [11] for any z

Fig. 2. DoF as a function of K for several z. Case of Kγ = 2.

Remark 1. The scheme consists of transmissions serving either

Kγ + 1 = 3 users or 4 users at a time. Figure 2 shows, for

several values of z, the achievable DoF as a function of K.

We can see how the DoF always exceeds Kγ+1 = 3 and can

approach 4 for some values of K and z.

We now characterize the optimal worst-case delivery time

(under the assumption of uncoded cache placement) for the

case of z = K−1
Kγ

, for any Kγ .

Theorem 2. In the addressed K-user caching network with

access to an integer number z = K−1
Kγ

of caches of normalized

size γ, the optimal delivery time, under the assumption of

uncoded cache placement, takes the form

T ∗ =
K(1− γz)

Kγz + 1
=

1

K
(4)

corresponding to a DoF of Kγz + 1 users served at a time.

The scheme that achieves the above performance is de-

scribed in Section V. The optimality — under uncoded cache

placement — follows directly from the fact that the achieved

performance matches the optimal performance (cf. [2],[3]) of

a dedicated-cache coded caching setting (identical to that in

[1]), where each cache has an augmented size equal to zγ.

IV. CACHING AND DELIVERY SCHEME FOR Kγ = 2

In this section we present a caching and delivery scheme

for the case of Kγ = 2. The scheme preserves the full local

caching gain as in [11], and achieves a coding gain that strictly

exceeds Kγ + 1.

A. Cache placement algorithm

In the cache placement phase, we first split each file Wn

into S = K(K−2z+2)
4 subfiles Wn

T for each pair T
△
= {T1, T2}

from the set

Ψ
△
= {T : T1 ∈ [K−z], T2 ∈ [T1+z : 2 : min{K−z+T1,K}]}

(5)

where in the above we used the notation [a : b : c] to denote

an ordered set of integers4, from a to c, in additive steps of b.
After splitting the files, each cache k is filled as follows

Zk = {Wn
T | ∀n ∈ [N], ∀T ∋ k}. (6)

a) Verifying the memory constraint: To show that the

cache placement satisfies the per-cache memory M = 2N
K

,

we focus without loss of generality on cache 1, and note that

the number of subfiles (per file) in this cache is K−2z
2 + 1.

Recalling that each such subfile is of size 1/S, yields

N
(

K−2z
2 + 1

)

K(K−2z+2)
4

=
2N

K
= M

thus proving that the memory constraint is satisfied.

B. Delivery scheme

The delivery scheme has two phases, where the first phase

transmits XORs composed of 4 subfiles, while the second

phase transmits XORs composed of Kγ + 1 = 3 subfiles.

1) Phase 1: Recall from above that any subfile W dk

T , k ∈
T ∈ Ψ (T1 ∈ [k : 1 : 〈k + z − 1〉]), is already available at

one of the caches seen by the requesting user k ∈ [K]. For

each user k ∈ [K], the aim of this first phase is to serve the

subfiles in the set
{

W dk

T1,T2
| ∀{T1, T2} ∈ Ψ : T1 ∈ 〈[k−z+1:1:k−1]〉

∪ 〈[k+z:1:k+2z−2]〉
}

. (7)

For any k ∈ [K], let us define the following two sets

Ωk,1
△
= [k + 1 : 1 : k + z − 1]

Ωk,2
△
= [k − z + 1 : 1 : k − 1] (8)

and the set

Bk,j
△
= [Ωk,1(j) + z : 2 : Uk,j] (9)

where

Uk,j
△
=

{

〈Ωk,2(j)− z〉, if Ωk,2(j)− z < 0
K, otherwise.

(10)

and where in the above we used the notation Γ(j) to denote

the j-th element of an ordered set Γ. Next, for any k ∈ [K]
and any j ∈ [z − 1] we form the following XOR

X(k, j,m) = W
d〈k−z+1〉

〈Ωk,1(j)〉,Bk,j(m) ⊕W dk

〈Ωk,2(j)〉,Bk,j(m)

⊕W
d〈Bk,j(m)−z+1〉

〈ΩBk,j(m),1(j)〉,k
⊕W

dBk,j(m)

〈ΩBj,k(m),2(j)〉,k
. (11)

4Note that b may be less than zero.

Creating the above XORs for every m ∈ [|Bk,j |] and every

k ∈ [K], spans the entire set of requested files in (7), and what

we show below is that each component subfile (in the XORs)

can be successfully decoded by its corresponding user.

a) Decoding: Consider any XOR as in (11) and let us

focus on the subfiles W
d〈k−z+1〉

Ωk,1(j),Bk,j(m) and W dk

Ωk,2(j),Bk,j(m)

which are desired by users 〈k − z + 1〉 and k, respectively.

By the cache placement phase, we notice that the subfiles

W
d〈Bk,j(m)−z+1〉

TBk,j(m),z,1(j),k
and W

dBk,j(m)

Tbj,k,z(m),z,2(j),k
are both cached in

cache k, thus enabling both users 〈k−z+1〉 and k to subtract

these subfiles from X(k, j,m). Next, we also notice that user

〈k − z + 1〉 can cache out W dk

Ωk,2(j),Bk,j(m) since Ωk,2(j) ∈

∪i∈C〈k−z+1〉
Zi. Similarly, user k can remove W

d〈k−z+1〉

Ωk,1(j),Bk,j(m)

from X(k, j,m) because Ωk,1(j) ∈ ∪i∈Ck
Zi. Hence, we

conclude that any XOR in (11) is decodable by both users

k and 〈k−z+1〉. In the same way, it can be shown that users

〈Bk,j(m)− z+1〉 and Bk,j(m) can successfully decode their

own requested subfiles.

2) Phase 2: We start by defining the set

δ =

[

z : 2 :

⌊

K − 2− z

3

⌋]

as well as the following set of triplets

Θ =

{

(θ1, θ2, θ3)|θ1 = δ(j), θ2 = 2δ(j) + z + 2(i− 1),

θ3 = δ(j) + 2(i− 1), j ∈ [|δ|], i ∈

[

K − 3δ(j)− z

2

]

}

.

(12)

For each triplet θ ∈ Θ and for each p ∈ [K], we generate

the following two XORs

Yp(θ, 1) = W
dp

〈θ2−θ1+p−1〉,〈θ2+p−1〉 ⊕W
d〈θ2−θ1−z+p〉

p,〈θ2+p〉

⊕W
d〈θ2+p−1〉

〈z−2+p〉,〈z−2+θ3+p〉 (13)

Yp(θ, 2) = W
dp

〈θ2−θ1+p〉,〈θ2+p〉 ⊕W
d〈θ2−θ1−z+1+p〉

p,〈θ2+p〉

⊕W
d〈θ2+p−1〉

〈z+p−1〉,〈z+θ3+p−1〉. (14)

It can be shown (this is not done here due to lack of space)

that, due to the structure of the XORs, as we go over all

θ ∈ Θ, p ∈ [K], no subfile is ever repeated. This allows us to

conclude that the two phases successfully include all desired

subfiles by all the users. As we did for phase 1, below we

show that each subfile in the above XORs from (13) and (14)

can be decoded successfully by their requesting user.

a) Decoding: For any p ∈ [K], we will prove that the

subfiles in Yp(θ, 1) can be decoded by their intended users.

The decodability proof for Yp(θ, 2) will then follow directly.

User p can cache out subfiles W
d〈θ2−θ1−z+p〉

p,〈p+θ2〉
and

W
d〈θ2+p−1〉

〈z−2+p〉,〈z−2+θ3+p〉 from Yp(θ, 1) since their subscripts

p ∈ ∪i∈CpZi
and 〈z − 2 + p〉 ∈ ∪i∈CpZi

correspond to the

caches that user p is connected to. Next, we notice that user

〈θ2 − θ1 − z + p〉 is connected to cache 〈θ2 − θ1 + p − 1〉

and thus it can cache out subfile W
dp

〈θ2−θ1+p−1〉,〈θ2+p−1〉. The

same user 〈θ2−θ1−z+p〉 = 〈δ(j)+p+2(i−1)〉 has access

to subfiles with subscripts in the set 〈[δ(j)+ p+2(i− 1) : 1 :
δ(j)+p+2(i−1)+z−1]〉. A relabelling of 〈θ3+p+z−2〉 to

〈δ(j)+z+p−2+2(i−1)〉 highlights that user 〈θ2−θ1−z+p〉

can also remove W
d〈θ2+p−1〉

〈z−2+p〉,〈z−2+θ3+p〉 from Yp(θ, 1), and

hence obtains its desired subfile W
d〈θ2−θ1−z+p〉

p,〈θ2+p〉 successfully.

Finally, we recall that user 〈θ2 + p− 1〉 has access to caches

C〈θ2+p−1〉 = 〈[θ2 + p− 1 : 1 : θ2 + p− 2 + z]〉 and hence can

successfully decode its desired subfile since it can cache out

subfiles W
dp

〈θ2−θ1+p−1〉,〈θ2+p−1〉 and W
d〈θ2−θ1−z+p〉

p,〈θ2+p〉 .

3) Performance of the algorithm: We observe that each

generated XOR serves a different set of 3 or 4 subfiles, which

can all be decoded. It can also be shown that the proposed

delivery scheme successfully satisfies any demand vector d.

The proof is easy and is here omitted due to lack of space.

Following the construction, we can readily count the total

number of XORs transmitted during phase 1 and phase 2 to

respectively be X1 and X2 from (2), which concludes the

proof of the achievable delay in Theorem 1.

C. Example

In this subsection we offer an example that may help to

better understand the scheme. We consider the setting with

parameters K = 10, Kγ = 2, and z = 2. For the sake of

simplicity, we will use 0 to represent the index 10 and also,

when describing a double index i, j, we will omit the comma.

In the placement phase, we first split each file, according

to (5), into S = 20 equally-sized subfiles with indices

Ψ ={13, 15, 17, 19, 24, 26, 28, 20, 35, 37, 39, 46, 48, 40, 57,

59, 68, 60, 79, 80}

and we then fill the caches according to (6) as follows

Z1 = {Wn
13,W

n
15,W

n
17,W

n
19, ∀n ∈ [N]}

Z2 = {Wn
24,W

n
26,W

n
28,W

n
20, ∀n ∈ [N]}

...

Z9 = {Wn
19,W

n
39,W

n
59,W

n
79, ∀n ∈ [N]}

Z0 = {Wn
20,W

n
40,W

n
60,W

n
80, ∀n ∈ [N]}.

We notice that the cache placement guarantees an empty

intersection Zk∩Z〈k+1〉 = ∅ of any z = 2 neighboring caches,

and thus a full local caching gain (zγ = 0.4).

In the delivery phase we consider the worst-case demand

vector d = (1, 2, . . . , 9, 0). We will list the XORs of phase 1

and phase 2, but before doing that, let us offer some intuition

on the design of the XORs of the first phase.

Let us consider a pair of users (say, users 0 and 1) that

“see” a common cache (in this case, cache 1). For these two

users we will create a generic XOR

W 0
σ1,σ2

⊕W 1
σ̃1,σ̃2

(15)

which will be combined with another XOR

W 3
τ1,τ2

⊕W 4
τ̃1,τ̃2

(16)

which is meant for another pair of users, say 3 and 4, that again

share a common cache (cache 4). Combining the two XORs

yields a new XOR X = W 0
σ1,σ2

⊕W 1
σ̃1,σ̃2

⊕W 3
τ1,τ2

⊕W 4
τ̃1,τ̃2

of 4 subfiles. To guarantee decoding for all, we will set σ1 =
σ̃1 = 4 to let user 3 and user 4 “cache out” from X the subfiles

in (15) and similarly we set τ1 = τ̃1 = 1 in order to let users

0 and 1 cache out the XOR in (16). Next, we choose σ2 = 2
so that user 1 can remove subfile W 0

4,2 from X and σ̃2 = 0
to let user 0 remove subfile W 1

4,0 from X . A similar choice

of τ2 and τ̃2 will result in5

X = W 0
24 ⊕W 1

40 ⊕W 3
15 ⊕W 4

13. (17)

The list of XORs sent during phase 1 is given below.

X(1, 1, 1) = W 0
24 ⊕W 1

40 ⊕W 3
15 ⊕W 4

13

X(1, 1, 2) = W 0
26 ⊕W 1

60 ⊕W 5
17 ⊕W 6

15

X(1, 1, 3) = W 0
28 ⊕W 1

80 ⊕W 7
19 ⊕W 8

17

X(2, 1, 1) = W 1
35 ⊕W 2

15 ⊕W 4
26 ⊕W 5

24

X(2, 1, 2) = W 1
37 ⊕W 2

17 ⊕W 6
28 ⊕W 7

26

X(2, 1, 3) = W 1
39 ⊕W 2

19 ⊕W 8
20 ⊕W 9

28

X(3, 1, 1) = W 2
46 ⊕W 3

26 ⊕W 5
37 ⊕W 6

35

X(3, 1, 2) = W 2
48 ⊕W 3

28 ⊕W 7
39 ⊕W 8

37

X(3, 1, 3) = W 2
40 ⊕W 3

20 ⊕W 9
13 ⊕W 0

39

X(4, 1, 1) = W 3
57 ⊕W 4

37 ⊕W 6
48 ⊕W 7

46

X(4, 1, 2) = W 3
59 ⊕W 4

39 ⊕W 8
40 ⊕W 9

48

X(5, 1, 1) = W 4
68 ⊕W 5

48 ⊕W 7
59 ⊕W 8

57

X(5, 1, 2) = W 4
60 ⊕W 5

40 ⊕W 9
15 ⊕W 0

59

X(6, 1, 1) = W 5
79 ⊕W 6

59 ⊕W 8
60 ⊕W 9

68

X(7, 1, 1) = W 6
80 ⊕W 7

60 ⊕W 9
17 ⊕W 0

79.

In phase 2, the X2 = 20 transmissions from (13) and (14)

are cyclically generated as shown below.

Y1(θ, 1)=W 1
46 ⊕W 3

17 ⊕W 6
13,

Y2(θ, 1)=W 2
57 ⊕W 4

28 ⊕W 7
24

Y3(θ, 1)=W 3
68 ⊕W 5

39 ⊕W 8
35

...

Y0(θ, 1)=W 0
35 ⊕W 2

60 ⊕W 5
20

and

Y1(θ, 2)=W 1
57 ⊕W 4

17 ⊕W 6
24

Y2(θ, 2)=W 2
68 ⊕W 5

28 ⊕W 7
35

Y3(θ, 2)=W 3
79 ⊕W 6

39 ⊕W 8
46

...

Y0(θ, 2)=W 0
46 ⊕W 3

60 ⊕W 5
13.

5This intuition can be generalized for z > 2 and used as a baseline in the
general description of the scheme presented in Section IV-B1.

In the end, we have S = 20, X1 = 15 and X2 = 20 which

gives

T =
X1 +X2

S
=

35

20

and a coding gain K(1− zγ)/T = 3.43.

V. CODED CACHING FOR K = Kγz + 1

Corresponding to Theorem 2, we now present the optimal

caching and delivery scheme for z = K−1
Kγ

for any Kγ.

A. Cache placement algorithm

In the cache placement phase, each file Wn is first split

into K subfiles Wn
φ , φ ∈ Φ where each Kγ-tuple φ

△
=

{φ1, φ2, . . . , φKγ} is drawn from the set

Φ
△
= {φ : φ1 ∈ [K], φj = 〈φj−1 + z〉, ∀j ∈ [2 : Kγ]} (18)

of size K. Then each cache k is filled as follows

Zk = {Wn
Φ | ∀n ∈ [N], ∀Φ ∋ k} (19)

forcing each integer k ∈ [K] to appear in Φ exactly Kγ times,

thus guaranteeing that each cache stores exactly Kγ subfiles

from each file, thus respecting the cache-size constraint.

What the above placement also guarantees is that, by

construction of the set Φ, all subfiles of each file stored

in any z consecutive caches, are different. This is due to

the fact that any two elements of each Kγ-tuple φ ∈ Φ
have distance at least z. Thus, each user k has access to

Kγz = KK−1
Kz

z = K−1 different subfiles of its requested file

W dk . We denote by W dk
ρk

the one remaining subfile desired

by user k, for a specific Kγ-tuple ρk = Φ \ {∪i∈Ck
Zi}.

B. Delivery and decoding

Upon reception of the demand vector d, the server multi-

casts a single XOR

X =
⊕

k∈[K]

W dk
ρk

(20)

to all users of the network. By virtue of the fact that each

user is only missing a single subfile, we can deduce that

each user k can cache out from X all K − 1 subfiles

{W
dj
ρj }j∈[K]\{k} to successfully decode its own requested

subfile W dk
ρk

. Consequently the total delivery time is naturally

equal to T = |X| = 1
K
.

C. Example

Let us consider the case of Kγ = 3, z = 2 and K = 7. We

first split each file into 7 equally sized subfiles with indices

Φ = {135, 136, 146, 246, 247, 257, 357}.

and fill each cache, according to (19), as follows

Z1 = {Wn
135,W

n
136,W

n
146, ∀n ∈ [N]}

Z2 = {Wn
246,W

n
247,W

n
257, ∀n ∈ [N]}

Z3 = {Wn
135,W

n
136,W

n
357, ∀n ∈ [N]}

Z4 = {Wn
146,W

n
246,W

n
247, ∀n ∈ [N]}

Z5 = {Wn
135,W

n
257,W

n
357, ∀n ∈ [N]}

Z6 = {Wn
136,W

n
146,W

n
246, ∀n ∈ [N]}

Z7 = {Wn
247,W

n
257,W

n
357, ∀n ∈ [N]}.

In the delivery phase we consider the delivery vector d =
(1, 2, . . . , 7). We notice that the placement and topology

jointly guarantee that each user is missing only a single subfile.

For example, user 1 is only missing subfile W 1
357. Placing all

these missing subfiles together, the server sends

X = W 1
357⊕W 2

146⊕W 3
257⊕W 4

136⊕W 5
247⊕W 6

135⊕W 7
246 (21)

which guarantees that each user can cache out exactly 6
elements to decode their own subfile. The delay is T = 1

7
and the DoF of Kγz + 1 = 7.

VI. CONCLUSION

For the multiple access coded caching problem, we have

proposed novel coded caching schemes that achieve a coding

gain that exceeds Kγ + 1. To the best of our knowledge, in

the context of worst-case delivery time and for N ≥ K, this is

the first instance of a fully-connected shared-link problem that

experiences a gain larger than Kγ+1. An interesting extension

of this work is its generalization to all possible values of Kγ.

REFERENCES

[1] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Trans. Inf. Theory, May 2014.
[2] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded

cache placement,” in Information Theory Workshop (ITW), IEEE, 2016.
[3] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-

memory tradeoff for caching with uncoded prefetching,” IEEE Trans.

Inf. Theory, Feb 2017.
[4] E. Lampiris, J. Zhang, and P. Elia, “Cache-aided cooperation with no

CSIT,” in Proc. IEEE Int. Symp. on Inform. Theory (ISIT), June 2017.
[5] T. X. Vu, S. Chatzinotas, and B. Ottersten, “Coded caching and

storage planning in heterogeneous networks,” in 2017 IEEE Wireless

Communications and Networking Conference (WCNC), March 2017.
[6] K. Wan, D. Tuninetti, M. Ji, and G. Caire, “Novel inter-file coded

placement and d2d delivery for a cache-aided fog-ran architecture,”
2018. [Online]. Available: https://arxiv.org/pdf/1811.05498.pdf

[7] E. Parrinello, A. Ünsal, and P. Elia, “Fundamental limits of caching
in heterogeneous networks with uncoded prefetching,” arXiv preprint

https://arxiv.org/pdf/1811.06247.pdf, 2018.
[8] N. Zhang and M. Tao, “Fitness-aware coded multicasting for decentral-

ized caching with finite file packetization,” IEEE Wireless Communica-

tions Letters, Oct 2018.
[9] H. Ghasemi and A. Ramamoorthy, “Algorithms for asynchronous coded

caching,” in 51st Asilomar Conference on Signals, Systems, and Com-

puters, Oct 2017.
[10] E. Ozfatura, T. Rarris, D. Gndz, and O. Ercetin, “Delay-aware coded

caching for mobile users,” in IEEE 29th Annual International Sympo-

sium on Personal, Indoor and Mobile Radio Communications (PIMRC),
Sep. 2018.

[11] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Trans. Inf. Theory, May 2017.

[12] K. S. Reddy and N. Karamchandani, “On the exact rate-memory trade-
off for multi-access coded caching with uncoded placement,” in 2018

International Conference on Signal Processing and Communications

(SPCOM), July 2018.
[13] E. Lampiris and P. Elia, “Achieving full multiplexing and unbounded

caching gains with bounded feedback resources,” in Proc. IEEE Int.

Symp. on Inform. Theory (ISIT), June 2018.
[14] E. Lampiris and P. Elia, “Full coded caching gains for cache-less users,”

in Information Theory Workshop (ITW), IEEE, 2018.

